Degree Ramsey numbers for even cycles

Michael Tait

Carnegie Mellon University
mtait@cmu.edu
AEGT: a conference in honor of Willem, Felix, and Andy
University of Delaware

August 8, 2017

Ramsey Theory

"Large" implies "structure"

For graphs G and $H, R(G, H)$ denotes the smallest n such that any red/blue coloring of $E\left(K_{n}\right)$ contains a red G or a blue H

$$
\begin{gathered}
R\left(C_{n}, C_{m}\right)=f(n, m) \\
R\left(K_{n}, T_{m}\right)=(m-1)(n-1)+1 \\
R\left(K_{3}, K_{t}\right)=\Theta\left(\frac{t^{2}}{\log t}\right) \\
R\left(K_{m}, K_{n}\right)=? ?
\end{gathered}
$$

Parameter Ramsey numbers

We say $H \xrightarrow{s} G$ denote that any s-coloring of $E(H)$ contains a monochromatic G. For any monotone graph parameter ρ, we let

$$
R_{\rho}(G, s)=\min \{\rho(H): H \xrightarrow{s} G\} .
$$

- $R(G, G)=R_{|V(H)|}(G, 2)$.
- $\rho=e(H)$: size Ramsey number
- $\rho=\chi(H)$: chromatic Ramsey number
- $\rho=\Delta(H)$: degree Ramsey number

Degree Ramsey numbers

- Trees, cycles (Kinnersley, Milans, West)
- $R_{\Delta}\left(C_{4}, s\right)=\Omega\left(s^{14 / 9}\right)$ (Jiang, Milans, West)
- Closed blowups of trees (Horn, Milans, Rödl)
- $R_{\Delta}\left(C_{4}, s\right)=\Theta\left(s^{2}\right)$ (Kang, Perarnau)
$R_{\Delta}\left(C_{4}, s\right)=O\left(s^{2}\right):$ there exists a graph of maximum degree $O\left(s^{2}\right)$ such that any s-coloring of its edges contains a monochromatic C_{4}. $R_{\Delta}\left(C_{4}, s\right)=\Omega\left(s^{2}\right)$: any graph of maximum degree Δ can be partitioned into $O\left(\Delta^{1 / 2}\right)$ subgraphs each of which is C_{4} free.

Kang-Perarnau: If one can partition K_{Δ} into C_{4} free graphs efficiently, then one can partition any graph of maximum degree Δ into C_{4} free graphs efficiently.

Theorem (Tait)

$$
\begin{aligned}
& R_{\Delta}\left(C_{6}, s\right)=\Theta\left(s^{3 / 2}\right) \\
& R_{\Delta}\left(C_{10}, s\right)=\Theta\left(s^{5 / 4}\right)
\end{aligned}
$$

If one can partition K_{Δ} into C_{6} or C_{10} free graphs efficiently then one can partition any graph of maximum degree Δ into C_{6} or C_{10} free graphs efficiently (this is not quite true).

Assume H is a graph of maximum degree Δ. We would like to partition it into "few" graphs all of which are $C_{2 k}$-free.

Lemma
There is a subgraph spanning H^{\prime} of H and a proper coloring of $V\left(H^{\prime}\right)$ with $O(\Delta)$ colors such that
(1) For all $v, d_{H^{\prime}}(v) \geq \delta d_{H}(v)$
(2) Every vertex in H^{\prime} sees a rainbow

Note: by iterating, it suffices to show that H^{\prime} can be partitioned into "few" graphs all of which are $C_{2 k}$-free.

Assume H^{\prime} is properly colored with 100Δ colors so that each neighborhood is a rainbow. Also assume that we have partitioned $K_{100 \Delta}$ into subgraphs G_{1}, \cdots, G_{m} none of which contain C_{4}.

We show that we can also partition H^{\prime} into m subgraphs none of which contain a C_{4}.

Map from K_{Δ} to H^{\prime}

Map from K_{Δ} to H^{\prime}

Since G_{1}, \cdots, G_{m} partition $K_{100 \Delta}$, these graphs partition H^{\prime}.

C_{4} free?

What is the preimage of a C_{4} ?

C_{4} free?

What is the preimage of a C_{4} ?

$C_{2 k}$ free?

What is the preimage of a $C_{2 k}$?

$C_{2 k}$ free?

What is the preimage of a $C_{2 k}$?

The preimage is a nonbacktracking closed walk of length $2 k$. It contains a cycle of length at most $2 k$.

If we can partition $K_{C \Delta}$ into "few" graphs with girth greater than $2 k$, then we can partition H^{\prime} into the same number of graphs with no $C_{2 k}$. Theorem (Chung-Graham 1975, Lazebnik-Woldar 2000)
K_{n} can be partitioned into $m C_{4}$ free subgraphs where $m \sim n^{1 / 2}$.

Theorem (Li-Lih 2009)
K_{n} can be partitioned into $O\left(n^{2 / 3}\right) C_{6}$-free graphs or $O\left(n^{4 / 5}\right) C_{10}$-free graphs.

Theorem

K_{n} can be partitioned in $O\left(n^{2 / 3}\right)$ subgraphs of girth 8 or $O\left(n^{4 / 5}\right)$ subgraphs of girth 12 .

Kinnersley, Milans, and West showed that $R_{\Delta}\left(C_{2 k}, s\right) \geq 2 s$.
Theorem (Lazebnik, Ustimenko, Woldar 1995)
Let k be fixed and $\delta=0$ if k is odd and 1 if k is even. The graphs $C D(k, q)$ are graphs on n vertices with $\Omega\left(n^{1+\frac{2}{3 k-3+\delta}}\right)$ edges and girth at least $2 k+2$.

Corollary
Let $k \geq 2$ and $\delta=0$ if k is odd and $\delta=1$ if k is even. Then

$$
R_{\Delta}\left(C_{2 k}, s\right)=\Omega\left(\left(\frac{s}{\log s}\right)^{1+\frac{2}{3 k-5+\delta}}\right)
$$

Open Problem 1

Get rid of the \log in the previous theorem.

Open Problem 2
Can any graph with spectral radius λ be decomposed into $O\left(\lambda^{2 / 3}\right)$ subgraphs each of which are C_{4}-free?

Open Problem 3
Is there a function $f(\Delta, s)$ such that $R_{\Delta}(G, s) \leq f(\Delta(G), s)$?

