Directional Derivatives

Find the Derivative of f at point P in the direction of \mathbf{v}.

1. $z=x \sin y+x^{2}, P\left(0, \frac{\pi}{4}, 0\right), \mathbf{v}=\left\langle-\frac{8}{17}, \frac{15}{17}\right\rangle$
2. $z^{2}=x^{2}-y^{3}, P(3,2,1), \mathbf{v}=\left\langle-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right\rangle$
3. $z=\ln \left(x y^{2}\right), P(1, e, 2), \mathbf{v}=\langle 1-3\rangle$
4. $e^{y z}=z x-\cos (x y), P(1,0,1), \mathbf{v}=\langle-5,12\rangle$

Local Mins \& Maxs

Concept: Find the local mins and maxs of the graph
Computation: First find places where f_{x} and f_{y} are both 0 . Then Check $D=\left(f_{x x}\right)\left(f_{y y}\right)-\left(f_{x y}\right)^{2}$. If $D>0$, it's a local min or max. If $D<0$ it's a saddle point.

Find and classify the critical points of the following surfaces
5. $z=9-2 x+4 y-x^{2}-4 y^{2}$
6. $z=(1+x y)(x+y)$
7. $z=e^{x} \cos y$
8. $z=x \sin y$
9. $z=\left(x^{2}+y^{2}\right) e^{y^{2}-x^{2}}$

Find the absolute maximum and minimum values of f on the set D.
10. $f(x, y)=1+4 x-5 y$,
D is the closed triangular region with vertices $(1,0),(5,0)$, and $(1,4)$
11. $f(x, y)=x^{2}+y^{2}+x^{2} y+4$
$D=\{(x, y):|x| \leq 1,|y| \leq 1\}$
12. $f(x, y)=x^{4}+y^{4}-4 x y+2$
$D=\{(x, y): 0 \leq x \leq 3,0 \leq y \leq 2$
13. Find the shortest distance from the point $(2,1,-1)$ to the plane $x+y-z=1$
14. Find the points on the cone $z^{2}=x^{2}+y^{2}$ that are closest to the point $(4,2,0)$
15. Find the volume of the largest rectangular box in the first octant with three faces in the coordinate planes and one vertex in the plane $x+2 y+3 z=6$.
16. Find the dimensions of a rectangular box of maximum volume such that the sum of the lengths of the edges is a constant c.

