Sum-product estimates in finite quasifields

Michael Tait

University of California-San Diego

mtait@math.ucsd.edu

September 26, 2015

Let R an algebraic structure closed under "+" and ".", and let $A \subset R$. Define the *sum set* and *product set* of A to be

$$A + A = \{a + b : a, b \in A\}$$
$$A \cdot A = \{a \cdot b : a, b \in A\}$$

Warm up

Consider \mathbb{Z} and let $A = \{1, 2, 5\}$.

$$A + A = \{2, 3, 4, 6, 7, 10\}$$
$$A \cdot A = \{1, 2, 4, 5, 10, 25\}$$

- When is |A + A| small?
- When is $|A \cdot A|$ small?
- Can they both be small at the same time?

When $A \subset \mathbb{Z}$, Erdős and Szemerédi showed that

$$\max\{|A+A|, |A\cdot A|\} = \Omega\left(|A|^{1+\varepsilon}\right).$$

On the other hand, if \mathbb{F} is a field with subfield K, then $|K + K| = |K \cdot K| = |K|$.

When does a non-trivial sum-product estimate hold?

Previous work

Author	Setting	Notes
Erdős-Szemerédi	\mathbb{Z}	$1 + \varepsilon$
Elekes	\mathbb{Z}	5/4
Solymosi	\mathbb{C}	14/11 - o(1)
Solymosi	\mathbb{Z}	4/3 - o(1)
Konyagin-Shkredov	\mathbb{Z}	4/3 + 1/20598 - o(1)
Bourgain-Katz-Tao	\mathbb{F}_p	$1 \ll A \ll p$
Garaev	\mathbb{F}_p	$ A > p^{2/3}$
Hart-Iosevich-Solymosi	\mathbb{F}_q	$ A \gg q^{1/2}$
Vu	\mathbb{F}_q	more general
Tao	Ring	zero divisors/subring

Conjecture: If $A \subset \mathbb{Z}$ then $\max\{|A + A|, |A \cdot A| \ge |A|^{2-o(1)}$.

Szemerédi-Trotter Theorem

Some of these results were proved using the Szemerédi-Trotter Theorem.

Theorem

Given n points and m lines in the plane, they determine at most

$$O\left(n^{2/3}m^{2/3} + n + m\right)$$

incidences.

We prove a Szemerédi-Trotter Theorem set in a quasifield and use it to deduce a sum-product estimate.

Michael Tait

Quasifields

A quasifield $(Q, +\cdot)$ satisfies

- 0 Q is a group under addition.
- Q is a loop under multiplication. i.e. the multiplication table of Q is a Latin square.
- **3** Left distributivity: $a \cdot (b + c) = a \cdot b + a \cdot c$.

• $a \cdot x = b \cdot x + c$ has exactly one solution for $a, b, c \in Q$. A quasifield is like a field except that multiplication need not be associative or commutative, and Q may not satisfy right-distributivity.

Projective planes

To prove a Szemerédi-Trotter theorem in a quasifield, we coordinatize a projective plane Π .

$$\begin{aligned} \mathcal{P} &= \{(x,y) : x, y \in Q\} \cup \{(x) : x \in Q\} \cup \{(\infty)\} \\ \mathcal{L} &= \{[m,b] : m, k \in Q\} \cup \{[m] : m \in Q\} \cup \{[\infty]\} \end{aligned}$$

Incidence is defined by the rules

• $(x,y) \sim [m,b]$ iff $m \cdot x + y = b$

•
$$(x,y) \sim [b]$$
 iff $x = b$

•
$$(x) \sim [m, b]$$
 iff $x = m$

•
$$(x) \sim \infty$$
 and $(\infty) \sim [b]$

•
$$(\infty) \sim [\infty]$$

Michael Tait

Pseudorandomness

Bipartite incidence graphs of projective planes are pseudorandom.

Szemerédi-Trotter in quasifields

We want to prove a variant of the Szemerédi-Trotter incidence theorem in Q. What do we mean by "lines" in a quasifield? For $a, b \in Q$

$$l(a,b) = \{(x,y) \in Q^2 : y = b \cdot x + a\}.$$

Theorem (Pham, MT, Timmons, Vinh)

Let Q be a quasifield of order q. Let P be a set of points in Q^2 and L be a set of lines in Q^2 , then

$$|\{(p,l) \in P \times L : p \in l\}| \le \frac{|P||L|}{q} + q^{1/2}\sqrt{|P||L|}.$$

Michael Tait

Szemerédi-Trotter in quasifields

Proof: Let $R \subset Q^2$ and $L = \{l(a, b) : a, b \in R\}$ be a set of lines. Let $P \subset Q^2$ be a set of points. (p_1, p_2) is on l(a, b) if and only if $p_2 = b \cdot p_1 + a$. This is equivalent to $(p_1, -p_2) \sim [b, -a]$ in Π . Let

$$S = \{(p_1, -p_2) : (p_1, p_2) \in P\}$$
$$T = \{[b, -a] : (a, b) \in R\}$$

Then the number of edges between S and T in the Levi graph of Π exactly counts the number of point-line incidences between P and L. Apply the expander-mixing lemma.

Sum-product estimates in Q

Let $A \subset Q$. We define a set of points and lines that measure |A + A| and $|A \cdot A|$ and then apply our Szemerédi-Trotter theorem.

$$P = (A + A) \times (A \cdot A)$$
$$L = \{l(-a \cdot b, a) : a, b \in A\}$$

Recall $l(c,d) = \{(x,y) : y = d \cdot x + c\}$. For any $a, b, c \in A$, the point $(c+b, a \cdot c) \in P$ is on the line $l(-a \cdot b, a) \in L$.

$$a \cdot c = a \cdot (c+b) - a \cdot b.$$

 $|A|^3$ incidences defined by $|A|^2$ lines and $|A + A||A \cdot A|$ points.

Sum-product estimates in Q

Theorem (Pham, MT, Timmons, Vinh) Let Q be a quasifield of order Q. Then if $q^{1/2} \ll |A| \ll q^{2/3}.$ $\max\{|A+A|, |A\cdot A|\} = \Omega\left(\frac{|A|^2}{a^{1/2}}\right).$ If $q^{2/3} < |A| \ll q$, then $\max\{|A + A|, |A \cdot A|\} = \Omega\left((q|A|)^{1/2}\right)$ Michael Tait

- Erdős and Szemerédi conjecture: for $A \subset \mathbb{Z}$, is $\max\{|A + A|, |A \cdot A|\} = |A|^{2-o(1)}$?
- The spectral method can only give non-trivial estimates when $|A| \gg q^{1/2}$. It is probably true that if $A \subset Q$ with $1 \ll |A| \ll q$ and A is not "close to a sub-quasifield", then $\max\{|A + A|, |A \cdot A|\} \ge |A|^{1+\varepsilon}$.