Find the derivative of the following fucntions.
A. $\mathbf{f}(t)=\left\langle e^{3 t}, t^{2} \tan t, \sqrt{t}\right\rangle$
B. $\mathbf{f}(t)=\left\langle\frac{t}{t^{2}+1}, \ln (t+4), 5\right\rangle$
C. $\mathbf{f}(t)=\left\langle\frac{1}{t}, e^{t^{2}}, t \ln (t)\right\rangle$

Section 10.7

$(5,6,10)$ Sketch the curve with the given vector equation. Indicate with an arrow the direction in which t increases.
5. $\mathbf{r}(t)=\langle\sin t, t\rangle$
6. $\mathbf{r}(t)=\left\langle t^{3}, t^{2}\right\rangle$
10. $\mathbf{r}(t)=t^{2} \mathbf{i}=t \mathbf{j}+2 \mathbf{k}$
24. Show that the curve with parametric equations $x=\sin t$, $y=\cos t, z=\sin ^{2} t$, is the curve of intersection of the surfaces $z=x^{2}$ and $x^{2}+y^{2}=1$. Use this fact to help sketch the curve.
25. At what points does the curve $\mathbf{r}(t)=t \mathbf{i}+\left(2 t-t^{2}\right) \mathbf{k}$ intersect the parabaloid $z=x^{2}+y^{2}$?
$(28,30)$ Find a vector function that represents the curve of intersection of the two surfaces.
28. The cylinder $x^{2}+y^{2}=4$ and the surface $z=x y$
30. The paraboloid $z=4 x^{2}+y^{2}$ and the parabolic cylinder $y=$ x^{2}
59. Evaluate the integral
$\int_{0}^{\pi / 2}\left(3 \sin ^{2} t \cos t \mathbf{i}+3 \sin t \cos ^{2} t \mathbf{j}+2 \sin t \cos t \mathbf{k}\right) d t$
63. Find $\mathbf{r}(t)$ if $\mathbf{r}^{\prime}(t)=2 t \mathbf{i}+3 t^{2} \mathbf{j}+\sqrt{t} \mathbf{k}$ and $\mathbf{r}(1)=\mathbf{i}+\mathbf{j}$.

