1. Find the gradient vector field $\nabla f$ of $f$ and sketch it where $f(x, y)=x y-2 x$

Evaluate the line integral where $C$ is the given curve
2. $\int_{C} y d s, C: x=t^{2}, y=t, 0 \leq t \leq 2$
3. $\int_{C} x y d x+(x-y) d y, C$ is the line segments from $(0,0)$ to $(2,0)$ and from $(2,0)$ to $(3,2)$
4. Determine whether $F=\left(y e^{x}+\sin y\right) \mathbf{i}+\left(e^{x}+x \cos y\right) \mathbf{j}$ is a conservative vector field. If it is, find a function $f$ such that $F=\nabla f$.
5. $F(x, y)=x^{3}+y^{4} \mathbf{i}+x^{4}+y^{3} \mathbf{j}$
$C: r(t)=\sqrt{t} \mathbf{i}+\left(1+t^{3}\right) \mathbf{j} 0 \leq t \leq 1$
(a) Find a function $f$ such that $F=\nabla f$
(b) Use (a) to evaluate $\int_{C} F \cdot d r$.
6. Find the work done by the force field $F$ moving an object from $P$ to $Q$ where $F(x, y)=2 y^{3 / 2} \mathbf{i}+3 x \sqrt{y} \mathbf{j} ; P(0,1), Q(2,0)$.

## Answers:

1. 
2. $\frac{1}{12}(17 \sqrt{17}-1)$
3. $\frac{17}{5}$
4. $y e^{x}+x \sin y+K$
5. $\frac{1}{4} x^{4} y^{4}$
6. 30
