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Abstract

The Ramsey multiplicity constant of a graph H is the minimum proportion of copies of

H in the complete graph which are monochromatic under an edge-coloring of Kn as n goes

to infinity. Graphs for which this minimum is asymptotically achieved by taking a random

coloring are called common, and common graphs have been studied extensively, leading to the

Burr-Rosta conjecture and Sidorenko’s conjecture. Erdős and Sós asked what the maximum

number of rainbow triangles is in a 3-coloring of the edge set of Kn, a rainbow version of the

Ramsey multiplicity question. A graph H is called r-anti-common if the maximum proportion

of rainbow copies of H in any r-coloring of E(Kn) is asymptotically achieved by taking a

random coloring. In this paper, we investigate anti-Ramsey multiplicity for several families

of graphs. We determine classes of graphs which are either anti-common or not. Some of

these classes follow the same behavior as the monochromatic case, but some of them do not.

In particular the rainbow equivalent of Sidorenko’s conjecture, that all bipartite graphs are

anti-common, is false.

1 Introduction

A graph G = (V,E) consists of a set V = V (G) = {v1, . . . , vn} of vertices and a set E = E(G) =
{vv′ : v, v′ ∈ V } of edges, where vv′ is an unordered pair of vertices. All graphs considered here
are finite and simple so that vv′ ∈ E implies v 6= v′ and each pair of vertices has at most one edge
between them. Let e(G) = |E(G)| denote the size of the graph G. Given a vertex v ∈ V (G), the
degree of v is the number of edges of G which contain v, i.e. d(v) := |{e ∈ E : v ∈ e}|. A graph
H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). If H is a subgraph of G, we write
H ⊆ G and we say G contains a copy of H.

We will be considering many classes of graphs, including the complete graph, the cycle, and
subclasses of bipartite graphs. The complete graph Kn is a graph on n vertices such that every
pair of vertices has an edge between them. A cycle on n vertices, denoted Cn, has a vertex set
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which can be ordered v1, . . . , vn such that E(Cn) = {vivi+1 : i ∈ {1, . . . , n − 1}} ∪ {v1vn}. A
graph G = (V,E) is bipartite if its vertex set can be partitioned into two disjoint sets V = X ⊔ Y

such that every edge connects a vertex in X to one in Y . Note that the cycle Cn is bipartite if
and only if n is even. The complete bipartite graph Kn,m has parts X,Y such that |X| = n and
|Y | = m and edge set E(Kn,m) = {xy : x ∈ X, y ∈ Y }. Stars are complete bipartite graphs of
the form K1,m; we call the vertex with degree m the center and a vertex of degree 1 a leaf. A
matching of size m, is a disjoint set of m edges and is denoted mK2. Removing an edge from
the cycle Cn gives a path on n vertices which we write as Pn. Matchings and paths are both
subclasses of the set of bipartite graphs. Figure 1 contains examples of each of these graphs.

An r-edge-coloring of a graph G is a function with domain E(G) and codomain a set of r colors,
{1, . . . , r}. Given an edge coloring c of G, a subgraph H of G is said to be monochromatic if for
every e, f ∈ E(H) c(e) = c(f). A subgraph is monochromatic if all its edges are the same color
(e.g., Figure 2).

Given a complete graph Kn and a subgraph H of Kn, it is an interesting question to determine
how many monochromatic copies of H are we guaranteed to find in any r-edge-coloring of Kn.
The maximum number we can guarantee is known as the Ramsey multiplicity. In particular, the
Ramsey multiplicity Mr(H;n) is the minimum over all r-edge-colorings of Kn of the number of
monochromatic copies of H. We consider the Ramsey multiplicity of a graph H with m vertices
relative to the number of copies of H in Kn via the ratio

Cr(H;n) =
Mr(H;n)
(n
m

)

m!
|Aut(H)|

.

The denominator is the number of copies of H in Kn where Aut(H) is the set of automorphisms
of H. Intuitively, this ratio can be thought of as the probability a randomly chosen copy of H in
Kn is monochromatic. We can obtain an immediate bound on Cr(H;n) by coloring each edge of
Kn color i independently with probability 1

r . Under this random coloring, any copy of H in Kn

is monochromatic with probability r1−e(H). This gives an upper bound on Cr(H;n) of r1−e(H).
In [15], Jagger, Šťovíček, and Thomason show that Cr(H;n) is nondecreasing in n and so since
it is also bounded the limit

Cr(H) = lim
n→∞

Cr(H;n),

exists and is known as the Ramsey multiplicity constant of H [10].

The earliest result in this area was by Goodman in 1959 who proved C2(K3) =
1
4 [11]. In 1962,

Erdős conjectured that C2(Kn) = 21−(
n

2) for all cliques [8]. Burr and Rosta later conjectured that
for all graphs H, C2(H) = 21−e(H) [4]. We call a graph common if it satisfies the Burr-Rosta
conjecture. Sidorenko disproved the Burr-Rosta conjecture by showing that a triangle with a
pedant edge is not common [18]. Thomason disproved the initial conjecture of Erdős by showing

Figure 1: K5, C5, K1,5, 4K2, and P4 respectively.
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that for p ≥ 4, Kp is not common [20]. Sidorenko conjectured instead that all bipartite graphs
are common [17], this conjecture is well-known and is referred to as Sidorenko’s conjecture. Much
work has been done on the both the Burr-Rosta conjecture (see, e.g., [15, 11, 4, 18, 19, 14]) and
on Sidorenko’s conjecture (c.f. [2, 6, 13, 16]). If we instead consider r > 2, we call H is called
r-common if Cr(H) = r1−e(H). Jagger et. al. showed that if a graph G is not r-common, then it
is not (r + 1)-common [15]. In 2011, Cummings and Young proved that no graph containing K3

is 3-common [1]. There are many open questions which remain for r > 2.

We will consider a similar parameter to the Ramsey multiplicity constant by searching for rainbow
subgraphs as opposed to monochromatic subgraphs. Given an edge coloring c of G, a subgraph
H of G is said to be rainbow if for every pair of distinct edges e, f ∈ E(H), c(e) 6= c(f). In
Figure 2, the edges 13 and 34 form a rainbow copy of P2. Under this umbrella, a minimization
problem is uninteresting since it is possible to color all edges the same color and hence contain
no rainbow copy of H (assuming e(H) > 1). Instead, we ask what is the maximum number of
rainbow copies of H we can find amongst all edge colorings of Kn. Let rbr(H;n) be the maximum
over all r-edge-colorings of Kn of the number of rainbow copies of H and call this the anti-Ramsey

multiplicity of H. In this paper, we will build the theory of the anti-Ramsey multiplicity constant
and prove/disprove r-anti-commonality of various classes of graphs.

2 The anti-Ramsey multiplicity constant

Before we define the anti-Ramsey multiplicity constant, we will first prove that given a graph H,
the maximum probability a copy of H is rainbow under a coloring of Kn is bounded and monotone
as a function of n. As in the Ramsey case, we will consider the anti-Ramsey multiplicity of a
graph H with m vertices relative to the number of copies of H in Kn via the ratio

rbCr(H;n) =
rbr(H;n)
(n
m

)

m!
|Aut(H)|

.

For the remainder of this section, fix a graph H = (V,E) with |V | = m and e(H) = e.

Proposition 2.1.

rbCr(H;n) ≥
(r
e

)

e!

re

Proof. We will color the edges of Kn uniformly and independently at random from the set
{1, . . . , r}. In particular, each edge is colored color i with probability 1

r for i = 1, . . . , r. The
number of possible rainbow edge assignments of a graph with e edges is

(r
e

)

e! and a given edge

1 4

2 3

Figure 2: The vertices {1, 2, 3} form a monochromatic K3.
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assignment occurs with probability
(

1
r

)e. Thus the expected probability that a randomly selected

copy of H in Kn is rainbow is given by (re)e!
re . Therefore there exists a coloring such that this

probability is at least (re)e!
re and since rbCr(C;n) is the maximum over all such probabilities, the

inequality follows.

Proposition 2.2.

rbCr(H;n) ≤ rbCr(H;n− 1)

Proof. The inequality is clear if rbCr(H;n) = 0 and so we suppose otherwise. Equivalently, we
must show

rbr(H;n)
(n
m

) ≤ rbr(H;n− 1)
(n−1

m

) ⇐⇒

rbr(H;n)
n!

m!(n−m)!

≤ rbr(H;n− 1)
(n−1)!

m!(n−m−1)!

⇐⇒

rbr(H;n)
n

n−m

≤ rbr(H;n− 1) ⇐⇒

(n−m)rbr(H;n) ≤ rbr(H;n− 1)n

Let cr be an r-edge-coloring of Kn such that the number of rainbow copies of H in Kn under
coloring cr is exactly rbr(H;n). We will count the order of the set

Hn := {(G,H) : G is a Kn−1 ⊆ Kn and H ⊆ G is rainbow}
in two ways. First, note that each rainbow copy of H is contained in n − m different Kn−1 by
removing any vertex in Kn that is not a vertex of H. Since there are exactly rbr(H;n) copies of
H in Kn, |Hn| = (n−m)rbr(H;n). Now each Kn−1 in Kn contains at most rbr(H;n−1) rainbow
copies of H and so |Gn| ≤ rbr(G;n − 1)n. Therefore

(n−m)rbr(H;n) = |Hn| ≤ rbr(H;n− 1)n,

which implies the result.

We are now ready to define the anti-Ramsey multiplicity constant.

Corollary 2.3. The anti-Ramsey multiplicity constant, given by

rbCr(H) = lim
n→∞

rbCr(H;n),

exists and is finite.

Proof. By Propositions 2.1 and 2.2, the sequence {rbCr(H;n)}∞n=m is bounded and monotone.
Hence by the Monotone Convergence Theorem, the limit exists and is finite.

Note that the anti-Ramsey multiplicity constant has the same lower bound as that of Proposition
2.1, motivating the following definition.

Definition 2.4. For r ≥ m, we say that H is r-anti-common if

rbCr(H) =

(r
e

)

e!

re
.

If H is r-anti-common for all r ≥ m, H is called anti-common.
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3 Anti-common graphs

In this section we will prove anti-commonality for matchings and disjoint unions of stars. We
will state but not prove the number of automorphisms for each graph in question and for more
details regarding automorphisms of graphs see [3]. Since the anti-Ramsey multiplicity constant is
a limit as n → ∞, the order of term relative to n is especially important. Because of this, we will
introduce big O notation. Suppose f(n) and g(n) are two real-valued functions. We say

f(n) = O(g(n))

if and only if there exist positive constants C,N such that |f(n)| ≤ C|g(n)| for all n > N . In the
following lemma, will use the fact that if f(n) = O(nm−1), then

lim
n→∞

f(n)
(n
m

) = 0.

Lemma 3.1. If H = (V,E) has order m and size e such that for sufficiently large n

rbr(H;n) ≤ nm
(r
e

)

e!

|Aut(H)|re +O(nm−1),

then H is r-anti-common.

Proof. Assume that for n large enough we have rbr(H;n) ≤ nm(re)e!
|Aut(H)|re +O(nm−1). Then

lim
n→∞

rbr(H;n)
(n
m

)

m!
|Aut(H)|

≤ lim
n→∞

nm(re)e!
|Aut(H)|re +O(nm−1)

(n
m

)

m!
|Aut(H)|

=

(

r
e

)

e!

re
lim
n→∞

nm +O(nm−1)
(n
m

)

m!

=

(r
e

)

e!

re
lim
n→∞

nm +O(nm−1)

n(n− 1) · · · (n −m+ 1)

=

(r
e

)

e!

re
.

We will also use the following inequality, often referred to as Maclaurin’s inequality.

Fact 3.2. Given positive integers r ≤ n and positive real numbers x1, . . . , xn,

∑

{i1,i2,...,ir}⊆[n]

xi1xi2 · · · xir ≤
(

n

r

)(∑n
i=1 xi

n

)r

Proposition 3.3. Matchings are anti-common.

Proof. Let k be the size of the matching and note |Aut(kK2)| = 2kk!. Using Lemma 3.1, it suffices
to show for n sufficiently large,

rbr(kK2;n) =
n2k
(r
k

)

2krk
+O(n2k−1)
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Let qi be the number of edges of color i, then there are
∑

{i1,i2,...,ik}⊆[r]

qi1qi2 · · · qik

rainbow subgraphs of size k. These rainbow subgraphs form a matching of size k if and only if
they have order 2k. The complete graph Kn contains O(nj) subgraphs of size k on j vertices.
Hence the number of sets of k edges which form a rainbow subgraph on fewer than 2k vertices is

2k−1
∑

j=0

O(nj) = O(n2k−1).

Therefore there are
∑

{i1,i2,...,ik}⊆[r]

q1q2 · · · qk +O(n2k−1)

rainbow matchings of size k. Note that
∑r

i=1 qi =
(

n
2

)

and so by Fact 3.2 we have

rbr(kK2;n) =
∑

{i1,i2,...,ik}⊆[r]

qi1qi2 · · · qik +O(n2k−1)

≤
(

r

k

)

(

(n
2

)

r

)k

+O(n2k−1)

≤ n2k
(r
k

)

2krk
+O(n2k−1).

We will use a similar proof to show that stars K1,m−1 are anti-common. This lemma will be used
in the proof of Theorem 3.5 which generalizes the result to disjoint unions of stars.

Lemma 3.4. Stars are anti-common.

Proof. Consider S = K1,m−1 and note that

|Aut(S)| = (m− 1)!.

By Lemma 3.1, It suffices to prove that for sufficiently large n,

rbr(K1,m−1;n) =

(

r
m−1

)

nm

rm−1
+O(nm−1)

Given a vertex v of Kn, let qi be the number of edges of color i incident with v. Then the number
of rainbow copies of S with center v is

∑

{i1,i2,··· ,im−1}⊆[r]

qi1qi2 · · · qim−1 .

Vertices of Kn have degree n− 1, so by Fact 3.2 we have

∑

{i1,i2,··· ,im−1}⊆[r]

qi1qi2 · · · qim−1 ≤
(

n− 1

r

)m−1(
r

m− 1

)

.

6



Stars with centers v and v′ are distinct if v 6= v′, therefore the total number of rainbow copies of
S in Kn is at most

n

(

n− 1

r

)m−1(
r

m− 1

)

=

( r
m−1

)

nm

rm−1
+O(nm−1).

Theorem 3.5. Disjoint unions of stars are anti-common.

Proof. Fix positive integers k ≤ m and let P≥2
k (m) denote the set of integer partitions of m into

k parts with each part having size at least 2. For P = {{m1, . . . ,mk}} ∈ P≥2
k (m), let SP be a

disjoint union of k stars with components SP,i = K1,mi−1 for i = 1, . . . , k. Let mi1 ≤ · · · ≤ mij(P )

be the j(P ) distinct sizes of the stars in SP and let Ms be the number of stars in SP of size mis .
Then defining γ(P ) =

∏j(P )
i=1 Mi!, we have the number of automorphisms of SP is given by

|Aut(SP )| = γ(P )

k
∏

i=1

(mi − 1)!.

Given P ∈ P≥2
k (m), let

(

m− k

P − 1

)

=

(

m− k

m1 − 1, . . . ,mk − 1

)

then we want to show for sufficiently large n

rbr(SP ;n) =

(

m− k

P − 1

)

( r
m−k

)(n
m

)

m!

γ(P )rm−k
+O(nm−1).

Claim 3.6.
∑

P∈Pk(m)

γ(P )rbr(SP ;n) ≤
∑

P∈Pk(m)

(

m− k

P − 1

)

(n
m

)

m!
( r
m−k

)

rm−k

Proof. Let Ck(n) denote the collection of sets of k distinguishable vertices in Kn. Given C ∈ Ck(n),
we will count all the number of rainbow disjoint unions of k stars with exactly m vertices and
with C the set of centers. Let qi(C) denote the number of edges of color i incident to any vertex
in C, except those edges between two vertices in C. Then the number of rainbow disjoint unions
of k stars with m vertices and distinguishable centers C is exactly

∑

{i1,...,im−k}⊆[r]

qi1(C) · · · qim−k
(C). (1)

Note that
∑r

i=1 qi(C) = k(n− 1)−
(k
2

)

and so by Fact 3.2 the sum in (1) is at most

(

r

m− k

)

(

k(n− 1)−
(

k
2

)

r

)m−k

.

The lefthand size of the inequality of this claim counts rainbow subgraphs such that given P . if
SP,i and SP,j have the same order they will be distinguishable in the count above. Therefore since
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|Ck(n)| =
(n
k

)

k!, we have

∑

P∈Pk(m)

γ(P )rbr(SP ;n) ≤
(

n

k

)

k!

(

r

m− k

)

(

k(n− 1)−
(

k
2

)

r

)m−k

≤
( r
m−k

)

nm

rm−k
km−k +O(nm−1)

Notice that
{{{m1 − 1, . . . ,mk − 1}} : {{m1, . . . ,mk}} ∈ P≥2

k (m)}
is the set of integer partitions of m− k into k parts. Therefore, by the Multinomial Theorem, we
can rewrite
( r
m−k

)

nm

rm−k
km−k +O(nm−1) =

( r
m−k

)

nm

rm−k

∑

{{m1,...,mk}}∈Pk(m)

(

m− k

m1 − 1, . . . ,mk − 1

)

+O(nm−1)

=
∑

P∈P≥2
k

(m)

(

m− k

P − 1

)

( r
m−k

)(n
m

)

m!

rm−k
+O(nm−1)

which proves the claim.

By Proposition 2.1, we have for each P = {{m1, . . . ,mk}} ∈ P≥2
k (m),

γ(P )rbr(SP ;n) ≥
(m− k)!

( r
m−k

)(n
m

)

m!
∏k

i=1(mi − 1)!rm−k
+O(nm−1) (2)

=

(

m− k

P − 1

)

( r
m−k

)(n
m

)

m!

rm−k
+O(nm−1). (3)

Therefore, Claim 3.6 and the inequality (3) above implies for each P ∈ P≥2
k (m),

rbr(SP ;n) =

(

m− k

P − 1

)

( r
m−k

)(n
m

)

m!

γ(P )rm−k
.

4 Graphs which are not anti-common

Not all graphs are r-anti-common for all r, and here we will prove in particular that complete
graphs and K4 without an edge are not anti-common. We will also give sufficient conditions,
based on the number of edges, for a graph to not be anti-common.

4.1 Specific graphs which are not anti-common

In order to show that a graph is not anti-common for some r, we will construct a coloring with
more rainbow subgraphs than that guaranteed in Proposition 2.1. Our arguments will start with a
fixed coloring of some Km for m small and we will use a blow-up argument to construct a coloring
of a larger Kn.

8



Figure 3: A 5-edge-coloring of K5 with 10 rainbow copies of K4\e.

Definition 4.1. A blow-up is an inductive coloring of Kn, where the edges are colored as follows.
Pick m ≤ n and fix a coloring of Km with labeled vertices v1, . . . , vm. Divide the vertices of Kn

into m disjoint sets of size ⌊ n
m⌋ and ⌈ n

m⌉, namely V1, . . . , Vm. For ui ∈ Vi and uj ∈ Vj , color the
edge uiuj the same color as the edge vivj in the coloring of Km. Repeat this process with each
Vi until there are no vertices left to be split into m disjoint sets. We call this a blow-up of the
initial coloring of Km with n vertices.

Proposition 4.2. The graph K4\e is not 5-anti-common.

Proof. Note that the 5-edge-coloring of K5 in Figure 4.1 contains 10 rainbow copies of K4\e.
Given n = 5k for k a positive integer, let F (n) be the number of rainbow copies of K4\e contained
in a blow-up of the coloring in Figure 4.1 on n vertices. Within each of the 5 parts, there are
5F
(

n
5

)

rainbow copies of K4\e and there are 10
(

n
5

)4 with one vertex in each part. Therefore

F (n) ≥ 5F
(n

5

)

+ 10
(n

5

)4

and solving this recurrence gives

F (n) ≥ n4

62
+O(n3).

There are 4 automorphisms of K4\e, hence

rbr(K4\e;n) ≥
n4

62
+O(n3)

>
6n4

625
+O(n3)

=

(n
4

)

4!
(5
5

)

5!

4 · 55 +O(n3).

In [9], it was shown that K3 is not 3-anti-common. We will now prove for a ≥ 4, Ka is not
(a
2

)

-anti-common.

Theorem 4.3. The complete graph Ka is not
(a
2

)

-anti-common.

Proof. Consider a rainbow Ka, i.e. let c be an
(a
2

)

-edge-coloring of Ka such that each edge is a
different color. Given n = ak for k a positive integer, let F (n) denote the number of rainbow
copies of Ka contained in a blow-up of the coloring c on n vertices. There are aF

(

n
a

)

rainbow

9



copies of Ka within each of the a parts, and there are
(

n
a

)a rainbow copies of Ka with exactly
one vertex from each part. Therefore

F (n) ≥ aF
(n

a

)

+
(n

a

)a

and solving this recurrence gives

F (n) ≥ na

aa − a
+O(na−1).

Therefore, since the number of automorphisms of Ka is a!, in order to show

na

aa − a
+O(na−1) >

(n
a

)(a
2

)

!
(

a
2

)(a2)

we will prove
a!

aa − a
>

(

a
2

)

!
(a
2

)(a2)
. (4)

We will use the following bounds on the factorial function

e

(

(

a
2

)

e

)(a2)

≤
(

a

2

)

! ≤ e

(

a

2

)

(

(

a
2

)

e

)(a2)

where e is the base of the natural logarithm. From this we have
(

a
2

)

!
(a
2

)(a2)
≤

(

a
2

)

e(
a

2)−1

and also using the inequality from (4), a!
aa−a ≥ 1

ea−1 and therefore it’s enough to show
(a
2

)

e(
a

2)−1
<

1

ea−1
.

One can check that this inequality holds for a ≥ 4 which concludes the proof.

4.2 Sufficient conditions for not anti-commonality

In what follows log represents the natural logarithm. We will also be using both sides of the
Stirling’s approximation given below.

Theorem 4.4 (Stirling’s Approximation).
√
2πn

(n

e

)n
≤ n! ≤

√
2πn

(n

e

)n
e

1
12n

Theorem 4.5. Suppose H is a graph with m vertices and e edges and let c be a constant such

that 2πm(1− c) > 1 and

c+ (1− c) log(1− c) ≥ 2

m− 1
+

1
(m
2

)2
12

.

If e ≥ c
(m
2

)

, then H is not
(m
2

)

-anti-common.
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Proof. Let H be a graph which satisfies the hypothesis above and consider a rainbow coloring of
H. Blow-up this coloring to n vertices and similar work as that in the proof of Theorem 4.3 gives
that the number of rainbow copies of H in Kn is at least

nmm!

mm
+O(nm−1).

From the relationships between c and m we have

c

(

m

2

)

− 1
(m
2

)

12
+ (1− c)

(

m

2

)

log(1− c)−m ≥ 0

and so raising both sides by the base of the logarithm e gives

e
c(m2 )−

1

(m2 )12
−m

(1− c)(
m

2 )(1−c) ≥ 1.

Then since 2πm(1− c) > 1 we have

√

2πm(1− c)e
c(m2 )−

1

(m2 )12
−m

(1− c)(
m

2 )(1−c) > 1

√
2πm

em
>

e

1

(m2 )12

√
1− cec(

m

2 )(1− c)(
m

2 )(1−c)

=

e

1

(m2 )12
(

(m2 )
e

)(m2 )

(m
2

)c(m2 )
(

(m2 )(1−c)

e

)(m2 )(1−c)√
1− c

≥
(m
2

)

!
(m
2

)c(m2 )
((m

2

)

− c
(m
2

))

!
√
1− c

=

( (m2 )
c(m2 )

) (

c
(m
2

))

!

(

m
2

)c(m2 )

≥
((m2 )

e

)

e!
(m
2

)e .

Using Stirling’s approximation, we have
√
2πm

em
≤ m!

mm
.

and therefore
nmm!

mm
+O(nm−1) >

nm
((m2 )

e

)

e!
(

m
2

)e +O(nm−1)

Corollary 4.6. Let H be a graph on m vertices and e edges such that

e > m
√
m− 1.

Then for m ≥ 6, H is not
(m
2

)

-anti-common.
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Proof. Let H be a graph that satisfies the hypothesis and set c = 2√
m−1

. Since 2πm(1 − c) > 1

for m ≥ 6, we can apply Proposition 4.5 and thus it suffices to show

c+ (1− c) log(1− c) ≥ 2

m− 1
+

1
(

m
2

)2
12

.

For m ≥ 6 we also have |c| < 1, so we can expand the log function as follows

c+ (1− c) log(1− c) = c+ (1− c)

(

−c− c2

2
− c3

3
− · · ·

)

=

∞
∑

i=2

1

i(i− 1)
ci

=
2

m− 1
+

4

3(m− 1)3/2
+

∞
∑

i=4

1

i(i− 1)

(

2√
m− 1

)i

>
2

m− 1
+

1
(

m
2

)2
12

.

Using Corollary 4.6, we are able to show that a similar conjecture to that of Sidorenko’s in the
Ramsey setting does not hold in the anti-Ramsey setting.

Corollary 4.7. Not all bipartite graphs are anti-common.

Proof. Consider the complete bipartite graph K8,8. This graph has 16 vertices and 64 edges, and
in particular

e(K8,8) = 64 > 62 > 16
√
15.

By Proposition 4.6, K8,8 is not
(16
2

)

-anti-common and is therefore not anti-common.

Indeed, Corollary 4.6 shows that almost all bipartite graphs are not anti-common. If Sidorenko’s
conjecture is true, this is very different behavior from the monochromatic situation.

5 Future directions

As in the Ramsey case, we wish to establish an implication between a graph being r-anti-common
and (r+1)-anti-common. Through our investigation of this problem, we have shown the following
inequality.

Proposition 5.1. Let H be a graph with e edges, then

rbr+1(H;n) ≥ rbr(H;n) ≥
(

(r + e)(r + 1− e)

r(r + 1)

)

rbr+1(H;n).

Proof. Since the set of (r+1)-edge-colorings contains the set of r-edge-colorings, the left inequality
follows immediately. Now consider an (r+1)−edge-coloring of Kn such that the number of rainbow

12



copies of H is exactly rbr+1(H;n). Randomly choose a color from [r + 1] and call it r′. For all
edges colored r′, recolor them randomly from the set of colors [r+1]\{r′}. In the initial coloring,
the expected number of rainbow copies of H with one edge colored r′ is

rb(G,n, r + 1)e

r + 1
.

With probability r−e+1
r , each of these rainbow subgraphs will remain rainbow in the new coloring.

Therefore the expected number of rainbow copies of H in the new coloring is
(

rbr+1(H;n)− rbr+1(H;n)e

r + 1

)

+
rbr+1(H;n)e(r − e+ 1)

r(r + 1)
=

(

(r + e)(r + 1− e)

r(r + 1)

)

rbr+1(H;n).

This implies that there exists such a coloring of Kn with r colors and hence
(

(r + e)(r + 1− e)

r(r + 1)

)

rbr+1(H;n) ≤ rbr(H;n).

This inequality leads us to believe that the implication below is in fact true.

Conjecture 5.2. If H is not r-anti-common, then H is not (r + 1)-anti-common.

There are also many other classes of graphs whose anti-commonality have yet to be studied.
Preliminary results on cycles lead us to believe that for k ≥ 3, cycles of length k are not k-anti-
common. One can show using the blow-up method in Section 4 that C4 is not 4-anti-common
and that C5 is not 5-anti-common.

6 Acknowledgments

We would like to thank Carnegie Mellon University for supporting the Summer Undergraduate
Applied Mathematics Institute. Additionally, we gratefully acknowledge financial support for this
research from the following grants: NSF DGE-1041000 (Jessica De Silva), NSF DMS-1606351
(Michael Tait), and NSF DMS-1719841 (Michael Young).

References

[1] J. Balogh, P. Hu, B. Lidický, F. Pfender, J. Volec, and M. Young, “Rainbow triangles in
three-colored graphs", Journal of Combinatorial Theory, Series B (2017).

[2] G. R. Blakley and P. Roy, “A Hölder type inequality for symmetric matrices with non-negative
entries", Proceedings of the American Mathematical Society, 16 (1965): 1244-1245.

[3] M. Bóna, A Walk Through Combinatorics, third ed. World Scientific Publishing Co. Pte. Ltd.,
Hackensack, NJ, (2011).

[4] S. A. Burr and V. Rosta, “On the Ramsey multiplicity of graphs-problems and recent results",
Journal of Graph Theory, 4 (1980): 347-361.

13



[5] L. Clark, “The minimum number of subgraphs in a graph and its complement", Journal of

Graph Theory, 16.5 (1992): 451-458.

[6] D. Conlon, J. Fox, and B. Sudakov, “An approximate version of Sidorenko’s conjecture",
Geometric and Functional Analysis, 20.6 (2010): 1354-1366.

[7] D. Conlon, J. Fox, and B. Sudakov, “Recent developments in graph Ramsey theory", Surveys

in Combinatorics 424 (2015): 49-118.

[8] P. Erdős, “On the number of complete subgraphs contained in certain graphs", Publ. Math.

Inst. Hungar. Acad. Sci., 7 (1962): 459-464.

[9] P. Erdős and A. Hajnal, “On Ramsey like theorems, Problems and results in combinatorics",
Proceedings of the Oxford Conference, (1972).

[10] J. Fox. “There exist graphs with super-exponential Ramsey multiplicity constant", Journal

of Graph Theory, 57.2 (2008): 89-98.

[11] A. W. Goodman, “On sets of acquaintances and strangers at any party", The American

Mathematical Monthly, 66.9 (1959): 778-783.

[12] H. Hatami et al., “Chromatic number of common graphs", accessed 25 July 2017,
www.openproblemgarden.org/op/chromatic_number_of_common_graphs.

[13] H. Hatami, “Graph norms and Sidorenko’s conjecture", Israel Journal of Mathematics, 175
(2010): 125-150.

[14] M. S. Jacobson, “On the Ramsey multiplicity for stars", Discrete Mathematics, 42.1 (1982):
63-66.

[15] C. Jagger, P. Šťovíček, and A. Thomason, “Multiplicities of subgraphs", Combinatorica, 16.1
(1996): 123-141.

[16] J. H. Kim, C. Lee, and J. Lee, “Two approaches to Sidorenko’s conjecture", Transactions of

the American Mathematical Society, 368.7 (2016): 5057-5074.

[17] A. F. Sidorenko, “A correlation inequality for bipartite graphs", Graphs and Combinatorics,
9 (1993): 201-204.

[18] A. F. Sidorenko, “Cycles in graphs and functional inequalities", Mathematical Notes of the

Academy of Sciences of the USSR, 46 (1989): 877-882.

[19] A. F. Sidorenko, “Extremal problems in graph theory and inequalities in functional analysis",
Proceedings of the Soviet Seminar on Discrete Mathematics and its Applications (in Russian),
1986.

[20] A. G. Thomason, “A disproof of a conjecture of Erdős in Ramsey Theory", Journal of the

London Mathematical Society, 39.2 (1989): 246-255.

14


	1 Introduction
	2 The anti-Ramsey multiplicity constant
	3 Anti-common graphs
	4 Graphs which are not anti-common
	4.1 Specific graphs which are not anti-common
	4.2 Sufficient conditions for not anti-commonality

	5 Future directions
	6 Acknowledgments

