Change of Variables

Concept: When the region we integrate over doesn't lend itself to regtangular or polar coordinates, make up new variables, u and v.
Computation: The boundarys will often be four sided. Choose u to be two of the sides, and v to be the other two. Then use $\frac{\partial(x, y)}{\partial(u, v)}=\operatorname{abs}\left|\begin{array}{ll}x_{u} & x_{v} \\ y_{u} & y_{v}\end{array}\right|$ to find the extra factor.
Evaluate the following integrals

1. $\iint_{R}(x-3 y) d A$, where R is the triangular region with vertices $(0,0),(2,1)$, and $(1,2)$
2. $\iint_{R}(x-3 y) d A$, where R is the quadralateral with vertices $(0,0),(2,2),(1,-2)$, and $(3,0)$
3. $\iint_{R} x y d A$, where R is the region in the first quadrent bounded by the lines $y=x$ and $y=3 x$ and the hyperbolas $x y=1$ and $x y=3$.
4. $\iint_{R} \frac{x-2 y}{3 x-y} d A$, where R is enclosed by the lines $x-2 y=0, x-2 y=4,3 x-y=1$, and $3 x-y=8$.
5. (hard) $\iint_{R} \cos \left(\frac{y-x}{y+x}\right) d A$, where R is the polygon with vertices $(1,0),(2,0),(0,2)$, and $(0,1)$.
6. (hard) $\iint_{R} e^{x+y} d A$, where R is given by the inequality $|x|+|y| \leq 1$

Answers

1. -3
2. 15
3. $2 \ln 3$
4. $\frac{8}{5} \ln 8$
5. $\frac{3}{2} \sin 1$
6. $e-e^{-1}$
