1. Determine whether or not the following lines intersect. If they do, find the point of intersection. $\mathbf{r}_{\mathbf{1}}=(3+t) \mathbf{i}+(3-3 t) \mathbf{j}+(-t) \mathbf{k}$
$\mathbf{r}_{\mathbf{2}}=(1+t) \mathbf{i}+(6 t) \mathbf{j}+\mathbf{k}$
2. Find the equation of the plane passing through $(1,0,0),(0,1,0)$, and $(0,0,1)$
3. Find the equation of the plane passing through $(-1,2,6),(-1,-1,1)$, and $(0,-1,2)$
4. Find the distance between the point $P(1,2,3)$ and the plane defined by $4 x-y-2 z=3$
5. Find the distance between the point $P(-1,-1,-1)$ and the plane defined by $-x+2 y-5 z=1$
(6-8) Determine whether the following planes are Parallel, Identical, or Intersecting, or Skew. If intersecting, find the line where they intersect.
6. $3 x+4 y-z=1$
$x-y+5 z=6$
7. $16 x+4 y-12 z=20$
$12 x+3 y-9 z=15$
8. $2 x+6 y-10 z=4$
$-5 x-15 y+25 z=4$
9. Find the limit: $\lim _{t \rightarrow \infty} e^{-t} \mathbf{i}+\frac{4 t^{2}+5}{2 t^{2}+t} \mathbf{j}+\tan ^{-1}(t) \mathbf{k}$
10. Find the derivative, $\mathbf{T}, \mathbf{N}, \mathbf{B}$, and the osculating plane for $f(t)=\cos (t) \mathbf{i}+\sin (t) \mathbf{j}+t \mathbf{k}$
