Chain Rule

Concept: Given a curve in space, where x and y are given in terms of t, but z is expressed in terms of x and y, how do we find $d z / d t$ without the pain of substituting for x and y ?
Computation: $\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}$
Find $\frac{d z}{d t}$ for the following functions.

1. $z=\sin x \cos y, x=\pi t, y=\sqrt{t}$
2. $z=e^{x / y}, x=1-t, y=1+2 t$
3. $z=4 x^{2} y-2 y^{5}, x=\sin t, y=\cos t$
4. $z=\frac{x}{y}+x y x=e^{t}, y=\ln t$

Find $\frac{\partial z}{\partial t}$ and $\frac{\partial z}{\partial s}$ for the following functions.
5. $z=x^{2}+x y+y^{2}, x=s+t, y=s t$
6. $z=e^{r} \cos \theta, r=s t, \theta=\sqrt{s^{2}+t^{2}}$
7. $z=\sin \alpha \tan \beta, \alpha=3 s+t, \beta=s-t$

Find $\frac{d z}{d t}$ at the specified point.
8. $z=x^{3} y+\sin y, x=e^{t}, y=3 t, t=\pi / 4$
9. $z=\tan (x+y), x=\ln (t), y=t^{2}, t=1$
10. $z=x^{y}, x=\sin (t), y=2 t, t=4$

Directional Derivatives

Concept: Partial derivatives are slope in the \mathbf{i} and \mathbf{j} directions, but what about the slopes in all the other directions?
Computation: If \mathbf{u} is a unit vector, $D_{\mathbf{u}} f(x, y)=\mathbf{u} \cdot \nabla f$, where $\nabla f=\left\langle f_{x}, f_{y}\right\rangle$.
Find ∇f and the rate of change of f at P in the direction of the given vector.
11. $f(x, y)=5 x y^{2}-4 x^{3} y, P(1,2), \mathbf{u}=\left\langle\frac{5}{13}, \frac{12}{13}\right\rangle$
12. $f(x, y)=y \ln x, P(1,-3), \mathbf{u}=\left\langle-\frac{4}{5}, \frac{3}{5}\right\rangle$
13. $f(x, y, z)=x e^{2 y z}, P(3,0,2), \mathbf{u}=\left\langle\frac{2}{3},-\frac{2}{3}, \frac{1}{3}\right\rangle$
14. $f(x, y)=1+2 x \sqrt{y}, P(3,4), \mathbf{v}=\langle 4,-3\rangle$
15. $f(x, y)=x^{2} e^{y}, P(2,0), \mathbf{v}=\langle 1,1\rangle$
16. $f(x, y, z)=\frac{x}{y+z}, P(4,1,1), \mathbf{v}=\langle 1,2,3\rangle$

