Contour Plots

Concept: Draw pictures of surfaces without having to plot in 3 dimensions **Computation:** Fix a value of f(x, y), plot the curve, and label it with the fixed value of z.

Sketch the contour plots of the following surfaces

1. $f(x, y) = (y - 2x)^2$ 2. $f(x, y) = y - \ln x$ 3. $f(x, y) = ye^x$ 4. $f(x, y) = \sqrt{y^2 - x^2}$

Limits

Concept: Finding the value of a function "near" a particular point. **Computation:** To show that a limit exists, use the squeeze theorem. To show that a limit doesn't exist, find two paths that approach the point, but that give different limits.

Find the limit, if it exists, or show that the limit does not exist.

1.
$$\lim_{(x,y)\to(5,-2)} x^{5} + 4x^{3}y^{2}$$

2.
$$\lim_{(x,y)\to(0,0)} \frac{y^{4}}{x^{4} + 3y^{4}}$$

3.
$$\lim_{(x,y)\to(0,0)} \frac{xy\cos y}{3x^{2} + y^{2}}$$

4.
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^{2} + y^{2}}}$$

5.
$$\lim_{(x,y)\to(0,0)} \frac{2x^{2}y}{x^{4} + y^{2}}$$

Partial Derivatives

Concept: The slope of a surface when traveling in the x or y direction. **Computation:** To take $\frac{\partial f}{\partial x}$ (= f_x), take a derivative as you normally would wrt x, treating y as a constant. Similar for $\frac{\partial f}{\partial y}$ (= f_y).

Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$

6.
$$z = x^{2}y + xy^{2}$$

7.
$$z = \frac{y + \tan(y)}{e^{x}}$$

8.
$$z = \ln(xy)$$

9.
$$z = \cos(x)\sin(y)$$

10.
$$z = x\cos(xy)$$

11.
$$z = x^{2}\sqrt{x+y}$$

12.
$$z = \sin(y^3)$$