1. Write the line $\mathbf{r}(t)=4 \mathbf{i}-2 \mathbf{k}+t(-\mathbf{i}+3 \mathbf{j}+\mathbf{k})$ in parametric and symmetric form.

Determine whether each pair of lines intersects. If so, find the point of intersection and the angle formed by the lines.
2. $\mathbf{r}_{\mathbf{1}}(t)=2 \mathbf{i}-\mathbf{j}+t(\mathbf{j}-\mathbf{k})$
$\mathbf{r}_{\mathbf{2}}(t)=3 \mathbf{i}+\mathbf{j}-\mathbf{k}+t(\mathbf{i}+\mathbf{k})$
3. $\mathbf{r}_{\mathbf{1}}(t)=\mathbf{i}+\mathbf{j}+\mathbf{k}+t(2 \mathbf{i})$
$\mathbf{r}_{\mathbf{2}}(t)=4 \mathbf{j}-\mathbf{k}+t(-\mathbf{i}+\mathbf{j})$
4. Find the distance from the point $P(1,1,1)$ to the line, ℓ defined by $x=2, y=t, z=1-t$
5. Find the equation of the plane orthogonal to $\langle 3,1,-4\rangle$ and containing the point $P(3,0,9)$
6. A plane is given by the equation $3 x+y-2 z=4$. What vector is normal to this plane? Name any three points contained in this plane.
7. Consider the line ℓ given by $x=-2 t+1, y=t-3, z=-t+5$. The goal of this problem is to find a coinciding line, m where the equation for x is $x=u$.
(a) What is the direction vector of ℓ ?
(b) What is the x component in the direction vector of m ?
(c) What is the whole direction vector of m ?
(d) Let P be the point used to specify m. What is the x coordinate of P ?
(e) Since P is on m, it is also on ℓ. Use this fact to find all three coordinates of P.
(f) What are the parametric equations of m ?
(g) Verify your answer by finding two points that are contained in both ℓ and m.

Determine whether the following planes are identical, parallel, or intersecting. If intersecting, find the line where it intersects. (Hint: Since the line lies on both planes, it will be normal to both normal vectors. To find a point, guess one coordinate and solve for the other two.)
8. $x+y+z=0$
$3 x+2 y+z=3$
9. $2 x+6 y-6 z=2$
$\frac{x-1}{3}+y-z=0$
10. $2 x-y+8 z=10$
$-4 x+2 y-16 z=10$

