SIDON SETS AND 2-CAPS IN \mathbb{F}_3^n

YIXUAN HUANG, MICHAEL TAIT, AND ROBERT WON

ABSTRACT. For each natural number d, we introduce the concept of a d-cap in \mathbb{F}_3^n . A subset of \mathbb{F}_3^n is called a d-cap if, for each k = 1, 2, ..., d, no k + 2 of the points lie on a k-dimensional flat. This generalizes the notion of a cap in \mathbb{F}_3^n . We prove that the 2-caps in \mathbb{F}_3^n are exactly the Sidon sets and study the problem of determining the size of the largest 2-cap in \mathbb{F}_3^n .

1. Introduction

Throughout, let \mathbb{F}_q denote the field with q elements and let \mathbb{F}_q^n denote n-dimensional affine space over \mathbb{F}_q . A cap in \mathbb{F}_3^n is a collection of points such that no three are collinear. Although this definition is geometric, there is an equivalent definition that is arithmetic: a set of points C is a cap in \mathbb{F}_3^n if and only if C contains no three-term arithmetic progressions.

Here, we consider natural generalizations of caps in \mathbb{F}_3^n . For $d \in \mathbb{N}$, we call a set of points a d-cap if, for each $k = 1, 2, \ldots, d$, no k + 2 of the points lie on a k-dimensional flat. With this definition, a 1-cap corresponds to the usual definition of a cap.

Let $r(1, \mathbb{F}_3^n)$ denote the maximal size of a 1-cap in \mathbb{F}_3^n . In general, it is a difficult problem to determine $r(1, \mathbb{F}_3^n)$ —in fact, the exact answer is known only when $n \leq 6$. Table 1 lists the best known upper and lower bounds for $r(1, \mathbb{F}_3^n)$ for $n \leq 10$ [10]. It is known that in dimension $n \leq 6$, maximal 1-caps are equivalent up to affine transformation [4, 8, 9].

Dimension	1	2	3	4	5	6	7	8	9	10
Lower bound	2	4	9	20	45	112	236	496	1064	2240
Upper bound	2	4	9	20	45	112	291	771	2070	5619

TABLE 1. The best known bounds for the size of a maximal 1-cap in \mathbb{F}_3^n .

The asymptotic bounds on $r(1,\mathbb{F}_3^n)$ are also well-studied. In [5], Edel showed that

$$\limsup_{n \to \infty} \frac{\log_3(r(1, \mathbb{F}_3^n))}{n} \ge 0.724851$$

and consequently that $r(1, \mathbb{F}_3^n)$ is $\Omega(2.2174^n)$ (using Hardy-Littlewood's Ω notation). In more recent breakthrough work [6], Ellenberg and Gijswijt (adapting a method of Croot, Lev, and Pach [3]) proved that $r(1, \mathbb{F}_3^n)$ is $o(2.756^n)$.

In this paper, we focus on the study of 2-caps in \mathbb{F}_3^n . We show that there is an equivalent arithmetic formulation of the definition of a 2-cap. In particular, the 2-caps in \mathbb{F}_3^n are exactly the Sidon sets, which are important objects in combinatorial number theory. Using this definition, we are able to compute the maximal size of a 2-cap in \mathbb{F}_3^n exactly when n is even. We also examine 2-caps in low dimension when n is odd, in particular considering dimension n=3, 5, and 7.

Dimension	1	2	3	4	5	6	7	8	n even	n odd
Lower bound	2	3	5	9	13	27	33	81	$3^{n/2}$	$3^{(n-1)/2} + 1$
Upper bound	2	3	5	9	13	27	47	81	$3^{n/2}$	$\lceil 3^{n/2} \rceil$

Table 2. Bounds for the size of a maximal 2-cap in \mathbb{F}_3^n .

Table 2 lists the bounds we obtain for the size of a maximal 2-cap in \mathbb{F}_3^n . The values in dimension 3, 5, and 7 are given by Theorems 3.9 and 3.10, and Proposition 3.12, respectively. The bounds for even dimension follow from Theorem 3.4. The upper bound in odd dimension n follows from Proposition 3.3 and the lower bound is given by adding one affinely independent point to the construction in dimension n-1. Knowing the exact value in even dimension also allows us to conclude that asymptotically, the maximal size of a 2-cap in \mathbb{F}_3^n is $\Theta(3^{n/2})$.

Acknowledgments. The authors would like to thank W. Frank Moore for suggesting the project. Yixuan Huang was supported by a Wake Forest Research Fellowship during the summer of 2018 and Michael Tait was supported in part by NSF grant DMS-1606350.

2. Preliminaries

In this section, we establish basic notation, definitions, and background. The set of natural numbers is denoted $\mathbb{N} = \{1, 2, 3, \dots\}$. Throughout, d and n will always denote natural numbers. An element $\mathbf{a} \in \mathbb{F}_3^n$ will be written as a row vector $\mathbf{a} = (a_1, a_2, \dots, a_n)$ with each $a_i \in \{0, 1, 2\}$. We will sometimes order the vectors of \mathbb{F}_3^n lexicographically—i.e., by regarding them as ternary strings. We use the notation $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ to denote the n standard basis vectors in an n-dimensional vector space.

A k-dimensional affine subspace of a vector space is called a k-dimensional flat. In particular, a 1-dimensional flat is also called a line. In the affine space \mathbb{F}_3^n , every line consists of the points

 $\{\mathbf{a}, \mathbf{a} + \mathbf{b}, \mathbf{a} + 2\mathbf{b}\}$ for some $\mathbf{a}, \mathbf{b} \in \mathbb{F}_3^n$ where $\mathbf{b} \neq \mathbf{0}$. Hence, the lines in \mathbb{F}_3^n correspond to three-term arithmetic progressions. It is easy to see that three distinct points in \mathbb{F}_3^n are collinear if and only if they sum to $\mathbf{0}$. Likewise, a 2-dimensional flat is called a *plane*. Any three non-collinear points determine a unique plane. For $\mathbf{a} = (a_1, a_2, \dots, a_k) \in \mathbb{F}_3^k$ with k < n. The subset of \mathbb{F}_3^n whose first k entries are a_1, a_2, \dots, a_k is an (n - k)-dimensional flat which we call the \mathbf{a} -affine subspace of \mathbb{F}_3^n .

Two subsets C and D of a vector space are called affinely equivalent if there exists an invertible affine transformation T such that T(C) = D. It is clear that affine equivalence determines an equivalence relation on the power set of a vector space. Given a set of points X in a vector space, its affine span is given by the set of all affine combinations of points of X. A set X is called affinely independent if no proper subset of X has the same affine span as X. Equivalently, $\{\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_n\}$ is affinely independent if and only if $\{\mathbf{x}_1 - \mathbf{x}_0, \mathbf{x}_2 - \mathbf{x}_0, \dots, \mathbf{x}_n - \mathbf{x}_0\}$ is linearly independent.

Definition 2.1. A subset C of \mathbb{F}_3^n is called a d-cap if, for each k = 1, 2, ..., d, no k + 2 points of C lie on a k-dimensional flat. Equivalently, C is a d-cap if and only if any subset of C of size at most d + 2 is affinely independent. A d-cap is called complete if it is not a proper subset of another d-cap and is called maximal if it is of the largest possible cardinality.

We will denote the size of a maximal d-cap in \mathbb{F}_3^n by $r(d, \mathbb{F}_3^n)$. As mentioned in the introduction, a 1-cap is a classical cap. We note that $C \subseteq \mathbb{F}_3^{d+1}$ is a d-cap if and only if the points of C are in general position. Since invertible affine transformations preserve affine independence, the image of a d-cap under an invertible affine transformation is again a d-cap. As a warm-up, we prove some basic facts about maximal d-caps in \mathbb{F}_3^n .

Lemma 2.2. We have that $r(d, \mathbb{F}_3^n) \geq n+1$ with equality if $n \leq d$.

Proof. The set $\{\mathbf{0}, \mathbf{e}_1, \dots, \mathbf{e}_n\}$ is an affinely independent subset of \mathbb{F}_3^n of size n+1 and hence is a d-cap for any $d \in \mathbb{N}$. Therefore, $r(d, \mathbb{F}_3^n) \geq n+1$.

Now suppose $n \leq d$. Since, by definition, a d-cap must be an n-cap, we have that $r(d, \mathbb{F}_3^n) \leq r(n, \mathbb{F}_3^n)$. A maximal affinely independent set in \mathbb{F}_3^n has size n+1 so $r(n, \mathbb{F}_3^n) \leq n+1$. and so $r(d, \mathbb{F}_3^n) = n+1$.

Corollary 2.3. When $n \leq d$, all maximal d-caps in \mathbb{F}_3^n are affinely equivalent.

Proof. By Lemma 2.2, when $n \leq d$, a maximal d-cap in \mathbb{F}_3^n is a maximal affinely independent set, i.e., an affine basis of \mathbb{F}_3^n . All affine bases in an affine space are equivalent up to affine transformation. \square

Lemma 2.4. For fixed d, $r(d, \mathbb{F}_3^n)$ is a non-decreasing function of n and for fixed n, $r(d, \mathbb{F}_3^n)$ is a non-increasing function of d.

Proof. Since \mathbb{F}_3^{n-1} is an affine subspace of \mathbb{F}_3^n , a d-cap in \mathbb{F}_3^{n-1} naturally embeds as a d-cap in \mathbb{F}_3^n . Hence $r(d, \mathbb{F}_3^{n-1}) \leq r(d, \mathbb{F}_3^n)$ so the first statement follows. The second statement follows since, by definition, a d-cap in \mathbb{F}_3^n must be a (d-1)-cap. Hence, $r(d-1, \mathbb{F}_3^n) \geq r(d, \mathbb{F}_3^n)$.

3. 2-CAPS IN
$$\mathbb{F}_3^n$$

We now restrict our attention to the study of 2-caps in \mathbb{F}_3^n . Our first observation is that in \mathbb{F}_3^n , the definition of a 2-cap is equivalent to the definition of a Sidon set.

Definition 3.1. Let G be an abelian group. A subset $A \subseteq G$ is called a *Sidon set* if, whenever a + b = c + d with $a, b, c, d \in A$, the pair (a, b) is a permutation of the pair (c, d).

Theorem 3.2. A subset C of \mathbb{F}_3^n is a 2-cap if and only if it is a Sidon set.

Proof. First suppose that C is not a 2-cap. Then C contains three points which are collinear or C contains four points which are coplanar. Every line in \mathbb{F}_3^n is of the form $\mathbf{a}, \mathbf{b}, -\mathbf{a} - \mathbf{b}$ for some $\mathbf{a}, \mathbf{b} \in \mathbb{F}_3^n$. But $\mathbf{b} + \mathbf{b} = \mathbf{a} + (-\mathbf{a} - \mathbf{b})$, so if C contains three collinear points, then C is not a Sidon set.

Suppose therefore that no three points in C are collinear. Then C contains four coplanar points. Every 2-dimensional flat F in \mathbb{F}_3^n is determined by any three non-collinear points $\mathbf{a}, \mathbf{b}, \mathbf{c} \in F$. Namely, we have that

	a	b	-a - b
F =	c	-a+b+c	a - b + c
	$-\mathbf{a} - \mathbf{c}$	a + b - c	$-\mathbf{b} - \mathbf{c}$

It is easy to check that given any four points $\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w} \in F$, no three of which are collinear, there is a choice of labeling so that $\mathbf{x} + \mathbf{y} = \mathbf{z} + \mathbf{w}$. Hence, if C is not a 2-cap, then C is not a Sidon set.

Conversely, suppose that C is not a Sidon set. Then either C contains three distinct points $\mathbf{a}, \mathbf{b}, \mathbf{c}$ such that $\mathbf{a} + \mathbf{a} = \mathbf{b} + \mathbf{c}$ or C contains four distinct points $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ such that $\mathbf{a} + \mathbf{b} = \mathbf{c} + \mathbf{d}$. In the first case, $\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}$ so C contains a line. In the second case, $\mathbf{d} = \mathbf{a} + \mathbf{b} - \mathbf{c}$, so \mathbf{d} lies in the plane determined by \mathbf{a}, \mathbf{b} and \mathbf{c} , and hence the four points are coplanar. In either case, C is not a 2-cap.

Since, in \mathbb{F}_3^n , 2-caps correspond to Sidon sets, we will use the terms interchangeably throughout. We obtain an upper bound on $r(2, \mathbb{F}_3^n)$ by an easy counting argument (c.f. [2, Corollary 2.2]).

Proposition 3.3. For any $n \in \mathbb{N}$, $r(2, \mathbb{F}_3^n) \cdot (r(2, \mathbb{F}_3^n) - 1) \leq 3^n - 1$.

Proof. Suppose $C \subset \mathbb{F}_3^n$ is a 2-cap and hence, by Theorem 3.2, a Sidon set. For $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \in C$, if $\mathbf{a} - \mathbf{b} = \mathbf{c} - \mathbf{d}$ then $\{\mathbf{a}, \mathbf{d}\} = \{\mathbf{c}, \mathbf{b}\}$ and so we have either $\mathbf{a} = \mathbf{b}$ or $\mathbf{a} = \mathbf{c}$ and $\mathbf{b} = \mathbf{d}$. Therefore the set $\{\mathbf{a} - \mathbf{b} : \mathbf{a}, \mathbf{b} \in C, \mathbf{a} \neq \mathbf{b}\}$ has size |C|(|C| - 1). Since these differences are nonzero, we have

$$|C|(|C|-1) \le 3^n - 1.$$

3.1. Even dimension.

Theorem 3.4. If *n* is even, then $r(2, \mathbb{F}_{3}^{n}) = 3^{n/2}$.

Proof. First we will show the lower bound, $r(2, \mathbb{F}_3^n) \geq 3^{n/2}$. Since \mathbb{F}_3^n is additively isomorphic to $\mathbb{F}_3^{n/2} \times \mathbb{F}_3^{n/2}$, it suffices to construct a Sidon set of size $3^{n/2}$ in $\mathbb{F}_3^{n/2} \times \mathbb{F}_3^{n/2}$. As vector spaces over \mathbb{F}_3 , $\mathbb{F}_3^{n/2}$ is isomorphic to $\mathbb{F}_{3^{n/2}}$, the finite field with $3^{n/2}$ elements. Hence, it suffices to construct a Sidon set of size $3^{n/2}$ in $\mathbb{F}_{3^{n/2}} \times \mathbb{F}_{3^{n/2}}$ This follows easily from the following claim, which was first proved in [1]. We include a short proof for completeness.

Claim 1. Let q be an odd prime power and \mathbb{F}_q be the finite field of order q. Then the set $\{(x, x^2) : x \in \mathbb{F}_q\}$ is a Sidon set in $\mathbb{F}_q \times \mathbb{F}_q$.

Proof. Assume that

$$(a, a^2) + (b, b^2) = (c, c^2) + (d, d^2),$$

for some $a, b, c, d \in \mathbb{F}_q$. We must show that $\{a, b\} = \{c, d\}$. Without loss of generality, assume that $a \neq c$. Then we have

$$a - c = d - b$$

$$a^2 - c^2 = d^2 - b^2$$
.

Since $a \neq c$, we may divide the second equation by the first to see that a + c = b + d. But this combined with the first equation gives 2a = 2d. Since q is odd we have a = d and therefore b = c.

It is clear that the set $\{(x,x^2):x\in\mathbb{F}_{3^{n/2}}\}$ has size $3^{n/2}$ and so we have $r(2,\mathbb{F}_3^n)\geq 3^{n/2}$. For the upper bound, let $C\subset\mathbb{F}_3^n$ be a 2-cap. Since n is even, $3^{n/2}$ is an integer, and if $|C|\geq 3^{n/2}+1$, this contradicts Proposition 3.3. Therefore, $r(2,\mathbb{F}_3^n)\leq 3^{n/2}$.

Corollary 3.5. As $n \to \infty$, $r(2, \mathbb{F}_3^n)$ is $\Theta(3^{n/2})$.

The construction above can be leveraged into the following partitioning theorem.

Theorem 3.6. When n is even, there is a partition of \mathbb{F}_3^n into maximal caps.

This serves as an analogue to similar results for 1-caps in \mathbb{F}_3^n . It is well-known that \mathbb{F}_3^3 can be partitioned into three maximal 1-caps of size 9. It is possible to partition \mathbb{F}_3^2 into a single point and two disjoint maximal 1-caps of size 4. Finally, the main result of [7] shows that \mathbb{F}_3^4 can be partitioned into a single point and four disjoint maximal 1-caps of size 20.

Proof of Theorem 3.6. Since translates of Sidon sets are also Sidon sets, for each $a \in \mathbb{F}_3^n$ the set $S_a := \{(x, x^2 + a) : x \in \mathbb{F}_{3^{n/2}}\}$ is a maximal 2-cap. Since $(x, x^2 + a) = (y, y^2 + b)$ implies x = y and hence a = b, we have that S_a and S_b are disjoint for $a \neq b$. Therefore, as a ranges over $\mathbb{F}_{3^{n/2}}$ the sets S_a cover 3^n points and thus there is the claimed partition.

Question 3.7. By Corollary 2.3, all maximal 2-caps in \mathbb{F}_3^2 are affinely equivalent. Is this true in \mathbb{F}_3^n when n is even?

We remark that when n=4, a computer program verified that all maximal 2-caps sum to **0**. If a set of nine points sums to **0** in \mathbb{F}_3^n , then its image under any affine transformation will likewise sum to **0**, so this is a necessary condition for all maximal 2-caps in \mathbb{F}_3^4 to be affinely equivalent.

3.2. Odd dimension.

Lemma 3.8. If $C = \{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}\}$ is a 2-cap of size four in \mathbb{F}_3^n then $D = \{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d}\}$ is a 2-cap of size five.

Proof. First we note that the points of D are distinct since if, without loss of generality, $\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d} = \mathbf{a}$, this implies that \mathbf{b} , \mathbf{c} , and \mathbf{d} are collinear, which is impossible since C is a 2-cap.

Now, suppose for contradiction that D is not a 2-cap, so there exist some $\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w} \in D$ with $\mathbf{x} + \mathbf{y} = \mathbf{z} + \mathbf{w}$. Since C is a 2-cap, we may assume that $\mathbf{x} = \mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d}$. Without loss of generality, we then have that $(\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d}) + \mathbf{a} = \mathbf{b} + \mathbf{c}$ or $(\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d}) + \mathbf{a} = \mathbf{b} + \mathbf{b}$ or $2(\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d}) = \mathbf{b} + \mathbf{c}$.

If $(\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d}) + \mathbf{a} = \mathbf{b} + \mathbf{c}$, then $\mathbf{a} = \mathbf{d}$ which is impossible since C has size four. If $(\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d}) + \mathbf{a} = \mathbf{b} + \mathbf{b}$, then $\mathbf{a} + \mathbf{b} = \mathbf{c} + \mathbf{d}$ contradicting the fact that C is a 2-cap. Finally, if $2(\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d}) = \mathbf{b} + \mathbf{c}$, then $\mathbf{a} + \mathbf{d} = \mathbf{b} + \mathbf{c}$, again contradicting the fact that C is a 2-cap.

Theorem 3.9. In \mathbb{F}_3^3 , a maximal 2-cap has size 5, that is, $r(2, \mathbb{F}_3^3) = 5$. Further, all complete 2-caps are maximal and all maximal 2-caps are affinely equivalent.

Proof. Since $\{\mathbf{0}, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is an affinely independent set in \mathbb{F}_3^3 , by Lemma 3.8, $\{\mathbf{0}, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3\}$ is a 2-cap in \mathbb{F}_3^3 . Hence, $r(2, \mathbb{F}_3^3) \geq 5$. But by Proposition 3.3, $r(2, \mathbb{F}_3^3) < 6$ and hence $r(2, \mathbb{F}_3^3) = 5$.

Let C be any complete 2-cap in \mathbb{F}_3^3 . Since \mathbb{F}_3^3 is a three-dimensional affine space, if $|C| \leq 3$, then \mathbb{F}_3^3 contains a point which is affinely independent from the points of C, so C cannot be complete. Hence, $|C| \geq 4$. But if |C| = 4 then by Lemma 3.8, C is not complete. Hence, |C| = 5, and any complete 2-cap in \mathbb{F}_3^3 is already maximal.

For the final claim, suppose C is a maximal 2-cap in \mathbb{F}_3^3 . Pick any four points in C. Since these points are affinely independent, there exists an invertible affine transformation mapping these points to the set $\{\mathbf{0}, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$. Hence, we need only show that all maximal 2-caps containing $\{\mathbf{0}, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ are affinely equivalent.

It is easy to verify that there are exactly five such maximal 2-caps, namely:

- (1) $C_1 = \{\mathbf{0}, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, (1, 1, 1)\},\$
- (2) $C_2 = \{\mathbf{0}, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, (1, 2, 2)\},\$
- (3) $C_3 = \{\mathbf{0}, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, (2, 1, 2)\},\$
- (4) $C_4 = \{\mathbf{0}, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, (2, 2, 1)\}, \text{ and}$
- (5) $C_5 = \{\mathbf{0}, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, (2, 2, 2)\}.$

It suffices to exhibit an invertible affine transformation T_i mapping C_1 to C_i for i = 2, 3, 4, 5. We provide these T_i explicitly, writing $T_i(\mathbf{x}) = A_i \mathbf{x} + \mathbf{b}_i$ for an invertible matrix A_i and $\mathbf{b}_i \in \mathbb{F}_3^3$.

ovide these
$$I_i$$
 explicitly, writing $I_i(\mathbf{x}) = A_i \mathbf{x} + \mathbf{b}_i$ for an invertible matrix A_i and $\mathbf{b}_i \in \mathbb{F}_3^*$.

(1) $A_2 = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$ and $\mathbf{b}_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$,

(2) $A_3 = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix}$ and $\mathbf{b}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$,

(3) $A_4 = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$ and $\mathbf{b}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, and

(4) $A_5 = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$ and $\mathbf{b}_5 = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$.

Theorem 3.10. A maximal 2-cap in \mathbb{F}_3^5 has size 13, that is, $r(2, \mathbb{F}_3^5) = 13$.

Proof. Let C be a maximal 2-cap in \mathbb{F}_3^5 . By Theorem 3.4 $r(2, \mathbb{F}_3^4) = 9$ so by Lemma 2.4 we may assume that $|C| \geq 9$. We will apply a sequence of affine transformations to C to conclude that lexicographically, the first points in C are $\{\mathbf{0}, \mathbf{e}_5, \mathbf{e}_4, \mathbf{e}_3, \mathbf{e}_3 + \mathbf{e}_4 + \mathbf{e}_5, \mathbf{e}_2\}$ or $\{\mathbf{0}, \mathbf{e}_5, \mathbf{e}_4, \mathbf{e}_3, \mathbf{e}_2\}$.

Given any four affinely independent points, there exists an invertible affine transformation mapping them to $\mathbf{0}$, \mathbf{e}_5 , \mathbf{e}_4 , and \mathbf{e}_3 , so without loss of generality we may assume that C contains the subset $\{\mathbf{0}, \mathbf{e}_5, \mathbf{e}_4, \mathbf{e}_3\}$. These points all lie in the (0,0)-affine subspace of \mathbb{F}_3^n . Since $r(2,\mathbb{F}_3^3)=5$, the (0,0)-affine subspace contains four points or five points of C. If it contains five points, then by Theorem 3.9, we may apply an affine transformation (using a block matrix) and assume that the fifth point is $\mathbf{e}_3 + \mathbf{e}_4 + \mathbf{e}_5$.

Consider any other point $\mathbf{a} \in C$. Since \mathbf{a} is not in the (0,0)-affine subspace, therefore $\{\mathbf{0}, \mathbf{e}_5, \mathbf{e}_4, \mathbf{e}_3, \mathbf{a}\}$ is an affinely independent set so there exists an affine transformation T fixing $\mathbf{0}$, \mathbf{e}_5 , \mathbf{e}_4 , and \mathbf{e}_3 and mapping \mathbf{a} to \mathbf{e}_2 . Notice that if T is given by multiplication by the invertible matrix A followed by addition by $\mathbf{b} \in \mathbb{F}_3^5$, we have that

$$T(\mathbf{e}_3 + \mathbf{e}_4 + \mathbf{e}_5) = A(\mathbf{e}_3 + \mathbf{e}_4 + \mathbf{e}_5) + \mathbf{b} = T(\mathbf{0}) + T(\mathbf{e}_3) + T(\mathbf{e}_4) + T(\mathbf{e}_5) = \mathbf{e}_3 + \mathbf{e}_4 + \mathbf{e}_5$$

so T fixes $\mathbf{e}_3 + \mathbf{e}_4 + \mathbf{e}_5$.

Hence, up to affine equivalence, we may assume that the lexicographically earliest points in C are $\{\mathbf{0}, \mathbf{e}_5, \mathbf{e}_4, \mathbf{e}_3, \mathbf{e}_3 + \mathbf{e}_4 + \mathbf{e}_5, \mathbf{e}_2\}$ or $\{\mathbf{0}, \mathbf{e}_5, \mathbf{e}_4, \mathbf{e}_3, \mathbf{e}_2\}$. A computer program was used to enumerate all possible complete 2-caps beginning with these sets of points. This verified that $r(2, \mathbb{F}_3^5) = 13$. The C++ code for the program is available on the third author's professional website.

Remark 3.11. The maximal 2-cap in \mathbb{F}_3^5 that is lexicographically earliest is explicitly given by the points: (0,0,0,0,0), (0,0,0,0,1), (0,0,0,1,0), (0,0,1,0,0), (0,0,1,1,1), (0,1,0,0,0), (0,1,1,1,2), (0,2,1,2,0), (0,2,2,1,2), (1,0,0,0,0), (1,0,1,2,1), (2,0,1,0,2), (2,2,0,2,2).

We conclude by giving bounds on $r(2, \mathbb{F}_3^7)$.

Proposition 3.12. One has that $33 \le r(2, \mathbb{F}_3^7) \le 47$.

Proof. The upper bound on $r(2, \mathbb{F}_3^7)$ is a consequence of Proposition 3.3. For the lower bound, we constructed a 2-cap of size 33 by first embedding a maximal 2-cap in \mathbb{F}_3^6 as a 2-cap C of size 27 in \mathbb{F}_3^7 . We then used a computer program to enumerate all complete 2-caps containing C as a subset. The largest of these complete 2-caps has size 33. The lexicographically earliest one is given by the points: (0,0,0,0,0,0,0), (1,0,0,1,0,0,1), (0,0,0,2,0,0,1), (0,0,1,0,1,0,0), (0,0,1,1,1,2,1), (0,0,1,2,1,1,1), (0,0,2,0,1,0,0), (0,0,2,1,1,1,1), (0,0,2,2,1,2,1), (0,1,0,0,1,2,0), (0,1,0,1,0,2,1),

 $\begin{array}{l} (0,1,0,2,2,2,1), \ (0,1,1,0,2,1,1), \ (0,1,1,1,1,0,2), \ (0,1,1,2,0,2,2), \ (0,1,2,0,2,0,2), \ (0,1,2,1,1,1,0), \\ (0,1,2,2,0,2,0), \ (0,2,0,1,2,0), \ (0,2,0,1,2,2,1), \ (0,2,0,2,0,2,1), \ (0,2,1,0,2,0,2), \ (0,2,1,1,0,2,0), \\ (0,2,1,2,1,1,0), \ (0,2,2,0,2,1,1), \ (0,2,2,1,0,2,2), \ (0,2,2,2,1,0,2), \ (1,0,0,0,0,0,0), \ (1,0,0,0,0,0,1), \\ (2,0,0,1,0,2,0), \ (2,0,0,1,1,0,1), \ (2,0,0,1,1,1,2), \ \text{and} \ (2,0,0,1,1,2,2). \end{array}$

References

- [1] Javier Cilleruelo. Combinatorial problems in finite fields and Sidon sets. Combinatorica, 32(5):497–511, 2012.
- [2] Javier Cilleruelo, Imre Ruzsa, and Carlos Vinuesa. Generalized Sidon sets. Adv. Math., 225(5):2786–2807, 2010.
- [3] Ernie Croot, Vsevolod F. Lev, and Péter Pál Pach. Progression-free sets in \mathbb{Z}_4^n are exponentially small. Ann. of Math. (2), 185(1):331–337, 2017.
- [4] Y. Edel, S. Ferret, I. Landjev, and L. Storme. The classification of the largest caps in AG(5,3). *J. Combin. Theory Ser. A*, 99(1):95–110, 2002.
- [5] Yves Edel. Extensions of generalized product caps. Des. Codes Cryptogr., 31(1):5-14, 2004.
- [6] Jordan S. Ellenberg and Dion Gijswijt. On large subsets of \mathbb{F}_q^n with no three-term arithmetic progression. Ann. of Math. (2), 185(1):339–343, 2017.
- [7] Michael Follett, Kyle Kalail, Elizabeth McMahon, Catherine Pelland, and Robert Won. Partitions of AG(4,3) into maximal caps. Discrete Math., 337:1–8, 2014.
- [8] Giuseppe Pellegrino. Sul massimo ordine delle calotte in S_{4,3}. Matematiche (Catania), 25:149–157 (1971), 1970.
- [9] Aaron Potechin. Maximal caps in AG(6,3). Des. Codes Cryptogr., 46(3):243-259, 2008.
- [10] Nina Versluis. On The Cap Set Problem. Bachelor thesis, Delft University of Technology, 2017.

Wake Forest University, Department of Mathematics and Statistics, Winston-Salem, NC 27109 *E-mail address*: huany16@wfu.edu

Carnegie Mellon University, Department of Mathematical Sciences, Pittsburgh, PA 15213 $E\text{-}mail\ address:}$ mtait@cmu.edu

University of Washington, Department of Mathematics, Seattle, WA 98195 $E\text{-}mail\ address:\ robwon@uw.edu}$