Contour Plots

Concept: Draw pictures of surfaces without having to plot in 3 dimensions
Computation: Fix a value of $f(x, y)$, plot the curve, and label it with the fixed value of z .
Sketch the contour plots of the following surfaces

1. $f(x, y)=(y-2 x)^{2}$
2. $f(x, y)=y-\ln x$
3. $f(x, y)=y e^{x}$
4. $f(x, y)=\sqrt{y^{2}-x^{2}}$

Limits

Concept: Finding the value of a function "near" a particular point.
Computation: To show that a limit exists, use the squeeze theorem. To show that a limit doesn't exist, find two paths that approach the point, but that give different limits.

Find the limit, if it exists, or show that the limit does not exist.

1. $\lim _{(x, y) \rightarrow(5,-2)} x^{5}+4 x^{3} y^{2}$
2. $\lim _{(x, y) \rightarrow(0,0)} \frac{y^{4}}{x^{4}+3 y^{4}}$
3. $\lim _{(x, y) \rightarrow(0,0)} \frac{x y \cos y}{3 x^{2}+y^{2}}$
4. $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\sqrt{x^{2}+y^{2}}}$
5. $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{2} y}{x^{4}+y^{2}}$

Partial Derivatives

Concept: The slope of a surface when traveling in the x or y direction.
Computation: To take $\frac{\partial f}{\partial x}\left(=f_{x}\right)$, take a derivative as you normally would wrt x, treating y as a constant. Similar for $\frac{\partial f}{\partial y}\left(=f_{y}\right)$.

Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$
6. $z=x^{2} y+x y^{2}$
7. $z=\frac{y+\tan (y)}{e^{x}}$
8. $z=\ln (x y)$
9. $z=\cos (x) \sin (y)$
10. $z=x \cos (x y)$
11. $z=x^{2} \sqrt{x+y}$
12. $z=\sin \left(y^{3}\right)$

