Degree Ramsey numbers for even cycles

Michael Tait

Carnegie Mellon University mtait@cmu.edu

AEGT: a conference in honor of Willem, Felix, and Andy University of Delaware

August 8, 2017

Ramsey Theory

"Large" implies "structure"

For graphs G and H, R(G, H) denotes the smallest n such that any red/blue coloring of $E(K_n)$ contains a red G or a blue H

$$R(C_n, C_m) = f(n, m)$$

$$R(K_n, T_m) = (m - 1)(n - 1) + 1$$

$$R(K_3, K_t) = \Theta\left(\frac{t^2}{\log t}\right)$$

$$R(K_m, K_n) = ??$$

Parameter Ramsey numbers

We say $H \xrightarrow{s} G$ denote that any s-coloring of E(H) contains a monochromatic G. For any monotone graph parameter ρ , we let

$$R_{\rho}(G, s) = \min\{\rho(H) : H \xrightarrow{s} G\}.$$

- $R(G,G) = R_{|V(H)|}(G,2)$.
- $\rho = e(H)$: size Ramsey number
- $\rho = \chi(H)$: chromatic Ramsey number
- $\rho = \Delta(H)$: degree Ramsey number

Degree Ramsey numbers

- Trees, cycles (Kinnersley, Milans, West)
- $R_{\Delta}(C_4, s) = \Omega(s^{14/9})$ (Jiang, Milans, West)
- Closed blowups of trees (Horn, Milans, Rödl)
- $R_{\Delta}(C_4, s) = \Theta(s^2)$ (Kang, Perarnau)

 $R_{\Delta}(C_4, s) = O(s^2)$: there exists a graph of maximum degree $O(s^2)$ such that any s-coloring of its edges contains a monochromatic C_4 . $R_{\Delta}(C_4, s) = \Omega(s^2)$: any graph of maximum degree Δ can be partitioned into $O(\Delta^{1/2})$ subgraphs each of which is C_4 free.

Kang-Perarnau: If one can partition K_{Δ} into C_4 free graphs efficiently, then one can partition any graph of maximum degree Δ into C_4 free graphs efficiently.

Theorem (Tait)

$$R_{\Delta}(C_6, s) = \Theta(s^{3/2})$$
$$R_{\Delta}(C_{10}, s) = \Theta(s^{5/4})$$

$$R_{\Delta}(C_{10},s) = \Theta(s^{5/4})$$

If one can partition K_{Λ} into C_6 or C_{10} free graphs efficiently then one can partition any graph of maximum degree Δ into C_6 or C_{10} free graphs efficiently (this is not quite true).

Assume H is a graph of maximum degree Δ . We would like to partition it into "few" graphs all of which are C_{2k} -free.

Lemma

There is a subgraph spanning H' of H and a proper coloring of V(H') with $O(\Delta)$ colors such that

- For all $v, d_{H'}(v) \ge \delta d_H(v)$
- 2 Every vertex in H' sees a rainbow

Note: by iterating, it suffices to show that H' can be partitioned into "few" graphs all of which are C_{2k} -free.

Assume H' is properly colored with 100Δ colors so that each neighborhood is a rainbow. Also assume that we have partitioned $K_{100\Delta}$ into subgraphs G_1, \dots, G_m none of which contain C_4 .

We show that we can also partition H' into m subgraphs none of which contain a C_4 .

Map from K_{Δ} to H'

Michael Tait (CMU)

Map from K_{Δ} to H'

Since G_1, \dots, G_m partition $K_{100\Delta}$, these graphs partition H'.

Michael Tait (CMU) August 8, 2017 10 / 18

C_4 free?

What is the preimage of a C_4 ?

C_4 free?

What is the preimage of a C_4 ?

C_{2k} free?

What is the preimage of a C_{2k} ?

Michael Tait (CMU)

C_{2k} free?

What is the preimage of a C_{2k} ?

The preimage is a nonbacktracking closed walk of length 2k. It contains a cycle of length at most 2k.

Michael Tait (CMU)

If we can partition $K_{C\Delta}$ into "few" graphs with girth greater than 2k, then we can partition H' into the same number of graphs with no C_{2k} .

Theorem (Chung-Graham 1975, Lazebnik-Woldar 2000)

 K_n can be partitioned into m C_4 free subgraphs where $m \sim n^{1/2}$.

Theorem (Li-Lih 2009)

 K_n can be partitioned into $O(n^{2/3})$ C_6 -free graphs or $O(n^{4/5})$ C_{10} -free graphs.

Theorem

 K_n can be partitioned in $O(n^{2/3})$ subgraphs of girth 8 or $O(n^{4/5})$ subgraphs of girth 12.

Kinnersley, Milans, and West showed that $R_{\Delta}(C_{2k}, s) \geq 2s$.

Theorem (Lazebnik, Ustimenko, Woldar 1995)

Let k be fixed and $\delta = 0$ if k is odd and 1 if k is even. The graphs CD(k,q) are graphs on n vertices with $\Omega\left(n^{1+\frac{2}{3k-3+\delta}}\right)$ edges and girth at least 2k+2.

Corollary

Let $k \geq 2$ and $\delta = 0$ if k is odd and $\delta = 1$ if k is even. Then

$$R_{\Delta}(C_{2k}, s) = \Omega\left(\left(\frac{s}{\log s}\right)^{1 + \frac{2}{3k - 5 + \delta}}\right).$$

Open Problem 1

Get rid of the log in the previous theorem.

Open Problem 2

Can any graph with spectral radius λ be decomposed into $O(\lambda^{2/3})$ subgraphs each of which are C_4 -free?

Open Problem 3

Is there a function $f(\Delta, s)$ such that $R_{\Delta}(G, s) \leq f(\Delta(G), s)$?

