Spherical Coordinates

Concept:

ρ is the distance to the origin
θ is the angle to the $x z$ plane (as in cylindrical)
ϕ is the angle to the z axis

Computation:

$\rho=\sqrt{x^{2}+y^{2}+z^{2}}$
$\tan \theta=\frac{y}{x}$
$\tan \phi=\frac{\sqrt{x^{2}+y^{2}}}{z}, 0 \leq \phi \leq \pi$
$x=\rho \cos \theta \sin \phi$
$y=\rho \sin \theta \sin \phi$
$z=\rho \cos \phi$
$d V=\rho^{2} \sin \phi d \rho d \theta d \phi$

Problems:

1. P is given in spherical coordinates as $(2, \pi / 3, \pi / 4)$. Plot P and convert it to rectangular coordinates.
2. P is given in rectangular coordinates as $(0,-1,-1)$. Convert this to spherical coordinates.
3. Indentiry the surface $\rho=2 \cos \phi$
4. Sketch the solid described by
$-\pi / 2 \leq \theta \leq \pi / 2$
$0 \leq \phi \leq \pi / 6$
$0 \leq \rho \leq \sec \phi$
5. Use spherical coordinates to find the volume of the solid that lies above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the sphere $x^{2}+y^{2}+z^{2}=z$.
6. Find the volume of the solid bounded below by the cone $z=\sqrt{x^{2}+y^{2}}$, above by the plane $z=4$, and on its sides by the cylinder $x^{2}+y^{2}=4$.
(a) Using rectangular coordinates
(b) Using cylindrical coordinates
(c) Using spherical coordinates

Answers:

1. $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{6}}{2}, \sqrt{2}\right)$
2. $(\sqrt{2}, 3 \pi / 2,3 \pi / 4)$
3. Sphere centered at $(0,0,1)$ with radius 1
4. Cone with $\phi=\pi / 6$ and a flat top at $z=1$.
5. $\pi / 8$
6. $64 \pi / 3$
