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Abstract

Let F be a graph, k ≥ 2 be an integer, and write exχ≤k(n, F ) for the maxi-
mum number of edges in an n-vertex graph that is k-partite and has no subgraph
isomorphic to F . The function exχ≤2(n, F ) has been studied by many researchers.
Finding exχ≤2(n,Ks,t) is a special case of the Zarankiewicz problem. We prove an
analogue of the Kövári-Sós-Turán Theorem by showing

exχ≤3(n,Ks,t) ≤
(

1

3

)1−1/s( t− 1

2
+ o(1)

)1/s

n2−1/s

for 2 ≤ s ≤ t. Using Sidon sets constructed by Bose and Chowla, we prove that
this upper bound in asymptotically best possible in the case that s = 2 and t ≥ 3

is odd, i.e., exχ≤3(n,K2,2t+1) =
√

t
3n

3/2 + o(n3/2) for t ≥ 1.

1 Introduction

Let G and F be graphs. We say that G is F -free if G does not contain a subgraph
that is isomorphic to F . The Turán number of F is the maximum number of edges
in an F -free graph with n vertices. This maximum is denoted ex(n, F ) and an F -free
graph with n vertices and ex(n, F ) edges is called an extremal graph for F . One of
the most well-studied cases is when F = C4, a cycle of length four. This problem was
considered by Erdős [7] in 1938, and lies in the intersection of extremal graph theory,
finite geometry via projective planes and difference sets, and combinatorial number theory
via Sidon sets. Roughly 30 years later, Brown [3], and Erdős, Rényi, and Sós [8, 9]
independently showed that ex(n,C4) = 1

2
n3/2 + o(n3/2). They constructed, for each

prime power q, a C4-free graph with q2 + q + 1 vertices and 1
2
q(q + 1)2 edges. These

graphs are examples of orthogonal polarity graphs which have since been studied and
applied to other problems in combinatorics. Answering a question of Erdős, Füredi
[11, 12] showed that for q > 13, orthogonal polarity graphs are the only extremal graphs
for C4 when the number of vertices is q2 + q + 1. Füredi [13] also used finite fields to

construct, for each t ≥ 1, K2,t+1-free graphs with n vertices and
√

t
2
n3/2 + o(n3/2) edges.
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This construction, together with the famous upper bound of Kövári, Sós, and Turán [17],

shows that ex(n,K2,t+1) =
√

t
2
n3/2 + o(n3/2) for all t ≥ 1.

Because of its importance in extremal graph theory, variations of the bipartite Turán
problem have been considered. One such instance is to find the maximum number of edges
in an F -free n by m bipartite graph. Write ex(n,m, F ) for this maximum. Estimating
ex(n, n,Ks,t) is the “balanced” case of the Zarankiewicz problem. The results of [13, 17]
show that ex(n, n,K2,t+1) =

√
tn3/2 + o(n3/2) for t ≥ 1. The case when F is a cycle of

even length has also received considerable attention. Naor and Verstraëte [18] studied
the case when F = C2k. More precise estimates were obtained by Füredi, Naor, and
Verstraëte when F = C6 [14]. For more results along these lines, see [4, 5, 16] and the
survey of Füredi and Simonovits [15] to name a few.

Now we introduce the extremal function that is the focus of this work. For an integer
k ≥ 2, define

exχ≤k(n, F )

to be the maximum number of edges in an n-vertex graph G that is F -free and has
chromatic number at most k. Thus, exχ≤2(n, F ) is the maximum number of edges in an
F -free bipartite graph with n vertices (the part sizes need not be the same). Trivially,

exχ≤k(n, F ) ≤ ex(n, F )

for any k. In the case that k = 2,

exχ≤2(n,K2,t) =

√
t− 1

2
√

2
n3/2 + o(n3/2)

by [13, 17]. Our focus will be on exχ≤3(n,K2,t) and our first result gives an upper bound
on exχ≤3(n,Ks,t).

Theorem 1.1 For n ≥ 1 and 2 ≤ s ≤ t,

exχ≤3(n,Ks,t) ≤
(

1

3

)1−1/s(
t− 1

2
+ o(1)

)1/s

n2−1/s.

When s = 2, Theorem 1.1 improves the trivial bound

exχ≤3(n,K2,t) ≤ ex(n,K2,t) =

√
t− 1

2
n3/2 + o(n3/2).

Allen, Keevash, Sudakov, and Verstraëte [1] constructed 3-partite graphs with n ver-
tices that are K2,3-free and have 1√

3
n3/2−n edges. This construction shows that Theorem

1.1 is asymptotically best possible in the case that s = 2, t = 3. Our next result shows
that this asymptotic formula holds for K2,2t+1 for all t ≥ 1.

Theorem 1.2 For any integer t ≥ 1,

exχ≤3(n,K2,2t+1) =

√
t

3
n3/2 + o(n3/2).
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We believe that the most interesting remaining open case is determining the behavior
when forbidding K2,2 = C4.

Problem 1.3 Determine the asymptotic behavior of

exχ≤3(n,C4).

In particular it would be very interesting to know whether or not exχ≤2(n,C4) ∼
exχ≤3(n,C4). We discuss this in more detail in Section 4. A random partition into k
parts of an n-vertex C4-free graph with 1

2
n3/2 + o(n3/2) edges gives a lower bound of

exχ≤k(n,C4) ≥
(

1− 1

k

)
n3/2

2
− o(n3/2).

When k ≥ 4, this is a better lower bound than the one provided by

1

2
√

2
n3/2 + o(n3/2) ≤ exχ≤2(n,C4) ≤ exχ≤k(n,C4)

which holds for all k ≥ 2.
In the next section we prove Theorem 1.1 and in Section 3 we prove Theorem 1.2.

2 Proof of Theorem 1.1

In this section we prove Theorem 1.1. The proof is based on the standard double counting
argument of Kövári, Sós, and Turán [17].

Proof of Theorem 1.1. Let G be an n-vertex 3-partite graph that is Ks,t-free. Let
A1, A2, and A3 be the parts of G, and define δi by

δin = |Ai|.

By the Kövári-Sós-Turán Theorem [17], there is a constant βs,t > 0 such that the number
of edges with one end point in A1 and the other in A2 is at most βs,tn

2−1/s. If there are
o(n2−1/s) edges between A1 and A2, then we may remove these edges to obtain a bipartite
graph G′ that is Ks,t-free which gives

e(G) ≤ e(G′)− o(n2−1/s) ≤ exχ≤2(n,Ks,t).

In this case, we may apply the upper bound of Füredi [10] to see that the conclusion
of Theorem 1.1 holds. Therefore, we may assume that there is a positive constant c1,2
so that the number of edges between A1 and A2 is c1,2n

2−1/s. Similarly, let c1,3n
2−1/s

and c2,3n
2−1/s be the number of edges between A1 and A3, and between A2 and A3,

respectively.
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Using the assumption that G is Ks,t-free and convexity, we have

(t− 1)

(
|A1|
s

)
≥

∑
v∈A2

(
dA1(v)

s

)
+
∑
v∈A3

(
dA1(v)

s

)
≥ |A2|

(
1
|A2|e(A1, A2)

s

)
+ |A3|

(
1
|A3|e(A1, A3)

s

)
≥ δ2n

s!

(
e(A1, A2)

|A2|
− s
)s

+
δ3n

s!

(
e(A1, A3)

|A3|
− s
)s
.

After some simplification we get

(t− 1)
(δ1n)s

s!
≥ δ2n

s!

(
c1,2n

2−1/s

δ2n
− s
)s

+
δ3n

s!

(
c1,3n

2−1/s

δ3n
− s
)s
.

For j ∈ {2, 3}, we can assume that
c1,jn

2−1/s

δjn
> s otherwise

e(A1, Aj) = c1,jn
2−1/s ≤ sδjn ≤ sn = o(n2−1/s).

From the inequality (1 + x)s ≥ 1 + sx for x ≥ −1, we now have

(t− 1)δs1n
s ≥ δ2n

(
c1,2n

2−1/s

δ2n

)s
− δ2ns2

(
c1,2n

2−1/s

δ2n

)s−1
+ δ3n

(
c1,3n

2−1/s

δ3n

)s
− δ3ns2

(
c1,3n

2−1/s

δ3n

)s−1
.

Dividing through by ns and rearranging gives

(t− 1)δs1 ≥
cs1,2

δs−12

+
cs1,3

δs−13

−
s2cs−11,2

δs−22 n1−1/s −
s2cs−11,3

δs−23 n1−1/s .

Multiplying through by δs−12 δs−13 leads to

(t− 1)δs1δ
s−1
2 δs−13 ≥ cs1,2δ

s−1
3 + cs1,3δ

s−1
2 −

s2δs−13 δ2c
s−1
1,2

n1−1/s −
s2δs−12 δ3c

s−1
1,3

n1−1/s .

Since δ2 and δ3 are both at most 1 and c1,j is at most βs,t,

(t− 1)δs1δ
s−1
2 δs−13 ≥ cs1,2δ

s−1
3 + cs1,3δ

s−1
2 −

2s2βs−1s,t

n1−1/s .

By symmetry between the parts A1, A2, and A3,

(t− 1)δs2δ
s−1
1 δs−13 ≥ cs1,2δ

s−1
3 + cs2,3δ

s−1
1 −

2s2βs−1s,t

n1−1/s

and

(t− 1)δs3δ
s−1
1 δs−12 ≥ cs1,3δ

s−1
2 + cs2,3δ

s−1
1 −

2s2βs−1s,t

n1−1/s .
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Add these three inequalities together and divide by 2 to obtain

t− 1

2
δs−11 δs−12 δs−13 (δ1 + δ2 + δ3) ≥ cs1,2δ

s−1
3 + cs1,3δ

s−1
2 + cs2,3δ

s−1
1 −

3s2βs−1s,t

n1−1/s .

Now n = |A1|+ |A2|+ |A3| = (δ1 + δ2 + δ3)n so we may replace δ1 + δ2 + δ3 with 1. This
leads us to the optimization problem of maximizing

c1,2 + c1,3 + c2,3

subject to the constraints

0 ≤ δi, 0 ≤ ci,j ≤ 1, δ1 + δ2 + δ3 = 1,

and
t− 1

2
δs−11 δs−12 δs−13 ≥ δs−13 cs1,2 + δs−12 cs1,3 + δs−11 cs2,3.

This can be done using the method of Lagrange Multipliers (see the Appendix) and gives

c1,2 + c1,3 + c2,3 ≤
(

1

3

)1−1/s(
t− 1

2

)1/s

.

We conclude that the number of edges of G is at most(
1

3

)1−1/s(
t− 1

2

)1/s

n2−1/s + o(n2−1/s).

3 Proof of Theorem 1.2

In this section we construct a 3-partite K2,2t+1-free graph with many edges. The con-
struction is inspired by Füredi’s construction of dense K2,t-free graphs [13].

Let t ≥ 1 be an integer. Let q be a power of a prime chosen so that t divides q − 1
and let θ be a generator of the multiplicative group F∗q2 := Fq2\{0}. Let A ⊂ Zq2−1 be a
Bose-Chowla Sidon set [2]. That is,

A = {a ∈ Zq2−1 : θa − θ ∈ Fq}

and note that |A| = q. Let H be the subgroup of Zq2−1 generated by ( q−1
t

)(q+ 1). Thus,

H =

{
0,

(
q − 1

t

)
(q + 1), 2

(
q − 1

t

)
(q + 1), . . . , (t− 1)

(
q − 1

t

)
(q + 1)

}
and furthermore, H is contained in the subgroup of Zq2−1 generated by q+1. Let Gq,t be
the bipartite graph whose parts are X and Y where each of X and Y is a disjoint copy
of the quotient group Zq2−1/H. A vertex x+H ∈ X is adjacent to x+ a+H ∈ Y for all
a ∈ A.

We will need the following lemma, which was proved in [20].
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Lemma 3.1 [Lemma 2.2 of [20]] Let A ⊂ Zq2−1 be a Bose-Chowla Sidon set. Then

A− A = Zq2−1 \ {q + 1, 2(q + 1), 3(q + 1), . . . , (q − 2)(q + 1)}.

In particular, Lemma 3.1 implies that (A− A) ∩H = ∅.

Lemma 3.2 If t ≥ 1 is an integer and q is a power of a prime for which t divides q− 1,
then the graph Gq,t is a bipartite graph with q2−1

t
vertices in each part, is K2,t+1-free, and

has q
(
q2−1
t

)
edges.

Proof. It is clear that Gq,t is bipartite and has q2−1
t

vertices in each part. Let x+H be
a vertex in X. The neighbors of x+H are of the form x+ a+H where a ∈ A. We show
that these vertices are all distinct. If x + a + H = x + b + H for some a, b ∈ H, then
a− b ∈ H. By Lemma 3.1

(A− A) ∩H = {0}
where A−A = {a− b : a, b ∈ A}. We conclude that a = b and so the degree of x+H is

|A| = q. This also implies that Gq,t has q
(
q2−1
t

)
edges and to finish the proof, we must

show that Gq,t has no K2,t+1.
We consider two cases depending on which part contains the part of size two of the

K2,t+1. First suppose that x+H and y +H are distinct vertices in X and let z +H be
a common neighbor in Y . Then z + H = x + a + H and z + H = y + b + H for some
a, b ∈ A. Therefore, z = x + a + h1 and z = y + b + h2 for some h1, h2 ∈ H. From this
pair of equations we get a − b = y − x + h2 − h1. Since H is a subgroup, h2 − h1 = h3
for some h3 ∈ H and now we have

a− b = y − x+ h3. (1)

The right hand side of (1) is not zero since x + H and y + H are distinct vertices in A.
As A is a Sidon set and y − x+ h3 6= 0, there is at most one ordered pair (a, b) ∈ A2 for
which a− b = y − x+ h3. There are t possibilities for h3 and so t possible ordered pairs
(a, b) ∈ A2 for which

z +H = x+ a+H = y + b+H

is a common neighbor of x + H and y + H. This shows that x + H and y + H have at
most t common neighbors.

Now suppose x+H and y+H are distinct vertices in Y and z+H is a common neighbor
in X. There are elements a, b ∈ A such that z+a+H = x+H and z+b+H = y+H. Thus,
z+ a+h1 = x and z+ b+h2 = y for some h1, h2 ∈ H. Therefore, x− a−h1 = y− b−h2
so a− b = x− y+ h2− h1. We can then argue as before that there are at most t ordered
pairs (a, b) ∈ A2 such that z + H is a common neighbor of z + a + H = x + H and
z + b+H = y +H.

Once again, let t ≥ 1 be an integer and q be a power of a prime for which t divides
q − 1. Let Γq,t be the 3-partite graph with parts X, Y , and Z where each part is a copy
of the quotient group Zq2−1/H. Here H is the subgroup generated by ( q−1

t
)(q + 1). A

vertex x + H ∈ X is adjacent to x + a + H ∈ Y for all a ∈ A. Similarly, a vertex
y+H ∈ Y is adjacent to y+a+H ∈ Z for all a ∈ A, and a vertex z+H ∈ Z is adjacent
to z + a+H ∈ X for all a ∈ A.
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Lemma 3.3 The graph Γq,t is K2,2t+1-free.

Proof. By Lemma 3.2, a pair of vertices in one part of Γq,t have at most t common
neighbors in each of the other two parts. Thus, there cannot be a K2,2t+1 in Γq,t where
the part of size two is contained in one part.

Now let x+H and y+H be vertices in two different parts. Without loss of generality,
assume x+H ∈ X and y +H ∈ Y . Suppose z +H ∈ Z is a common neighbor of x+H
and y+H. There are elements a, b ∈ A such that z+H = y+a+H and z+b+H = x+H
so we have

z = y + a+ h1 and z + b = x+ h2

for some h1, h2 ∈ H. This pair of equations implies

a+ b = x− y + h2 − h1

and since H is a subgroup, h2 − h1 ∈ H. Let h2 − h1 = h3 where h3 ∈ H so

a+ b = x− y + h3.

There are t possibilities for h3. Given h3, the equation a + b = x − y + h3 uniquely
determines the pair {a, b} since A is a Sidon set. There are two ways to order a and b
and so x+H and y +H have at most 2t common neighbors in Z.

Proof of Theorem 1.2. By Theorem 1.1,

exχ≤3(n,K2,2t+1) =

√
1

3

(
2t+ 1− 1

2
+ o(1))

)1/2

n3/2 =

√
t

3
n3/2 + o(n3/2).

As for the lower bound, if q is any power of a prime for which t divides q − 1, then by
Lemmas 3.2 and 3.3, the graph Γq,t is a 3-partite graph with q2−1

t
vertices in each part,

is K2,2t+1-free, and has 3q
(
q2−1
t

)
edges. Thus,

exχ≤3

(
3(q2 − 1)

t
,K2,2t+1

)
≥ 3q

(
q2 − 1

t

)
.

If n = 3(q2−1)
t

, then the above can be rewritten as

exχ≤3(n,K2,2t+1) ≥ n

(√
nt

3
+ 1

)
≥
√
t

3
n3/2 − n.

A standard density of primes argument finishes the proof.
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4 Concluding Remarks

We may consider a similar graph to Gq,t and Γq,t which does not necessarily have bounded
chromatic number. Let Γ be a finite abelian group with a subgroup H of order t. Let
A ⊂ Γ be a Sidon set such that (A− A) ∩H = {0}. Then we may construct a graph G
with vertex set Γ/H where x + H ∼ y + H if and only if x + y = a + h for some a ∈ A
and h ∈ H. Then the proof of Lemma 3.2 shows that G is a K2,t+1-free graph on |Γ|/|H|
vertices and every vertex has degree |A| or |A| − 1.

When Γ = Zq2−1, t divides q − 1, and A is a Bose-Chowla Sidon set, the resulting
graph G is similar to the one constructed by Füredi in [13]. When t = 1 the main result
of [19] shows that these two graphs are isomorphic. However, in general these graphs are
not isomorphic. When q = 19 and t ∈ {3, 6} the graph constructed above has one more
edge than the graph constructed by Füredi.

Turning to the question of determining exχ≤3(n,C4), Theorem 1.1 shows that

exχ≤3(n,C4) .
n3/2

√
6
.

Furthermore, the optimization shows that if this bound is tight asymptotically, then
a construction would have to be 3-partite with each part of size asymptotic to n

3
and

average degree asymptotic to
√

n
6

between each part. The following construction is due
to Jason Williford [21].

Theorem 4.1 Let R be a finite ring, A ⊂ R an additive Sidon set and B = cA = {ca :
a ∈ A}. Then if (A−A) ∩ (B −B) = {0} where c is invertible, there is a graph on 3|R|
vertices which is 3-partite, C4-free and is |A|-regular between parts.

Proof. We construct a graph with partite sets S1, S2, S3 where S1 = R, S2 = {A+ i}i∈R
and S3 = {B + j}j∈R. A vertex in S1 is adjacent to a vertex in S2 or S3 by inclusion.
The vertex A+ j ∈ S2 is adjacent to B + i ∈ S3 if −cj + i ∈ A. Since c is invertible, we
have that both A and B are Sidon sets. Therefore, the bipartite graphs between S1 and
S2, and between S1 and S3 are incidence graphs of partial linear spaces, and thus do not
contain C4.

If there were a C4 with A+ i, A+ j ∈ S2 and B + k,B + l ∈ S3, it implies that there
exist a1, a2, a3, a4 ∈ A such that

−ci+ k = a1

−ci+ l = a2

−cj + k = a3

−cj + l = a4.

This means that k− l = a1−a2 = a3−a4. Since A is a Sidon set this means that a1 = a2
or a1 = a3, which implies that either k = l or i = j.
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If there were a C4 with i ∈ S1, A+ j, A+ k ∈ S2 and B + l ∈ S3, it means that there
are a1, a2, a3, a4 ∈ A such that

i = a1 + j

i = a2 + k

−cj + l = a3

−ck + l = a4.

This means that c(j−k) = c(a2−a1) = a4−a3. Since B = cA we have that b2−b1 = a4−a3
for some b1, b2 ∈ B, and therefore b2 − b1 = a4 − a3 = 0. This implies that j = k. The
case when there are two vertices in S3 and one each in S1 and S2 is similar.

The condition that (A − A) ∩ (B − B) = {0} and A is a Sidon set implies that
2|A|(|A| − 1) ≤ |R| − 1. In Z5, if A = {0, 1} and B = 2A = {0, 2}, we have (A − A) ∩
(B −B) = {0} and (A−A)∪ (B −B) = Z5. This gives a 3-partite graph on 15 vertices
which is C4-free and is 4-regular. In Z41, the set A = {1, 10, 16, 18, 37} and B = 9A have
the same property that (A − A) ∩ (B − B) = {0} and (A − A) ∪ (B − B) = Z41. This
gives a 3-partite C4-free graph on 123 vertices which is 10 regular.

In general, a (v, k, λ)-difference family in a group Γ of order v is a collection of sets
{D1, . . . , Dt} each of size k such that the multiset

(D1 −D1) ∪ · · · ∪ (Dt −Dt)

contains every nonzero element of Γ exactly λ times. If one could find an infinite family of
(2k2−2k+1, k, 1)-difference families in Z2k2−2k+1 where the two blocks are multiplicative
translates of each other by a unit, then the resulting graph would match the upper bound
in Theorem 1.1. The sets A = {0, 1} and 2A in Z5, and A = {1, 10, 16, 18, 37} and 9A in
Z41 are examples of this for k = 2 and k = 5 respectively. We could not figure out how
to extend this construction in general, and in [6] it is shown that no (61, 6, 1)-difference
family exists in F61.

To show Theorem 1.1 is tight asymptotically it would suffice to find something weaker
than a (2k2−2k+1, k, 1)-difference family where the two blocks are multiplicative trans-
lates of each other. We do not need every nonzero element of the group to be represented
as a difference of two elements, just a proportion of them tending to 1.
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[4] D. de Caen, L. A. Székely, The maximum size of 4- and 6-cycle free bipartite graphs
on m, n vertices, Sets, graphs and numbers (Budapest, 1991), 135–142, Collob. Math.
Soc. János, Bolyai, 60, North-Holland, Amsterdam, 1992.
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6 Appendix

Here we solve the optimization problem of Theorem 1.1 using the method of Lagrange
Multipliers. For convenience, we write x for c1,2, y for c1,3, and z for c2,3. Recall that δ1,
δ2, and δ3 are positive real numbers that satisfy δ1 + δ2 + δ3 = 1. Let

f(x, y, z) = x+ y + z

and

g(x, y, z) =
t− 1

2
δs−11 δs−12 δs−13 − δs−13 xs − δs−12 ys − δs−11 zs.

For a parameter λ, let L(x, y, z, λ) = f(x, y, z) + λg(x, y, z). Taking partial derivatives,
we get

Lx = 1− sλδs−13 xs−1 = 0, (2)

Ly = 1− sλδs−12 ys−1 = 0, (3)

Lz = 1− sλδs−11 zs−1 = 0, (4)

λ

(
t− 1

2
δs−11 δs−12 δs−13 − δs−13 xs − δs−12 ys − δs−11 zs

)
= 0. (5)

Note that λ 6= 0 otherwise we contradict (2) so by (5),

t− 1

2
δs−11 δs−12 δs−12 = δs−13 xs + δs−12 ys + δs−11 zs. (6)

From (2), (3), and (4) we have(
1

2λ

) 1
s−1

= δ3x = δ2y = δ1z. (7)

Combining this with (6) and using δ3 = 1−δ1−δ2, we get an equation that can be solved
for x to obtain

x =

(
(t− 1)δs1δ

s
2

2(δ1(1− δ1) + δ2(1− δ2)− δ1δ2)

)1/s

.

Using (7), we can then solve for y and z and get

x+ y + z =
(t− 1)1/s

21/s
(δ1(1− δ1) + δ2(1− δ2)− δ1δ2)1−1/s .
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The maximum value of
δ1(1− δ1) + δ2(1− δ2)− δ1δ2

over all δ1, δ2 ≥ 0 for which 0 ≤ δ1 + δ2 ≤ 1 is 1
3

and it is obtained only when δ1 = δ2 = 1
3
.

Therefore,

x+ y + z ≤ (t− 1)1/s

21/s

(
1

3

)1−1/s

.
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