Chain Rule

Concept: Given a curve in space, where x and y are given in terms of t, but z is expressed in terms of x and y, how do we find dz/dt without the pain of substituting for x and y?

Computation: $\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$

Find $\frac{dz}{dt}$ for the following functions.

1. $z = \sin x \cos y, x = \pi t, y = \sqrt{t}$ 2. $z = e^{x/y}, x = 1 - t, y = 1 + 2t$ 3. $z = 4x^2y - 2y^5, x = \sin t, y = \cos t$ 4. $z = \frac{x}{y} + xy \ x = e^t, y = \ln t$

Find $\frac{\partial z}{\partial t}$ and $\frac{\partial z}{\partial s}$ for the following functions.

5. $z = x^2 + xy + y^2$, x = s + t, y = st

6.
$$z = e^r \cos \theta$$
, $r = st$, $\theta = \sqrt{s^2 + t^2}$

7. $z = \sin \alpha \tan \beta$, $\alpha = 3s + t$, $\beta = s - t$

Find $\frac{dz}{dt}$ at the specified point.

- 8. $z = x^3y + \sin y, x = e^t, y = 3t, t = \pi/4$
- 9. $z = \tan(x+y), x = \ln(t), y = t^2, t = 1$
- 10. $z = x^y$, $x = \sin(t)$, y = 2t, t = 4

Directional Derivatives

Concept: Partial derivatives are slope in the i and j directions, but what about the slopes in all the other directions?

Computation: If **u** is a unit vector, $D_{\mathbf{u}}f(x,y) = \mathbf{u} \cdot \nabla f$, where $\nabla f = \langle f_x, f_y \rangle$.

Find ∇f and the rate of change of f at P in the direction of the given vector.

11.
$$f(x,y) = 5xy^2 - 4x^3y$$
, $P(1,2)$, $\mathbf{u} = \langle \frac{5}{13}, \frac{12}{13} \rangle$
12. $f(x,y) = y \ln x$, $P(1,-3)$, $\mathbf{u} = \langle -\frac{4}{5}, \frac{3}{5} \rangle$
13. $f(x,y,z) = xe^{2yz}$, $P(3,0,2)$, $\mathbf{u} = \langle \frac{2}{3}, -\frac{2}{3}, \frac{1}{3} \rangle$
14. $f(x,y) = 1 + 2x\sqrt{y}$, $P(3,4)$, $\mathbf{v} = \langle 4, -3 \rangle$
15. $f(x,y) = x^2 e^y$, $P(2,0)$, $\mathbf{v} = \langle 1,1 \rangle$
16. $f(x,y,z) = \frac{x}{y+z}$, $P(4,1,1)$, $\mathbf{v} = \langle 1,2,3 \rangle$