Directional Derivatives

Find the Derivative of f at point P in the direction of \mathbf{v} .

1. $z = x \sin y + x^2$, $P(0, \frac{\pi}{4}, 0)$, $\mathbf{v} = \langle -\frac{8}{17}, \frac{15}{17} \rangle$ 2. $z^2 = x^2 - y^3$, P(3, 2, 1), $\mathbf{v} = \langle -\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \rangle$

3.
$$z = \ln(xy^2), P(1, e, 2), \mathbf{v} = \langle 1 - 3 \rangle$$

4. $e^{yz} = zx - \cos(xy), P(1,0,1), \mathbf{v} = \langle -5, 12 \rangle$

Local Mins & Maxs

Concept: Find the local mins and maxs of the graph **Computation:** First find places where f_x and f_y are both 0. Then Check $D = (f_{xx})(f_{yy}) - (f_{xy})^2$. If D > 0, it's a local min or max. If D < 0 it's a saddle point.

Find and classify the critical points of the following surfaces

5. $z = 9 - 2x + 4y - x^2 - 4y^2$ 6. z = (1 + xy)(x + y)7. $z = e^x \cos y$ 8. $z = x \sin y$ 9. $z = (x^2 + y^2)e^{y^2 - x^2}$

Find the absolute maximum and minimum values of f on the set D.

10.
$$f(x,y) = 1 + 4x - 5y$$
,
D is the closed triangular region with vertices (1,0), (5,0), and (1,4)

11.
$$f(x,y) = x^2 + y^2 + x^2y + 4$$

 $D = \{(x,y) : |x| \le 1, |y| \le 1\}$

- 12. $f(x,y) = x^4 + y^4 4xy + 2$ $D = \{(x,y) : 0 \le x \le 3, 0 \le y \le 2$
- 13. Find the shortest distance from the point (2, 1, -1) to the plane x + y z = 1
- 14. Find the points on the cone $z^2 = x^2 + y^2$ that are closest to the point (4,2,0)
- 15. Find the volume of the largest rectangular box in the first octant with three faces in the coordinate planes and one vertex in the plane x + 2y + 3z = 6.
- 16. Find the dimensions of a rectangular box of maximum volume such that the sum of the lengths of the edges is a constant c.