Cylindrical Coordinates

Concept:

Computation: To convert from rectangular to cylindrical, use $z=z, r=\sqrt{x^{2}+y^{2}}, \theta=\tan ^{-1}\left(\frac{x}{y}\right)$
To convert from cylindrical to regtangular, use $z=z, x=r \cos \theta, y=r \sin \theta$
To integrate in cylindrical, use $d V=r d r d \theta d z$
These problems are the Ch 12 practice problems on Prof. Mittal's website, page 16-17
2. Convert $\int_{0}^{3} \int_{0}^{\sqrt{9}-y^{2}} \int_{0}^{\sqrt{9-x^{2}-y^{2}}} \sqrt{x^{2}+y^{2}} d z d x d y$ into a triple integral in cylindrical coordinates. Sketch the solid determined by the limits.
3. The cylinder $x^{2}+y^{2}=4, z \geq 0$ is sliced by the plane $z=4+y$. Determine the volume of the "sliced" cylinder.
4. Draw the solid that is bounded above by a portion of the hemisphere $z=\sqrt{1-x^{2}-y^{2}}$ and below by the cone $z=\sqrt{3 x^{2}+3 y^{2}}$. Set up a triple integral that gives the volume of the solid, and then find it's volume.

