Sum-product estimates in finite quasifields

Michael Tait

University of California-San Diego
mtait@math.ucsd.edu

September 26, 2015

Definitions

Let R an algebraic structure closed under " + " and ".", and let $A \subset R$. Define the sum set and product set of A to be

$$
\begin{aligned}
A+A & =\{a+b: a, b \in A\} \\
A \cdot A & =\{a \cdot b: a, b \in A\}
\end{aligned}
$$

Warm up

Consider \mathbb{Z} and let $A=\{1,2,5\}$.

$$
\begin{aligned}
A+A & =\{2,3,4,6,7,10\} \\
A \cdot A & =\{1,2,4,5,10,25\}
\end{aligned}
$$

- When is $|A+A|$ small?
- When is $|A \cdot A|$ small?
- Can they both be small at the same time?

Previous work

When $A \subset \mathbb{Z}$, Erdős and Szemerédi showed that

$$
\max \{|A+A|,|A \cdot A|\}=\Omega\left(|A|^{1+\varepsilon}\right) .
$$

On the other hand, if \mathbb{F} is a field with subfield K, then $|K+K|=|K \cdot K|=|K|$.

When does a non-trivial sum-product estimate hold?

Previous work

Author	Setting	Notes
Erdős-Szemerédi	\mathbb{Z}	$1+\varepsilon$
Elekes	\mathbb{Z}	$5 / 4$
Solymosi	\mathbb{C}	$14 / 11-o(1)$
Solymosi	\mathbb{Z}	$4 / 3-o(1)$
Konyagin-Shkredov	\mathbb{Z}	$4 / 3+1 / 20598-o(1)$
Bourgain-Katz-Tao	\mathbb{F}_{p}	$1<\|A\| \ll p$
Garaev	\mathbb{F}_{p}	$\|A\|>p^{2 / 3}$
Hart-Iosevich-Solymosi	\mathbb{F}_{q}	$\|A\| \gg q^{1 / 2}$
Vu	\mathbb{F}_{q}	more general
Tao	Ring	zero divisors/subring

Conjecture: If $A \subset \mathbb{Z}$ then $\max \left\{|A+A|,|A \cdot A| \geq|A|^{2-o(1)}\right.$.

Szemerédi-Trotter Theorem

Some of these results were proved using the Szemerédi-Trotter Theorem.

Theorem

Given n points and m lines in the plane, they determine at most

$$
O\left(n^{2 / 3} m^{2 / 3}+n+m\right)
$$

incidences.

We prove a Szemerédi-Trotter Theorem set in a quasifield and use it to deduce a sum-product estimate.

Quasifields

A quasifield $(Q,+\cdot)$ satisfies
(1) Q is a group under addition.
(2) Q is a loop under multiplication. i.e. the multiplication table of Q is a Latin square.
(3) Left distributivity: $a \cdot(b+c)=a \cdot b+a \cdot c$.
(1) $a \cdot x=b \cdot x+c$ has exactly one solution for $a, b, c \in Q$.

A quasifield is like a field except that multiplication need not be associative or commutative, and Q may not satisfy right-distributivity.

Projective planes

To prove a Szemerédi-Trotter theorem in a quasifield, we coordinatize a projective plane Π.

$$
\begin{aligned}
& \mathcal{P}=\{(x, y): x, y \in Q\} \cup\{(x): x \in Q\} \cup\{(\infty)\} \\
& \mathcal{L}=\{[m, b]: m, k \in Q\} \cup\{[m]: m \in Q\} \cup\{[\infty]\}
\end{aligned}
$$

Incidence is defined by the rules

- $(x, y) \sim[m, b]$ iff $m \cdot x+y=b$
- $(x, y) \sim[b]$ iff $x=b$
- $(x) \sim[m, b]$ iff $x=m$
- $(x) \sim \infty$ and $(\infty) \sim[b]$
- $(\infty) \sim[\infty]$

Pseudorandomness

Bipartite incidence graphs of projective planes are pseudorandom.

Szemerédi-Trotter in quasifields

We want to prove a variant of the Szemerédi-Trotter incidence theorem in Q. What do we mean by "lines" in a quasifield? For $a, b \in Q$

$$
l(a, b)=\left\{(x, y) \in Q^{2}: y=b \cdot x+a\right\}
$$

Theorem (Pham, MT, Timmons, Vinh)

Let Q be a quasifield of order q. Let P be a set of points in Q^{2} and L be a set of lines in Q^{2}, then

$$
|\{(p, l) \in P \times L: p \in l\}| \leq \frac{|P||L|}{q}+q^{1 / 2} \sqrt{|P||L|} .
$$

Szemerédi-Trotter in quasifields

Proof: Let $R \subset Q^{2}$ and $L=\{l(a, b): a, b \in R\}$ be a set of lines. Let $P \subset Q^{2}$ be a set of points. $\left(p_{1}, p_{2}\right)$ is on $l(a, b)$ if and only if $p_{2}=b \cdot p_{1}+a$.
This is equivalent to $\left(p_{1},-p_{2}\right) \sim[b,-a]$ in Π. Let

$$
\begin{aligned}
& S=\left\{\left(p_{1},-p_{2}\right):\left(p_{1}, p_{2}\right) \in P\right\} \\
& T=\{[b,-a]:(a, b) \in R\}
\end{aligned}
$$

Then the number of edges between S and T in the Levi graph of Π exactly counts the number of point-line incidences between P and L. Apply the expander-mixing lemma.

Sum-product estimates in Q

Let $A \subset Q$. We define a set of points and lines that measure $|A+A|$ and $|A \cdot A|$ and then apply our Szemerédi-Trotter theorem.

$$
\begin{aligned}
P & =(A+A) \times(A \cdot A) \\
L & =\{l(-a \cdot b, a): a, b \in A\}
\end{aligned}
$$

Recall $l(c, d)=\{(x, y): y=d \cdot x+c\}$. For any $a, b, c \in A$, the point $(c+b, a \cdot c) \in P$ is on the line $l(-a \cdot b, a) \in L$.

$$
a \cdot c=a \cdot(c+b)-a \cdot b
$$

$|A|^{3}$ incidences defined by $|A|^{2}$ lines and $|A+A||A \cdot A|$ points.

Sum-product estimates in Q

Theorem (Pham, MT, Timmons, Vinh)
Let Q be a quasifield of order Q. Then if $q^{1 / 2} \ll|A| \ll q^{2 / 3}$,

$$
\max \{|A+A|,|A \cdot A|\}=\Omega\left(\frac{|A|^{2}}{q^{1 / 2}}\right) .
$$

If $q^{2 / 3} \leq|A| \ll q$, then

$$
\max \{|A+A|,|A \cdot A|\}=\Omega\left((q|A|)^{1 / 2}\right)
$$

Open Questions

- Erdős and Szemerédi conjecture: for $A \subset \mathbb{Z}$, is $\max \{|A+A|,|A \cdot A|\}=|A|^{2-o(1)}$?
- The spectral method can only give non-trivial estimates when $|A| \gg q^{1 / 2}$. It is probably true that if $A \subset Q$ with $1 \ll|A| \ll q$ and A is not "close to a sub-quasifield", then $\max \{|A+A|,|A \cdot A|\} \geq|A|^{1+\varepsilon}$.

