Spherical Coordinates

Concept:

 ρ is the distance to the origin θ is the angle to the xz plane (as in cylindrical) ϕ is the angle to the z axis

Computation:

 $\rho = \sqrt{x^2 + y^2 + z^2}$ $\tan \theta = \frac{y}{x}$ $\tan \phi = \frac{\sqrt{x^2 + y^2}}{z}, \ 0 \le \phi \le \pi$ $x = \rho \cos \theta \sin \phi$

 $y = \rho \sin \theta \sin \phi$ $z = \rho \cos \phi$

 $dV = \rho^2 \sin \phi \ d\rho \ d\theta \ d\phi$

Problems:

- 1. P is given in spherical coordinates as $(2, \pi/3, \pi/4)$. Plot P and convert it to rectangular coordinates.
- 2. P is given in rectangular coordinates as (0, -1, -1). Convert this to spherical coordinates.
- 3. Indentity the surface $\rho = 2\cos\phi$
- 4. Sketch the solid described by $-\pi/2 \le \theta \le \pi/2$ $0 \le \phi \le \pi/6$ $0 \le \rho \le \sec \phi$
- 5. Use spherical coordinates to find the volume of the solid that lies above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = z$.
- 6. Find the volume of the solid bounded below by the cone $z = \sqrt{x^2 + y^2}$, above by the plane z = 4, and on its sides by the cylinder $x^2 + y^2 = 4$.
 - (a) Using rectangular coordinates
 - (b) Using cylindrical coordinates
 - (c) Using spherical coordinates

Answers:

1.
$$\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{6}}{2}, \sqrt{2}\right)$$

- 2. $(\sqrt{2}, 3\pi/2, 3\pi/4)$
- 3. Sphere centered at (0,0,1) with radius 1
- 4. Cone with $\phi = \pi/6$ and a flat top at z = 1.
- 5. $\pi/8$
- 6. $64\pi/3$