The Zarankiewicz problem in 3-partite graphs

Michael Tait

Carnegie Mellon University
mtait@cmu.edu
AMS Eastern Fall Sectional
University of Delaware

September 29, 2018

"How many edges can be in a 3 -partite C_{4}-free graph?"

Turán numbers

The Turán number of a graph F is the maximum number of edges that an n vertex graph may have under the condition that it does not contain F as a subgraph, denoted

$$
\operatorname{ex}(n, F)
$$

Theorem (Erdős-Stone 1946)
Let $\chi(F) \geq 2$ be the chromatic number of F. Then

$$
\operatorname{ex}(n, F)=\left(1-\frac{1}{\chi(F)-1}\right)\binom{n}{2}+o\left(n^{2}\right)
$$

Theorem (Kővári-Sós-Turán 1954)
For integers $2 \leq s \leq t$,

$$
\operatorname{ex}\left(n, K_{s, t}\right) \leq \frac{1}{2}(t-1)^{1 / s} n^{2-1 / s}+\frac{1}{2}(s-1) n
$$

$\operatorname{ex}(n, F)<n^{2-\epsilon}$ for bipartite F.

The Zarankiewicz problem

Given integers m, n, s, t, define

$$
z(m, n, s, t)
$$

to be the maximum number of 1 s in a $0-1$ matrix with

- size $m \times n$
- having no $s \times t$ submatrix of all 1s.

Equivalent to asking for the maximum number of edges in an $m \times n$ bipartite graph with no $K_{s, t}$.

$$
2 \operatorname{ex}\left(n, K_{s, t}\right) \leq z(n, n, s, t) \leq \operatorname{ex}\left(2 n, K_{s, t}\right)
$$

General question

Given a graph F and an integer $k \geq 2$ define

$$
\mathrm{ex}_{\chi \leq k}(n, F)
$$

to be the maximum number of edges in an n-vertex F-free graph with chromatic number at most k.

$$
\operatorname{ex}_{\chi \leq 2}(n, F) \leq \operatorname{ex}_{\chi \leq 3}(n, F) \leq \cdots \leq \operatorname{ex}_{\chi \leq n}(n, F)=\operatorname{ex}(n, F)
$$

Casey's Question: What is $\mathrm{ex}_{\chi \leq 3}\left(n, C_{4}\right)$?

Not just a novelty!

Conjecture (Erdős-Simonovits 1982)
Given any finite family of graphs \mathcal{F} there exists an ℓ such that

$$
\operatorname{ex}\left(n, \mathcal{F} \cup C_{2 \ell+1}\right) \sim \operatorname{ex}_{\chi \leq 2}(n, \mathcal{F})
$$

Theorem (Erdős-Simonovits 1982)

$$
\operatorname{ex}\left(n,\left\{C_{4}, C_{5}\right\}\right) \sim \operatorname{ex}_{\chi \leq 2}\left(n, C_{4}\right) \sim \frac{1}{2 \sqrt{2}} n^{3 / 2} .
$$

Conjecture (Erdős 1975)

$$
\operatorname{ex}\left(n,\left\{C_{4}, C_{3}\right\}\right) \sim \operatorname{ex}_{\chi \leq 2}\left(n, C_{4}\right)
$$

Craig

Results

Theorem (Tait-Timmons)
Let $2 \leq s \leq t$ be integers. Then

$$
\begin{gathered}
\operatorname{ex}_{\chi \leq 3}\left(n, K_{s, t}\right) \leq\left(\frac{1}{3}\right)^{1-1 / s}\left(\frac{t-1}{2}+o(1)\right)^{1 / s} n^{2-1 / s} . \\
\operatorname{ex}_{\chi \leq 3}\left(n, K_{2,2 t+1}\right)=\sqrt{\frac{t}{3}} n^{3 / 2}+o\left(n^{3 / 2}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \operatorname{ex}\left(n, K_{s, t}\right) \leq \frac{1}{2}(t-s+1+o(1))^{1 / s} n^{2-1 / s} \\
& \operatorname{ex}\left(n, K_{2,2 t+1}\right)=\frac{\sqrt{2 t}}{2} n^{3 / 2}+o\left(n^{3 / 2}\right) \quad\left(\frac{1}{\sqrt{3}}<\frac{\sqrt{2}}{2}\right) \\
& \operatorname{ex}_{\chi \leq 2}\left(n, K_{2,2 t+1}\right)=\frac{\sqrt{t}}{2} n^{3 / 2}+o\left(n^{3 / 2}\right) \quad\left(\frac{1}{2}<\frac{1}{\sqrt{3}}\right)
\end{aligned}
$$

Sunny

Allen, Keevash, Sudakov, and Verstraëte gave a nontrivial upper bound for $\mathrm{ex}_{\chi \leq k}(n, \mathcal{F})$ for any "smooth" family using sparse regularity. Theorem (Allen-Keevash-Sudakov-Verstraëte 2014)
There are $K_{2,2 t+1}$ and triangle free graphs on n vertices with

$$
\frac{t+1}{\sqrt{t(t+2)}} \operatorname{ex}_{\chi \leq 2}\left(n, K_{2,2 t+1}\right)
$$

edges.

Conjecture (Allen-Keevash-Sudakov-Verstraëte 2014)
Erdős's conjecture is false, ie

$$
\operatorname{ex}\left(n,\left\{C_{3}, C_{4}\right\}\right) \nsim \operatorname{ex}_{\chi \leq 2}\left(n, C_{4}\right) .
$$

Upper bound

To prove the upper bound: do the obvious thing! Let the partite sets be A, B, C, then

$$
(t-1)\binom{|A|}{s} \geq \sum_{v \in B}\binom{d_{A}(v)}{s}+\sum_{v \in C}\binom{d_{A}(v)}{s}
$$

Use convexity and optimize!

Lower bound

How to construct dense $K_{2, t}$ free graphs? $X=Y=\mathbb{F}_{q} \times \mathbb{F}_{q}$, $\left(x_{1}, x_{2}\right) \sim\left(y_{1}, y_{2}\right)$ if and only if $x_{1} y_{1}+x_{2} y_{2}=1$.

Füredi's idea: "mod out" by a subgroup. H a subgroup of \mathbb{F}_{q}^{*} of size t.

- Let $X=Y=\left(\mathbb{F}_{q} \times \mathbb{F}_{q} \backslash(0,0)\right) / H$,
- $\left(x_{1}, x_{2}\right) \sim\left(y_{1}, y_{2}\right)$ if and only if $x_{1} y_{1}+x_{2} y_{2} \in H$.
- $\frac{q^{2}-1}{t}$ vertices, degree q, no $K_{2, t+1}$.

Lower bound

Put copies of Füredi's graph between parts? Too symmetric.

Lower bound

We construct a similar bipartite graph to put between parts that breaks the symmetry. Let $A \subset \mathbb{Z}_{q^{2}-1}$ be a Bose-Chowla Sidon set. This means that if $a+b=c+d$ for $a, b, c, d \in A$ then $\{a, b\}=\{c, d\}$. Let $t \mid q^{2}-1$ and let H be a subgroup of $\mathbb{Z}_{q^{2}-1}$ of order t. Define a bipartite graph with

- Partite sets $X=Y=\mathbb{Z}_{q^{2}-1} / H$
- $x \sim y$ if and only if $x-y \in A$
- $|A|=q$ regular, $K_{2, t+1}$ free.

The non-bipartite version of this graph is similar to the non-bipartite version of Füredi's graph. When $q=19$ and $t \in\{1,2,3,6\}$ our graph has one more edge than Füredi's.

Lower bound

- Put this bipartite graph between parts in a "directed triangle".
- Symmetry broken! This graph is $K_{2,2 t+1}$ free.
- The common neighborhood of a pair of vertices is determined by how many solutions there are to $a+b=h$ with $a, b \in A$ and $h \in H$.

Forbidding C_{4}

$$
\frac{n^{3 / 2}}{2 \sqrt{2}} \leq \operatorname{ex}_{\chi \leq 3}\left(n, C_{4}\right) \leq \frac{n^{3 / 2}}{\sqrt{6}} .
$$

- A (v, k, λ)-difference family in a group Γ of order v is a collection of sets $\left\{D_{1}, \cdots, D_{t}\right\}$ each of size k such that $\left(D_{1}-D_{1}\right) \cup \cdots \cup\left(D_{t}-D_{t}\right)$ contains every nonzero element of Γ exactly λ times.
- $A=\{0,1\}$ and $2 A$ is a $(5,2,1)$ difference family in \mathbb{Z}_{5}. $A=\{1,10,16,18,37\}$ and $9 A$ is a $(41,5,1)$ difference family in \mathbb{Z}_{41}.
- These difference families yield constructions where the counting in the upper bound is tight! $\mathrm{ex}_{\chi \leq 3}\left(15, C_{4}\right)=30$ and $\mathrm{ex}_{\chi \leq 3}\left(123, C_{4}\right)=615$.

Theorem (Tait-Timmons-Williford)

Let R be a finite ring, $A \subset R$ an additive Sidon set, and $c \in R$ invertible. Let $B=c A=\{c a: a \in A\}$.
Then if $(A-A) \cap(B-B)=\{0\}$ there exists a 3-partite, C_{4} free graph on $3|R|$ vertices which is $|A|$ regular between each pair of parts.

$$
A+i \sim B+j \quad \text { if and only if } \quad-c j+i \in A
$$

- If there is an infinite family of $\left(2 k^{2}-2 k+1, k, 1\right)$-difference families in $\mathbb{Z}_{2 k^{2}-2 k+1}$ where the blocks are translates of each other this would yield an infinite family of graphs where the upper bound is (exactly!) tight.
- No $(61,6,1)$-difference family exists in \mathbb{F}_{61}.
- Exact difference families too restrictive and not necessary for an asymptotic result.

Open Problems

- Constructions for $k>3$. Can't break symmetry!
- "Approximate" designs
- $K_{3,3}$ free 3-partite graphs?

