SIDON SETS AND 2-CAPS IN \mathbb{F}_{3}^{n}

YIXUAN HUANG, MICHAEL TAIT, AND ROBERT WON

Abstract

For each natural number d, we introduce the concept of a d-cap in \mathbb{F}_{3}^{n}. A subset of \mathbb{F}_{3}^{n} is called a d-cap if, for each $k=1,2, \ldots, d$, no $k+2$ of the points lie on a k-dimensional flat. This generalizes the notion of a cap in \mathbb{F}_{3}^{n}. We prove that the 2-caps in \mathbb{F}_{3}^{n} are exactly the Sidon sets and study the problem of determining the size of the largest 2 -cap in \mathbb{F}_{3}^{n}.

1. Introduction

Throughout, let \mathbb{F}_{q} denote the field with q elements and let \mathbb{F}_{q}^{n} denote n-dimensional affine space over \mathbb{F}_{q}. A cap in \mathbb{F}_{3}^{n} is a collection of points such that no three are collinear. Although this definition is geometric, there is an equivalent definition that is arithmetic: a set of points C is a cap in \mathbb{F}_{3}^{n} if and only if C contains no three-term arithmetic progressions.

Here, we consider natural generalizations of caps in \mathbb{F}_{3}^{n}. For $d \in \mathbb{N}$, we call a set of points a d-cap if, for each $k=1,2, \ldots, d$, no $k+2$ of the points lie on a k-dimensional flat. With this definition, a 1-cap corresponds to the usual definition of a cap.

Let $r\left(1, \mathbb{F}_{3}^{n}\right)$ denote the maximal size of a 1-cap in \mathbb{F}_{3}^{n}. In general, it is a difficult problem to determine $r\left(1, \mathbb{F}_{3}^{n}\right)$-in fact, the exact answer is known only when $n \leq 6$. Table $\mathbb{1}$ lists the best known upper and lower bounds for $r\left(1, \mathbb{F}_{3}^{n}\right)$ for $n \leq 10[10$. It is known that in dimension $n \leq 6$, maximal 1-caps are equivalent up to affine transformation [4, 8, 9.

Dimension	1	2	3	4	5	6	7	8	9	10
Lower bound	2	4	9	20	45	112	236	496	1064	2240
Upper bound	2	4	9	20	45	112	291	771	2070	5619

Table 1. The best known bounds for the size of a maximal 1-cap in \mathbb{F}_{3}^{n}.

The asymptotic bounds on $r\left(1, \mathbb{F}_{3}^{n}\right)$ are also well-studied. In [5] Edel showed that

$$
\limsup _{n \rightarrow \infty} \frac{\log _{3}\left(r\left(1, \mathbb{F}_{3}^{n}\right)\right)}{n} \geq 0.724851
$$

2010 Mathematics Subject Classification. 05B10, 05B25, 05B40, 51 E 15.
and consequently that $r\left(1, \mathbb{F}_{3}^{n}\right)$ is $\Omega\left(2.2174^{n}\right)$ (using Hardy-Littlewood's Ω notation). In more recent breakthrough work [6] Ellenberg and Gijswijt (adapting a method of Croot, Lev, and Pach [3) proved that $r\left(1, \mathbb{F}_{3}^{n}\right)$ is $o\left(2.756^{n}\right)$.

In this paper, we focus on the study of 2 -caps in \mathbb{F}_{3}^{n}. We show that there is an equivalent arithmetic formulation of the definition of a 2 -cap. In particular, the 2 -caps in \mathbb{F}_{3}^{n} are exactly the Sidon sets, which are important objects in combinatorial number theory. Using this definition, we are able to compute the maximal size of a 2-cap in \mathbb{F}_{3}^{n} exactly when n is even. We also examine 2 -caps in low dimension when n is odd, in particular considering dimension $n=3,5$, and 7 .

Dimension	1	2	3	4	5	6	7	8	n even	n odd
Lower bound	2	3	5	9	13	27	33	81	$3^{n / 2}$	$3^{(n-1) / 2}+1$
Upper bound	2	3	5	9	13	27	47	81	$3^{n / 2}$	$\left\lceil 3^{n / 2}\right\rceil$

TABLE 2. Bounds for the size of a maximal 2-cap in \mathbb{F}_{3}^{n}.

Table 2 lists the bounds we obtain for the size of a maximal 2-cap in \mathbb{F}_{3}^{n}. The values in dimension 3,5 , and 7 are given by Theorems 3.9 and 3.10, and Proposition 3.12, respectively. The bounds for even dimension follow from Theorem [3.4. The upper bound in odd dimension n follows from Proposition 3.3 and the lower bound is given by adding one affinely independent point to the construction in dimension $n-1$. Knowing the exact value in even dimension also allows us to conclude that asymptotically, the maximal size of a 2-cap in \mathbb{F}_{3}^{n} is $\Theta\left(3^{n / 2}\right)$.

Acknowledgments. The authors would like to thank W. Frank Moore for suggesting the project. Yixuan Huang was supported by a Wake Forest Research Fellowship during the summer of 2018 and Michael Tait was supported in part by NSF grant DMS-1606350.

2. Preliminaries

In this section, we establish basic notation, definitions, and background. The set of natural numbers is denoted $\mathbb{N}=\{1,2,3, \ldots\}$. Throughout, d and n will always denote natural numbers. An element $\mathbf{a} \in \mathbb{F}_{3}^{n}$ will be written as a row vector $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ with each $a_{i} \in\{0,1,2\}$. We will sometimes order the vectors of \mathbb{F}_{3}^{n} lexicographically-i.e., by regarding them as ternary strings. We use the notation $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ to denote the n standard basis vectors in an n-dimensional vector space.

A k-dimensional affine subspace of a vector space is called a k-dimensional flat. In particular, a 1-dimensional flat is also called a line. In the affine space \mathbb{F}_{3}^{n}, every line consists of the points
$\{\mathbf{a}, \mathbf{a}+\mathbf{b}, \mathbf{a}+2 \mathbf{b}\}$ for some $\mathbf{a}, \mathbf{b} \in \mathbb{F}_{3}^{n}$ where $\mathbf{b} \neq \mathbf{0}$. Hence, the lines in \mathbb{F}_{3}^{n} correspond to three-term arithmetic progressions. It is easy to see that three distinct points in \mathbb{F}_{3}^{n} are collinear if and only if they sum to $\mathbf{0}$. Likewise, a 2-dimensional flat is called a plane. Any three non-collinear points determine a unique plane. For $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in \mathbb{F}_{3}^{k}$ with $k<n$. The subset of \mathbb{F}_{3}^{n} whose first k entries are $a_{1}, a_{2}, \ldots, a_{k}$ is an $(n-k)$-dimensional flat which we call the a-affine subspace of \mathbb{F}_{3}^{n}.

Two subsets C and D of a vector space are called affinely equivalent if there exists an invertible affine transformation T such that $T(C)=D$. It is clear that affine equivalence determines an equivalence relation on the power set of a vector space. Given a set of points X in a vector space, its affine span is given by the set of all affine combinations of points of X. A set X is called affinely independent if no proper subset of X has the same affine span as X. Equivalently, $\left\{\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ is affinely independent if and only if $\left\{\mathrm{x}_{1}-\mathrm{x}_{0}, \mathrm{x}_{2}-\mathrm{x}_{0}, \ldots, \mathrm{x}_{n}-\mathrm{x}_{0}\right\}$ is linearly independent.

Definition 2.1. A subset C of \mathbb{F}_{3}^{n} is called a d-cap if, for each $k=1,2, \ldots, d$, no $k+2$ points of C lie on a k-dimensional flat. Equivalently, C is a d-cap if and only if any subset of C of size at most $d+2$ is affinely independent. A d-cap is called complete if it is not a proper subset of another d-cap and is called maximal if it is of the largest possible cardinality.

We will denote the size of a maximal d-cap in \mathbb{F}_{3}^{n} by $r\left(d, \mathbb{F}_{3}^{n}\right)$. As mentioned in the introduction, a 1 -cap is a classical cap. We note that $C \subseteq \mathbb{F}_{3}^{d+1}$ is a d-cap if and only if the points of C are in general position. Since invertible affine transformations preserve affine independence, the image of a d-cap under an invertible affine transformation is again a d-cap. As a warm-up, we prove some basic facts about maximal d-caps in \mathbb{F}_{3}^{n}.

Lemma 2.2. We have that $r\left(d, \mathbb{F}_{3}^{n}\right) \geq n+1$ with equality if $n \leq d$.

Proof. The set $\left\{\mathbf{0}, \mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ is an affinely independent subset of \mathbb{F}_{3}^{n} of size $n+1$ and hence is a d-cap for any $d \in \mathbb{N}$. Therefore, $r\left(d, \mathbb{F}_{3}^{n}\right) \geq n+1$.

Now suppose $n \leq d$. Since, by definition, a d-cap must be an n-cap, we have that $r\left(d, \mathbb{F}_{3}^{n}\right) \leq$ $r\left(n, \mathbb{F}_{3}^{n}\right)$. A maximal affinely independent set in \mathbb{F}_{3}^{n} has size $n+1$ so $r\left(n, \mathbb{F}_{3}^{n}\right) \leq n+1$. and so $r\left(d, \mathbb{F}_{3}^{n}\right)=n+1$.

Corollary 2.3. When $n \leq d$, all maximal d-caps in \mathbb{F}_{3}^{n} are affinely equivalent.
Proof. By Lemma [2.2, when $n \leq d$, a maximal d-cap in \mathbb{F}_{3}^{n} is a maximal affinely independent set, i.e., an affine basis of \mathbb{F}_{3}^{n}. All affine bases in an affine space are equivalent up to affine transformation.

Lemma 2.4. For fixed $d, r\left(d, \mathbb{F}_{3}^{n}\right)$ is a non-decreasing function of n and for fixed $n, r\left(d, \mathbb{F}_{3}^{n}\right)$ is a non-increasing function of d.

Proof. Since \mathbb{F}_{3}^{n-1} is an affine subspace of \mathbb{F}_{3}^{n}, a d-cap in \mathbb{F}_{3}^{n-1} naturally embeds as a d-cap in \mathbb{F}_{3}^{n}. Hence $r\left(d, \mathbb{F}_{3}^{n-1}\right) \leq r\left(d, \mathbb{F}_{3}^{n}\right)$ so the first statement follows. The second statement follows since, by definition, a d-cap in \mathbb{F}_{3}^{n} must be a $(d-1)$-cap. Hence, $r\left(d-1, \mathbb{F}_{3}^{n}\right) \geq r\left(d, \mathbb{F}_{3}^{n}\right)$.

3. 2 -CAPS IN \mathbb{F}_{3}^{n}

We now restrict our attention to the study of 2 -caps in \mathbb{F}_{3}^{n}. Our first observation is that in \mathbb{F}_{3}^{n}, the definition of a 2-cap is equivalent to the definition of a Sidon set.

Definition 3.1. Let G be an abelian group. A subset $A \subseteq G$ is called a Sidon set if, whenever $a+b=c+d$ with $a, b, c, d \in A$, the pair (a, b) is a permutation of the pair (c, d).

Theorem 3.2. A subset C of \mathbb{F}_{3}^{n} is a 2 -cap if and only if it is a Sidon set.
Proof. First suppose that C is not a 2-cap. Then C contains three points which are collinear or C contains four points which are coplanar. Every line in \mathbb{F}_{3}^{n} is of the form $\mathbf{a}, \mathbf{b},-\mathbf{a}-\mathbf{b}$ for some $\mathbf{a}, \mathbf{b} \in \mathbb{F}_{3}^{n}$. But $\mathbf{b}+\mathbf{b}=\mathbf{a}+(-\mathbf{a}-\mathbf{b})$, so if C contains three collinear points, then C is not a Sidon set.

Suppose therefore that no three points in C are collinear. Then C contains four coplanar points. Every 2-dimensional flat F in \mathbb{F}_{3}^{n} is determined by any three non-collinear points $\mathbf{a}, \mathbf{b}, \mathbf{c} \in F$. Namely, we have that

$$
F=\begin{array}{|c|c|c|}
\hline \mathbf{a} & \mathbf{b} & -\mathbf{a}-\mathbf{b} \\
\hline \mathbf{c} & -\mathbf{a}+\mathbf{b}+\mathbf{c} & \mathbf{a}-\mathbf{b}+\mathbf{c} \\
\hline-\mathbf{a}-\mathbf{c} & \mathbf{a}+\mathbf{b}-\mathbf{c} & -\mathbf{b}-\mathbf{c} \\
\hline
\end{array}
$$

It is easy to check that given any four points $\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w} \in F$, no three of which are collinear, there is a choice of labeling so that $\mathbf{x}+\mathbf{y}=\mathbf{z}+\mathbf{w}$. Hence, if C is not a 2-cap, then C is not a Sidon set.

Conversely, suppose that C is not a Sidon set. Then either C contains three distinct points $\mathbf{a}, \mathbf{b}, \mathbf{c}$ such that $\mathbf{a}+\mathbf{a}=\mathbf{b}+\mathbf{c}$ or C contains four distinct points $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ such that $\mathbf{a}+\mathbf{b}=\mathbf{c}+\mathbf{d}$. In the first case, $\mathbf{a}+\mathbf{b}+\mathbf{c}=\mathbf{0}$ so C contains a line. In the second case, $\mathbf{d}=\mathbf{a}+\mathbf{b}-\mathbf{c}$, so \mathbf{d} lies in the plane determined by \mathbf{a}, \mathbf{b} and \mathbf{c}, and hence the four points are coplanar. In either case, C is not a 2 -cap.

Since, in \mathbb{F}_{3}^{n}, 2-caps correspond to Sidon sets, we will use the terms interchangeably throughout. We obtain an upper bound on $r\left(2, \mathbb{F}_{3}^{n}\right)$ by an easy counting argument (c.f. [2, Corollary 2.2]).

Proposition 3.3. For any $n \in \mathbb{N}, r\left(2, \mathbb{F}_{3}^{n}\right) \cdot\left(r\left(2, \mathbb{F}_{3}^{n}\right)-1\right) \leq 3^{n}-1$.
Proof. Suppose $C \subset \mathbb{F}_{3}^{n}$ is a 2-cap and hence, by Theorem 3.2, a Sidon set. For a, $\mathbf{b}, \mathbf{c}, \mathbf{d} \in C$, if $\mathbf{a}-\mathbf{b}=\mathbf{c}-\mathbf{d}$ then $\{\mathbf{a}, \mathbf{d}\}=\{\mathbf{c}, \mathbf{b}\}$ and so we have either $\mathbf{a}=\mathbf{b}$ or $\mathbf{a}=\mathbf{c}$ and $\mathbf{b}=\mathbf{d}$. Therefore the set $\{\mathbf{a}-\mathbf{b}: \mathbf{a}, \mathbf{b} \in C, \mathbf{a} \neq \mathbf{b}\}$ has size $|C|(|C|-1)$. Since these differences are nonzero, we have

$$
|C|(|C|-1) \leq 3^{n}-1
$$

3.1. Even dimension.

Theorem 3.4. If n is even, then $r\left(2, \mathbb{F}_{3}^{n}\right)=3^{n / 2}$.
Proof. First we will show the lower bound, $r\left(2, \mathbb{F}_{3}^{n}\right) \geq 3^{n / 2}$. Since \mathbb{F}_{3}^{n} is additively isomorphic to $\mathbb{F}_{3}^{n / 2} \times \mathbb{F}_{3}^{n / 2}$, it suffices to construct a Sidon set of size $3^{n / 2}$ in $\mathbb{F}_{3}^{n / 2} \times \mathbb{F}_{3}^{n / 2}$. As vector spaces over $\mathbb{F}_{3}, \mathbb{F}_{3}^{n / 2}$ is isomorphic to $\mathbb{F}_{3^{n / 2}}$, the finite field with $3^{n / 2}$ elements. Hence, it suffices to construct a Sidon set of size $3^{n / 2}$ in $\mathbb{F}_{3^{n / 2}} \times \mathbb{F}_{3^{n / 2}}$ This follows easily from the following claim, which was first proved in [1]. We include a short proof for completeness.

Claim 1. Let q be an odd prime power and \mathbb{F}_{q} be the finite field of order q. Then the set $\left\{\left(x, x^{2}\right)\right.$: $\left.x \in \mathbb{F}_{q}\right\}$ is a Sidon set in $\mathbb{F}_{q} \times \mathbb{F}_{q}$.

Proof. Assume that

$$
\left(a, a^{2}\right)+\left(b, b^{2}\right)=\left(c, c^{2}\right)+\left(d, d^{2}\right),
$$

for some $a, b, c, d \in \mathbb{F}_{q}$. We must show that $\{a, b\}=\{c, d\}$. Without loss of generality, assume that $a \neq c$. Then we have

$$
\begin{aligned}
a-c & =d-b \\
a^{2}-c^{2} & =d^{2}-b^{2} .
\end{aligned}
$$

Since $a \neq c$, we may divide the second equation by the first to see that $a+c=b+d$. But this combined with the first equation gives $2 a=2 d$. Since q is odd we have $a=d$ and therefore $b=c$.

It is clear that the set $\left\{\left(x, x^{2}\right): x \in \mathbb{F}_{3^{n / 2}}\right\}$ has size $3^{n / 2}$ and so we have $r\left(2, \mathbb{F}_{3}^{n}\right) \geq 3^{n / 2}$. For the upper bound, let $C \subset \mathbb{F}_{3}^{n}$ be a 2-cap. Since n is even, $3^{n / 2}$ is an integer, and if $|C| \geq 3^{n / 2}+1$, this contradicts Proposition 3.3. Therefore, $r\left(2, \mathbb{F}_{3}^{n}\right) \leq 3^{n / 2}$.

Corollary 3.5. As $n \rightarrow \infty, r\left(2, \mathbb{F}_{3}^{n}\right)$ is $\Theta\left(3^{n / 2}\right)$.
The construction above can be leveraged into the following partitioning theorem.

Theorem 3.6. When n is even, there is a partition of \mathbb{F}_{3}^{n} into maximal caps.
This serves as an analogue to similar results for 1 -caps in \mathbb{F}_{3}^{n}. It is well-known that \mathbb{F}_{3}^{3} can be partitioned into three maximal 1-caps of size 9 . It is possible to partition \mathbb{F}_{3}^{2} into a single point and two disjoint maximal 1 -caps of size 4 . Finally, the main result of [7] shows that \mathbb{F}_{3}^{4} can be partitioned into a single point and four disjoint maximal 1-caps of size 20.

Proof of Theorem 3.6. Since translates of Sidon sets are also Sidon sets, for each $a \in \mathbb{F}_{3}^{n}$ the set $S_{a}:=\left\{\left(x, x^{2}+a\right): x \in \mathbb{F}_{3^{n / 2}}\right\}$ is a maximal 2-cap. Since $\left(x, x^{2}+a\right)=\left(y, y^{2}+b\right)$ implies $x=y$ and hence $a=b$, we have that S_{a} and S_{b} are disjoint for $a \neq b$. Therefore, as a ranges over $\mathbb{F}_{3^{n / 2}}$ the sets S_{a} cover 3^{n} points and thus there is the claimed partition.

Question 3.7. By Corollary 2.3, all maximal 2-caps in \mathbb{F}_{3}^{2} are affinely equivalent. Is this true in \mathbb{F}_{3}^{n} when n is even?

We remark that when $n=4$, a computer program verified that all maximal 2 -caps sum to $\mathbf{0}$. If a set of nine points sums to $\mathbf{0}$ in \mathbb{F}_{3}^{n}, then its image under any affine transformation will likewise sum to $\mathbf{0}$, so this is a necessary condition for all maximal 2 -caps in \mathbb{F}_{3}^{4} to be affinely equivalent.

3.2. Odd dimension.

Lemma 3.8. If $C=\{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}\}$ is a 2-cap of size four in \mathbb{F}_{3}^{n} then $D=\{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d}\}$ is a 2-cap of size five.

Proof. First we note that the points of D are distinct since if, without loss of generality, $\mathbf{a}+\mathbf{b}+$ $\mathbf{c}+\mathbf{d}=\mathbf{a}$, this implies that \mathbf{b}, \mathbf{c}, and \mathbf{d} are collinear, which is impossible since C is a 2-cap.

Now, suppose for contradiction that D is not a 2 -cap, so there exist some $\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w} \in D$ with $\mathbf{x}+\mathbf{y}=\mathbf{z}+\mathbf{w}$. Since C is a 2-cap, we may assume that $\mathbf{x}=\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d}$. Without loss of generality, we then have that $(\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d})+\mathbf{a}=\mathbf{b}+\mathbf{c}$ or $(\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d})+\mathbf{a}=\mathbf{b}+\mathbf{b}$ or $2(\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d})=\mathbf{b}+\mathbf{c}$.

If $(\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d})+\mathbf{a}=\mathbf{b}+\mathbf{c}$, then $\mathbf{a}=\mathbf{d}$ which is impossible since C has size four. If $(\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d})+\mathbf{a}=\mathbf{b}+\mathbf{b}$, then $\mathbf{a}+\mathbf{b}=\mathbf{c}+\mathbf{d}$ contradicting the fact that C is a 2-cap. Finally, if $2(\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d})=\mathbf{b}+\mathbf{c}$, then $\mathbf{a}+\mathbf{d}=\mathbf{b}+\mathbf{c}$, again contradicting the fact that C is a 2-cap.

Theorem 3.9. In \mathbb{F}_{3}^{3}, a maximal 2 -cap has size 5 , that is, $r\left(2, \mathbb{F}_{3}^{3}\right)=5$. Further, all complete 2-caps are maximal and all maximal 2-caps are affinely equivalent.

Proof. Since $\left\{\mathbf{0}, \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ is an affinely independent set in \mathbb{F}_{3}^{3}, by Lemma 3.8, $\left\{\mathbf{0}, \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{1}+\right.$ $\left.\mathbf{e}_{2}+\mathbf{e}_{3}\right\}$ is a 2-cap in \mathbb{F}_{3}^{3}. Hence, $r\left(2, \mathbb{F}_{3}^{3}\right) \geq 5$. But by Proposition 3.3, $r\left(2, \mathbb{F}_{3}^{3}\right)<6$ and hence $r\left(2, \mathbb{F}_{3}^{3}\right)=5$.

Let C be any complete 2-cap in \mathbb{F}_{3}^{3}. Since \mathbb{F}_{3}^{3} is a three-dimensional affine space, if $|C| \leq 3$, then \mathbb{F}_{3}^{3} contains a point which is affinely independent from the points of C, so C cannot be complete. Hence, $|C| \geq 4$. But if $|C|=4$ then by Lemma 3.8, C is not complete. Hence, $|C|=5$, and any complete 2-cap in \mathbb{F}_{3}^{3} is already maximal.

For the final claim, suppose C is a maximal 2-cap in \mathbb{F}_{3}^{3}. Pick any four points in C. Since these points are affinely independent, there exists an invertible affine transformation mapping these points to the set $\left\{\mathbf{0}, \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$. Hence, we need only show that all maximal 2-caps containing $\left\{\mathbf{0}, \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ are affinely equivalent.

It is easy to verify that there are exactly five such maximal 2 -caps, namely:
(1) $C_{1}=\left\{\mathbf{0}, \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3},(1,1,1)\right\}$,
(2) $C_{2}=\left\{\mathbf{0}, \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3},(1,2,2)\right\}$,
(3) $C_{3}=\left\{\mathbf{0}, \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3},(2,1,2)\right\}$,
(4) $C_{4}=\left\{\mathbf{0}, \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3},(2,2,1)\right\}$, and
(5) $C_{5}=\left\{\mathbf{0}, \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3},(2,2,2)\right\}$.

It suffices to exhibit an invertible affine transformation T_{i} mapping C_{1} to C_{i} for $i=2,3,4,5$. We provide these T_{i} explicitly, writing $T_{i}(\mathbf{x})=A_{i} \mathbf{x}+\mathbf{b}_{i}$ for an invertible matrix A_{i} and $\mathbf{b}_{i} \in \mathbb{F}_{3}^{3}$.
(1) $A_{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0\end{array}\right]$ and $\mathbf{b}_{2}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$,
(2) $A_{3}=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 1 & 2\end{array}\right]$ and $\mathbf{b}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$,
(3) $A_{4}=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]$ and $\mathbf{b}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$, and
(4) $A_{5}=\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right]$ and $\mathbf{b}_{5}=\left[\begin{array}{l}2 \\ 2 \\ 2\end{array}\right]$.

Theorem 3.10. A maximal 2-cap in \mathbb{F}_{3}^{5} has size 13 , that is, $r\left(2, \mathbb{F}_{3}^{5}\right)=13$.

Proof. Let C be a maximal 2-cap in \mathbb{F}_{3}^{5}. By Theorem $3.4 r\left(2, \mathbb{F}_{3}^{4}\right)=9$ so by Lemma 2.4 we may assume that $|C| \geq 9$. We will apply a sequence of affine transformations to C to conclude that lexicographically, the first points in C are $\left\{\mathbf{0}, \mathbf{e}_{5}, \mathbf{e}_{4}, \mathbf{e}_{3}, \mathbf{e}_{3}+\mathbf{e}_{4}+\mathbf{e}_{5}, \mathbf{e}_{2}\right\}$ or $\left\{\mathbf{0}, \mathbf{e}_{5}, \mathbf{e}_{4}, \mathbf{e}_{3}, \mathbf{e}_{2}\right\}$.

Given any four affinely independent points, there exists an invertible affine transformation mapping them to $\mathbf{0}, \mathbf{e}_{5}, \mathbf{e}_{4}$, and \mathbf{e}_{3}, so without loss of generality we may assume that C contains the subset $\left\{\mathbf{0}, \mathbf{e}_{5}, \mathbf{e}_{4}, \mathbf{e}_{3}\right\}$. These points all lie in the $(0,0)$-affine subspace of \mathbb{F}_{3}^{n}. Since $r\left(2, \mathbb{F}_{3}^{3}\right)=5$, the (0,0)-affine subspace contains four points or five points of C. If it contains five points, then by Theorem [3.9, we may apply an affine transformation (using a block matrix) and assume that the fifth point is $\mathbf{e}_{3}+\mathbf{e}_{4}+\mathbf{e}_{5}$.

Consider any other point $\mathbf{a} \in C$. Since \mathbf{a} is not in the (0,0)-affine subspace, therefore $\left\{\mathbf{0}, \mathbf{e}_{5}, \mathbf{e}_{4}, \mathbf{e}_{3}, \mathbf{a}\right\}$ is an affinely independent set so there exists an affine transformation T fixing $\mathbf{0}, \mathbf{e}_{5}, \mathbf{e}_{4}$, and \mathbf{e}_{3} and mapping a to \mathbf{e}_{2}. Notice that if T is given by multiplication by the invertible matrix A followed by addition by $\mathbf{b} \in \mathbb{F}_{3}^{5}$, we have that

$$
T\left(\mathbf{e}_{3}+\mathbf{e}_{4}+\mathbf{e}_{5}\right)=A\left(\mathbf{e}_{3}+\mathbf{e}_{4}+\mathbf{e}_{5}\right)+\mathbf{b}=T(\mathbf{0})+T\left(\mathbf{e}_{3}\right)+T\left(\mathbf{e}_{4}\right)+T\left(\mathbf{e}_{5}\right)=\mathbf{e}_{3}+\mathbf{e}_{4}+\mathbf{e}_{5}
$$

so T fixes $\mathbf{e}_{3}+\mathbf{e}_{4}+\mathbf{e}_{5}$.
Hence, up to affine equivalence, we may assume that the lexicographically earliest points in C are $\left\{\mathbf{0}, \mathbf{e}_{5}, \mathbf{e}_{4}, \mathbf{e}_{3}, \mathbf{e}_{3}+\mathbf{e}_{4}+\mathbf{e}_{5}, \mathbf{e}_{2}\right\}$ or $\left\{\mathbf{0}, \mathbf{e}_{5}, \mathbf{e}_{4}, \mathbf{e}_{3}, \mathbf{e}_{2}\right\}$. A computer program was used to enumerate all possible complete 2-caps beginning with these sets of points. This verified that $r\left(2, \mathbb{F}_{3}^{5}\right)=13$. The C++ code for the program is available on the third author's professional website.

Remark 3.11. The maximal 2-cap in \mathbb{F}_{3}^{5} that is lexicographically earliest is explicitly given by the points: $(0,0,0,0,0),(0,0,0,0,1),(0,0,0,1,0),(0,0,1,0,0),(0,0,1,1,1),(0,1,0,0,0),(0,1,1,1,2)$, $(0,2,1,2,0),(0,2,2,1,2),(1,0,0,0,0),(1,0,1,2,1),(2,0,1,0,2),(2,2,0,2,2)$.

We conclude by giving bounds on $r\left(2, \mathbb{F}_{3}^{7}\right)$.
Proposition 3.12. One has that $33 \leq r\left(2, \mathbb{F}_{3}^{7}\right) \leq 47$.
Proof. The upper bound on $r\left(2, \mathbb{F}_{3}^{7}\right)$ is a consequence of Proposition 3.3. For the lower bound, we constructed a 2 -cap of size 33 by first embedding a maximal 2-cap in \mathbb{F}_{3}^{6} as a 2-cap C of size 27 in \mathbb{F}_{3}^{7}. We then used a computer program to enumerate all complete 2-caps containing C as a subset. The largest of these complete 2 -caps has size 33 . The lexicographically earliest one is given by the points: $(0,0,0,0,0,0,0),(1,0,0,1,0,0,1),(0,0,0,2,0,0,1),(0,0,1,0,1,0,0),(0,0,1,1,1,2,1)$, $(0,0,1,2,1,1,1),(0,0,2,0,1,0,0),(0,0,2,1,1,1,1),(0,0,2,2,1,2,1),(0,1,0,0,1,2,0),(0,1,0,1,0,2,1)$,
$(0,1,0,2,2,2,1),(0,1,1,0,2,1,1),(0,1,1,1,1,0,2),(0,1,1,2,0,2,2),(0,1,2,0,2,0,2),(0,1,2,1,1,1,0)$, $(0,1,2,2,0,2,0),(0,2,0,0,1,2,0),(0,2,0,1,2,2,1),(0,2,0,2,0,2,1),(0,2,1,0,2,0,2),(0,2,1,1,0,2,0)$, $(0,2,1,2,1,1,0),(0,2,2,0,2,1,1),(0,2,2,1,0,2,2),(0,2,2,2,1,0,2),(1,0,0,0,0,0,0),(1,0,0,0,0,0,1)$, $(2,0,0,1,0,2,0),(2,0,0,1,1,0,1),(2,0,0,1,1,1,2)$, and $(2,0,0,1,1,2,2)$.

References

[1] Javier Cilleruelo. Combinatorial problems in finite fields and Sidon sets. Combinatorica, 32(5):497-511, 2012.
[2] Javier Cilleruelo, Imre Ruzsa, and Carlos Vinuesa. Generalized Sidon sets. Adv. Math., 225(5):2786-2807, 2010.
[3] Ernie Croot, Vsevolod F. Lev, and Péter Pál Pach. Progression-free sets in \mathbb{Z}_{4}^{n} are exponentially small. Ann. of Math. (2), 185(1):331-337, 2017.
[4] Y. Edel, S. Ferret, I. Landjev, and L. Storme. The classification of the largest caps in AG(5,3). J. Combin. Theory Ser. A, 99(1):95-110, 2002.
[5] Yves Edel. Extensions of generalized product caps. Des. Codes Cryptogr., 31(1):5-14, 2004.
[6] Jordan S. Ellenberg and Dion Gijswijt. On large subsets of \mathbb{F}_{q}^{n} with no three-term arithmetic progression. Ann. of Math. (2), 185(1):339-343, 2017.
[7] Michael Follett, Kyle Kalail, Elizabeth McMahon, Catherine Pelland, and Robert Won. Partitions of $A G(4,3)$ into maximal caps. Discrete Math., 337:1-8, 2014.
[8] Giuseppe Pellegrino. Sul massimo ordine delle calotte in $S_{4,3}$. Matematiche (Catania), 25:149-157 (1971), 1970.
[9] Aaron Potechin. Maximal caps in AG(6, 3). Des. Codes Cryptogr., 46(3):243-259, 2008.
[10] Nina Versluis. On The Cap Set Problem. Bachelor thesis, Delft University of Technology, 2017.

Wake Forest University, Department of Mathematics and Statistics, Winston-Salem, NC 27109
E-mail address: huany16@wfu.edu

Carnegie Mellon University, Department of Mathematical Sciences, Pittsburgh, PA 15213
E-mail address: mtait@cmu.edu

University of Washington, Department of Mathematics, Seattle, WA 98195
E-mail address: robwon@uw.edu

