
The Pennsylvania State University

The Graduate School

MULTILEVEL AND ADAPTIVE METHODS FOR SOME

NONLINEAR OPTIMIZATION PROBLEMS

A Thesis in

Mathematics

by

Maria Emelianenko

c© 2005 Maria Emelianenko

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

August 2005

The thesis of Maria Emelianenko was reviewed and approved ∗ by the following:

Qiang Du

Professor of Mathematics

Chair of Committee

Thesis Advisor

Ludmil Zikatanov

Assistant Professor of Mathematics

Wen Shen

Assistant Professor of Mathematics

Zi-Kui Liu

Associate Professor of Materials Science and Engineering

Hongyuan Zha

Professor of Computer Science

Nigel Higson

Professor of Mathematics

Head of the Department of Mathematics

∗ Signatures are on file in the Graduate School.

Abstract

In this thesis, we propose new multilevel and adaptive methods for solving non-
linear non-convex optimization problems without relying on the linearization. We
focus on two particular applications, that come from the fields of quantization
and materials science. For the first problem, a multilevel quantization scheme is
developed, that possesses a uniform convergence independent of the problem size.
This is the first multilevel quantization scheme in the literature with a rigorous
proof of uniform convergence with respect to the grid size and the number of grid
levels for nonconstant densities. The proposed scheme can be generalized to higher
dimensions, and both scalar and vector versions demonstrate significant speedup
comparing to the traditional Lloyd method. We also provide some new character-
izations for the convergence of the Lloyd iteration and other possible acceleration
techniques including Newton-like methods. For the second optimization problem,
this thesis presents a novel algorithm aimed at automating phase diagram construc-
tion in complex multicomponent systems. The new method utilizes the geometric
properties of the energy surfaces together with adaptivity and effective sampling
techniques to improve on the starting points for the minimization. It is shown that
the new approach overcomes the drawbacks of the previously known algorithms,
at the same time giving comparable accuracy to the solution.

iii

Table of Contents

List of Figures vii

Acknowledgments ix

Chapter 1
Introduction 1

Chapter 2
Some existing algorithms for computing CVTs and their con-
vergence 5
2.1 Overview . 5
2.2 Lloyd’s iteration . 8
2.3 Convergence . 9

2.3.1 Monotonicity properties of the energy functional 9
2.3.2 Existence of convergent subsequence 12
2.3.3 Global convergence . 14
2.3.4 The compactness in the one dimensional case 16
2.3.5 The logarithmic concave density in the one dimensional case 22

2.4 Extensions to constrained CVTs . 26
2.5 Numerical examples . 30

2.5.1 Constant density . 30
2.5.2 Non-constant density . 30

2.6 Conclusions . 33

Chapter 3
New algorithms for the construction of CVTs 35
3.1 Overview . 35

iv

3.2 Newton’s method and related results 36
3.2.1 Notations . 36
3.2.2 Theoretical results . 38
3.2.3 Description of the algorithm 42
3.2.4 Local vs. global minimizers 44
3.2.5 Computational complexity 45
3.2.6 Parallel implementation . 46
3.2.7 Numerical Implementation 47
3.2.8 Stopping criterion . 48
3.2.9 One-dimensional examples 48
3.2.10 Two-dimensional examples 49

3.3 Newton-based multilevel algorithm 53
3.4 The new energy-based nonlinear multilevel algorithm 57

3.4.1 Space decomposition . 58
3.4.2 Description of the algorithm 59
3.4.3 Technical lemmas . 61
3.4.4 Uniform convergence theorem 68
3.4.5 Proof of the main result . 68
3.4.6 Numerical results . 70

3.5 Conclusion . 75

Chapter 4
A new algorithm for the automation of phase diagram calculation 77
4.1 Overview . 77
4.2 Theoretical aspects of phase diagram calculation 79

4.2.1 Mathematical model . 79
4.2.2 Geometrical considerations 85
4.2.3 Existing algorithms and motivation 87

4.3 A new algorithm . 89
4.3.1 Description of the algorithm: binary case 89
4.3.2 Description of the algorithm: ternary case 97
4.3.3 Computational complexity estimate for the binary case . . . 100
4.3.4 Generalization to higher dimensions and sampling schemes . 103

4.4 Results for binary and ternary systems 105
4.4.1 Binary examples . 106
4.4.2 Ternary examples . 107

4.5 Conclusion . 108

Chapter 5
Summary and discussion 110

v

Bibliography 116

vi

List of Figures

2.1 Voronoi tessellation on a square (left), CVT on a square (middle)
and on a sphere (right) for constant density 6

2.2 An example of a CVT-based 3-d mesh 7
2.3 Examples of constrained CVTs (CCVTs) for a circle (dots are for

generators and dash lines show the partition of the constrained
Voronoi regions) and for a sphere (dots are generators, lines are
planar projections of Voronoi edges, only portion in one hemisphere
is shown). 28

2.4 Convergence of Lloyd method for constant density. 30
2.5 Convergence factor of Lloyd method for ρ(x) = e−x2

. 31
2.6 Convergence factor of Lloyd method for ρ(x) = 1 + x4cos(πx) 31
2.7 Convergence factor for k = 16 and ρ(x) = 1 + ε cos2 (πx) with

ε = 10−10 : 1010 . 32
2.8 Convergence factor for ρ(x) = 1 + 103 cos2 (πx) and k = 2 : 40 . . . 32
2.9 Asymptotic behavior of the convergence factor for ρ(x) = 1 +

103 cos2 (πx) . 33

3.1 Convergence of Lloyd’s method to local and global minimizers . . . 45
3.2 1d convergence rates comparison for k = 4 (left) and k =

64 (right) with ρ(x) = 1 + x4 cos(π(x − 0.5)) . Top curves

are for Newton iteration and the bottom ones are for Lloyd. 49
3.3 Iteration history of (a) Lloyd-Newton vs. (b) Lloyd method

for ρ(x) = 1, k = 5 . 50
3.4 Convergence rate of the Lloyd-Newton method (top graph) vs.

Lloyd iteration (bottom) for Ω = [0, 1]2 , ρ(x) = 1 , k = 5 . . 50
3.5 Iteration history of (a) Lloyd-Newton vs. (b) Lloyd method

for ρ(x) = 1+x+0.1x2 , k = 4 . Here the lines connect the

generators . 51

vii

3.6 Iteration history of (a) Lloyd-Newton vs. (b) Lloyd method,

ρ(x) = 1 + x4, k = 4 . 52
3.7 Comparison of convergence factors for Newton-Lloyd iteration (top)

vs. Lloyd (bottom) for different densities: (a) ρ(x) = 1 + x +
0.1 x2 , k = 4 ; (b) ρ(x) = 1 + x4 , k = 4 53

3.8 Plot of the convergence factor over the number of generators for the
multigrid method vs. regular Gauss-Seidel method for ρ = 1 and
ρ = 1 + 0.1x . 71

3.9 (a) Convergence history for k = 64 generators (log-normal scale);
(b)Energy reduction for k = 64 generators (log-normal scale) . . . 73

3.10 (a)Original error distribution; (b) x -component of the error after
50 Lloyd iterations; (c) y -component of the error after 50 Lloyd
iterations . 73

3.11 (a) Convergence factor for the compatible relaxation; (b) Conver-
gence factor of the smoother . 74

3.12 (a) Distribution of basis functions supports on the coarsest level;
(b) Corresponding hierarchical basis functions 74

3.13 (a)Convergence history of multigrid for k = 8, 16, 32, 64 vs. Lloyd
iteration; (b) Log-normal plot of the convergence history for k =
8, 16, 32, 64 vs. Lloyd iteration . 75

4.1 (a) Correct Ca-Li-Na phase diagram; (b) Incorrect Ca-Li-Na dia-
gram produced by Thermocalc . 87

4.2 Affine transformation of the axis . 90
4.3 Stability regions . 96
4.4 An example of one possible distribution of the starting points . . . 97
4.5 Complexity comparison . 103
4.6 Effectiveness of the quasirandom (left) vs. uniform(right) sampling

in detecting concavity change. Squares denote the points of negative
concavity, while dots are positive concavity regions. 50 sampling
points are used for both sampling schemes. 104

4.7 (a) Ca-Na diagram produced by Thermocalc; (b) Ca-Na diagram
produced by the new method . 106

4.8 (a) Li-Na diagram produced by Thermocalc; (b) Li-Na diagram pro-
duced by the new method . 106

4.9 (a) Al-Zn diagram produced by Thermocalc; (b) Al-Zn diagram
produced by the new method . 107

4.10 Gibbs energy of the Ca-Li-Na system at T = 900K 108

viii

Acknowledgments

I’m greatly indebted to Professor Qiang Du for all the guidance, support and
inspiration he provided me over the years, for teaching me patience, wisdom, self-
confidence and being the best advisor I could ever ask for.

I’m also very grateful to Professor Ludmil Zikatanov for his kindness and help
at many stages of my graduate career and for numerous valuable discussions that
contributed to this thesis, and to Professor Zi-Kui Liu for proposing an exciting
new field of research and for his never fading optimism.

I also wish to thank all the members of the Committee for providing valuable
comments and suggestions that improved the quality of the thesis.

Finally, I thank my husband Alexei for his constant support, understanding
and for always being there for me.

ix

Chapter 1
Introduction

Optimization plays a very important role in numerous scientific and engineering

applications, and is a concept that links together such different fields as mathe-

matics, economics, biology and engineering, among others. The search for efficient

methods of solving large-scale optimization problems in various contexts has con-

tinued for a long time with variable success and is still far from being complete.

It is often a major challenge to require a scheme robust enough to be applicable

to a wide class of objective functions yet efficient enough to attain the required

accuracy of the solution.

For many problems it is typically true that the computational effort to solve a

problem increases with the number of variables. In some cases, this leads to very

costly, even unfeasible calculations and limits the application to a small subset of

treatable problems. In recent years the development of novel multilevel and adap-

tive techniques has opened new research avenues in the field of numerical analysis

and allowed to obtain dramatic improvement in the efficiency of the computational

schemes used for some classes of problems. There have been many attempts to

apply these techniques in various optimization contexts, including nonlinear opti-

2

mization problems, that are most frequently encountered in practical applications.

Traditionally, due to their high complexity, these nonlinear problems are treated

by means of one or another type of a linearization technique.

In this thesis, we adopt a more direct approach and formulate multilevel and

adaptive methods for solving nonlinear minimization problems without relying on

the linearization. We focus on two particular applications, that come from the fields

of quantization and materials science. Both of the problems under consideration

can be formulated in terms of nonlinear optimization, while each of them inherits

a different set of numerical characteristics and has different challenges associated

to it.

For the first application in quantization, a vector quantizer (also called Voronoi

tessellation) maps N -dimensional vectors in the domain Ω ⊂ R
N into a finite set

of vectors {zi}k
i=1 , which are called codewords, or generators. Each generator zi

has a region Vi (also called a Voronoi region) associated with it that consists of all

points in the domain Ω that are closer to zi than to other generators. Centroidal

Voronoi tessellation, or CVT (also called optimal quantization), is a special case

of a Voronoi tessellation (quantization) for which the generators themselves are

the centroids of the respective Voronoi regions. Full description of the Centroidal

Voronoi tessellations and associated theory are given in Section 2.1. Efficient con-

struction of CVTs is crucial for a variety of scientific and engineering applications,

such as image and data analysis, sensor networks, resource optimization and nu-

merical partial differential equations, and the list of these applications has been

growing rapidly in recent years.

Second application comes from the field of materials science, where phase dia-

grams are used as visual representations of the equilibrium phases in a material as

a function of temperature, pressure and concentrations of the constituent compo-

3

nents. The mechanical, electrical and other properties of engineering materials de-

pend strongly upon microstructure. It is therefore important that engineers should

possess a basic understanding of how the microstructure is formed, and how this

structure influences the engineering properties. The phase diagrams serve as basic

blueprints for materials design and can be used as an aid to understand the mi-

crostructure. Similar to the quantization applications described above, there is a

need for an efficient yet robust scheme that would be able to handle the complexity

of the phase diagram construction without sacrificing too much of the computation

time.

While both of the above problems lead to nonlinear nonconvex minimization

with some constraints and they share some common features from the computa-

tional point of view, different critical issues have to be addressed. In the first

problem, we look for an algorithm to accelerate existing techniques for finding op-

timal quantizers (CVTs). The main contribution of this thesis in this area is the

development of a multilevel quantization scheme, presented in Section 3.4, that

possesses a uniform convergence independent of the problem size for a large class

of densities. This is the first multilevel quantization scheme in the literature with a

rigorous proof of uniform convergence with respect to the grid size and the number

of grid levels for nonconstant densities. The proposed scheme can be generalized

to higher dimensions, and both scalar and vector versions demonstrate significant

speedup comparing to the traditional Lloyd’s method. To fill in the background on

the subject, Chapter 2 presents a systematic study on both the local and the global

convergence properties of the Lloyd algorithm. It also contains some new rigorous

characterizations of the convergence of Lloyd iteration and the first proof of its

global convergence in the one-dimensional case. Detailed discussions on acceler-

ation techniques including multigrid and Newton methods are given in Chapter

4

3.

For the second optimization problem, this thesis presents a novel algorithm

aimed at automating phase diagram construction in complex multicomponent sys-

tems. The new method focuses on finding all relevant local minimizers of the

Gibbs energy functional and utilizes the geometric properties of the energy sur-

faces together with adaptivity and effective sampling techniques to improve on the

starting points for the minimization. The new approach, presented in Section 4.3,

overcomes the drawbacks of the previously known algorithms, at the same time

giving comparable accuracy of the solution. When coupled with Thermocalc or

used as a standalone application, it has the capabilities to automate the calculation

of phase equilibria in complicated multicomponent systems, without any manual

parameter adjustments. This will allow us to considerably speed up construction

and analysis of phase diagrams and will consequently improve the productivity of

materials research. Detailed analysis of the algorithm and numerical results are

provided in Chapter 4.

Despite of the fact that considerable improvements were achieved in the nu-

merical solution of the aforementioned nonlinear optimization problems, there are

still many questions that remain to be answered. These questions and further

algorithmic improvements together with other possible applications of the tech-

niques discussed in this thesis are the subjects of future research in the area and

are discussed in more details in Chapter 5.

Chapter 2
Some existing algorithms for

computing CVTs and their

convergence

2.1 Overview

In order to describe the computational algorithms, we begin with a brief descrip-

tion of the CVT. The widely used concept of the Voronoi tessellation (or Voronoi

diagram) refers to a tessellation of a given domain Ω by the Voronoi regions

{Vi}k
i=1 associated with a set of given generating points or generators {zi}k

i=1 ⊂ Ω

[33, 49, 62]. For each i , {Vi}k
i=1 consists of all points in the domain Ω that are

closer to zi than to all the other generating points. A centroidal Voronoi tessella-

tion (CVT) refers to a special type of Voronoi tessellation for which the generators

themselves are the mass centers of their respective Voronoi regions [15], with re-

spect to a given density function ρ . Here, the mass center of a region V with

6

respect to the density function ρ is defined by

z∗ =

∫

V

yρ(y) dy
/

∫

V

ρ(y) dy . (2.1.1)

Figure 2.1. Voronoi tessellation on a square (left), CVT on a square (middle) and on
a sphere (right) for constant density

CVTs are indeed special as they enjoy very natural optimization properties

which make them very popular in diverse scientific and engineering applications

that range from art design, astronomy, clustering, geometric modeling, image and

data analysis, resource optimization, quadrature design, sensor networks, to nu-

merical solution of partial differential equations [5, 6, 11, 13, 15, 16, 17, 19, 20, 25,

39, 42, 45, 47, 58, 68, 69]. In particular, CVTs have been widely used in the design

of optimal vector quantizers in electrical engineering [34, 38, 41, 59, 67]. Figure

2.2 shows an example of the 3-d mesh based on Delaunay triangulation dual to a

centroidal Voronoi tessellation (see [25, 26]). We refer to [15] for a recent review

of the mathematical theory and diverse applications of CVTs.

CVTs can also be defined in more general cases such as those constrained to a

manifold [18, 20, 21], or those corresponding to anisotropic metrics [26, 27], and

other more abstract settings [15].

For modern applications of the CVT concept in large scale scientific and en-

gineering problems, it is important to develop robust and efficient algorithms for

7

Figure 2.2. An example of a CVT-based 3-d mesh

constructing CVTs in various settings. Historically, a number of algorithms have

been studied and widely used [15, 28, 33, 38, 40, 57]. A seminal work is the algo-

rithm first developed in the 1960s at the Bell Lab by S. Lloyd which remains to this

day one of the most popular methods due to its effectiveness and simplicity. The

algorithm was later officially published in [53], and it is now commonly referred to

as the Lloyd algorithm which is the main focus of this Chapter.

The Lloyd algorithm sparked enormous research efforts in later years and their

variants have been proposed and studied in many contexts for different applica-

tions [35, 37, 38, 41, 46, 48, 52, 54, 59, 67]. A particular extension was made in [45]

to combine both the deterministic features of the Lloyd algorithms with the ran-

dom sampling techniques. Despite of its great success in various applications and

extensive studies of its properties over the last few decades, only limited theoreti-

cal results on the Lloyd algorithm have been obtained [15] and many fundamental

issues concerning its convergence remain open.

The present Chapter presents a systematic study on both the local and the

global convergence properties of the Lloyd algorithm. It contains the proofs of a

number of global convergence theorems there were first rigorously proved in [22].

These results include the global convergence of subsequences for any density func-

tions, the global convergence of the whole sequence in one space dimension and

8

the global convergence under some non-degeneracy conditions. We also present

some theoretical studies on the local convergence properties of the Lloyd algo-

rithm including estimates on the convergence rates. Some numerical results are

also presented to substantiate our theoretical investigation. Many of the techniques

employed in this chapter also work for more general settings. As an illustration,

we analyze the application of the Lloyd algorithm to the construction of the con-

strained CVTs on a manifold and present some similar convergence theorems.

The rest of the Chapter is organized as follows. We start with the description

of the Lloyd algorithm in 2.2 followed by several major convergence theorems and

detailed discussions of local convergence in Section 2.3. Some extensions to more

general settings are considered in Section 2.4 and numerical results are given in

Section 2.5. Conclusions are drawn in Section 2.6.

2.2 Lloyd’s iteration

In the seminal work of Lloyd on the least square quantization [53], one of the

proposed algorithms for computing the CVTs (referred to as the optimal quantizers

in the particular setting) is an iterative algorithm consisting of the following simple

steps: starting from an initial Voronoi tessellation corresponding to an old set of

generators, a new set of generators is defined by the mass centers of the Voronoi

regions. This process is continued until certain stopping criterion is met. With the

notation given above, the Lloyd algorithm for constructing CVTs can be described

more precisely by the following procedure

9

Algorithm 2.2.1. (Lloyd algorithm for computing CVTs)

Input:

Ω , the domain of interest; ρ , a density function defined on Ω ;

k , number of generators; {zi}k
i=1 , the initial set of generators.

Output:

{Vi}k
i=1 , a CVT with k generators {zi}k

i=1 in Ω

Iteration:

1. Construct the Voronoi tessellation {Vi}k
i=1 of Ω with generators {zi}k

i=1 .

2. Take the mass centroids of {Vi}k
i=1 as the new set of generators {zi}k

i=1 .

3. Repeat the procedure 1 and 2 until some stopping criterion is met.

Given a set of points {zi}k
i=1 and a tessellation {Vi}k

i=1 of the domain, we may

define the energy functional or the distortion value for the pair ({zi}k
i=1, {Vi}k

i=1)

by:

H
(

{zi}k
i=1, {Vi}k

i=1

)

=
k

∑

i=1

∫

Vi

ρ(y)|y − zi|2 dy .

The minimizer of H necessarily forms a CVT which illustrates the optimization

property of the CVT [15]. Meanwhile, it is easy to see that the Lloyd algorithm is

an energy descent iteration, which gives strong indications to its practical conver-

gence, as we show in the next section.

2.3 Convergence

2.3.1 Monotonicity properties of the energy functional

Since Lloyd’s pioneering work, many studies have been made on the convergence of

the iteration [31, 37, 48, 54]. For example, the local convergence has been proved for

10

strictly logarithmically concave density functions in the one dimensional space [48].

An extension to CVTs defined on a circle is given in [18]. The convergence analysis

in multi-dimensional space for general density functions is far from complete. There

are very few known conditions that guarantee the global convergence. We now

present some new results that have not been previously explored in the literature.

For clarity, since a Voronoi tessellation is defined using a point set with k points

Y = {yi}k
i=1 as the respective generators, let us re-define the energy functional or

the distortion value as a functional for a pair (Y,Z) with Z = (z1, z2, . . . , zk) ∈

RI kN :

H
(

Y,Z
)

=
k

∑

i=1

∫

Vi(Y)

ρ(y)|y − zi|2 dy .

where {Vi(Y)}k
i=1 are the Voronoi regions with respect to {yi}k

i=1 . The Lloyd

algorithm may be viewed as a fixed point iteration of the so-called Lloyd map

[15], a mapping from a set of distinct generators {zi}k
i=1 ⊂ Ω ⊂ RI N to the

corresponding mass centers, defined by T = (T1,T2, . . . ,Tk)
T : RI kN → RI kN

with

Ti(Z) =

∫

Vi(Z)

yρ(y) dy

∫

Vi(Z)

ρ(y) dy
.

A set of generators of a centroidal Voronoi tessellation is obviously a fixed point of

T . Moreover, the Lloyd algorithm is equivalent to a fixed point iteration of T :

Zn = T(Zn−1) , for n ≥ 1 .

Notice that in general, the map T can only be defined on an open subset of

Ωk ⊂ RI kN as we need to ensure that the denominators are non-zero, that is, the

corresponding Voronoi regions are non-empty. This, in particular, implies that the

11

generating points must be distinct. With this being noted, one needs to be cau-

tious in applying general optimization theory concerning the convergence of energy

descent algorithms [55] as such abstract theory often requires the compactness of

the domain and the closedness of the associated map.

We now first quote some elementary facts, for which one may find more detailed

discussions in [15] and [62] :

Lemma 2.3.1. Let ρ be a positive and smooth density function defined on a

smooth bounded domain Ω , then

1). H is continuous and differentiable in Ω̄k × Ω̄k ;

2). H
(

Z,T(Z)
)

= minY∈Ω̄k H
(

Z,Y
)

;

3). H
(

Z,Z
)

= minY∈Ω̄k H
(

Y,Z
)

.

Next, we re-state the strong connections between the map T , the CVTs and

the Lloyd algorithm that we alluded to earlier.

Lemma 2.3.2. Let {Zn}∞1 be the sequence of generating sets produced by the

Lloyd algorithm, then:

1). Zn = T(Zn−1) ;

2). H
(

Zn,Zn

)

≤ H
(

Zn−1,Zn−1

)

.

The first conclusion of the above lemma is obvious while the second one follows

from the properties 2) and 3) of Lemma 2.3.1 (for more details, see [15]). The

results of Lemma 2.3.2 imply that the distortion (energy) values decrease when

they are evaluated at consecutive iterations of the Lloyd algorithm, thus, the energy

functional may be viewed as a descent function of the map T , a fact that has been

explored in [64], though the notion of a closed algorithm does not readily apply here

due to the possible degeneracy of the Lloyd map T when some of the generating

points either coincide or become arbitrarily close.

12

It is perhaps also interesting to note that the Lloyd algorithm may be viewed

as an alternating variable algorithm for minimizing the energy functional, that is,

one alternates between minimizing H(Y,Z) with respect to Y and Z . It is well

known that there are examples of simple optimization problems with special ob-

jective functions for which such an alternating variable algorithm does not always

converge. It is thus interesting to see whether the special features of the functional

H can help us to establish the convergence of the Lloyd algorithm.

2.3.2 Existence of convergent subsequence

We now present some new convergence theorems concerning the Lloyd algorithm.

It has been shown in [15] that if the density function is positive except on a measure

zero set, stationary points of the energy H are given by fixed points of the Lloyd

map T . The result below justifies that fixed points are attainable as a limit of

Lloyd iterations.

Theorem 2.3.3. Any limit point Z of the Lloyd algorithm is a fixed point of the

Lloyd map, and thus, (Z,Z) is a critical point of H . Moreover, for an iteration

started with a given point, all elements in the set of its limit points share the same

distortion value.

Proof. The Lloyd algorithm produces a sequence {Zn} which is bounded in Ω̄k

and thus it has a convergent subsequence. Let Z be a limit point, then there

exits a subsequence {Znj
} such that Znj

→ Z as nj → ∞ . Since the distortion

values are monotonically decreasing, it follows that all limiting points must share

the same distortion value.

Now, by properties of the iteration, H
(

Zn,Zn

)

is monotonically decreasing,

13

so

H
(

Z,Z
)

= limH
(

Znj
,Znj

)

= inf H
(

Zn,Zn

)

.

On the other hand, we know from Lemma 2.3.1 that

H1

(

U,Zn

)

|U=Zn
= 0 .

Here we use the notation H1 to denote the partial derivatives with respect to all

the components of the first argument (gradient with respect to the first argument

U) and H2 (the gradient) with respect to the second one.

By continuity, we get

H1

(

Z,Z
)

= 0 .

Now, if H2

(

Z,U
)

|U=Z= 0 , (Z,Z) is a critical point of H and we are done.

Otherwise, there exists some Y such that

H
(

Z,Y
)

< H
(

Z,Z
)

.

Thus, for small enough δ , we have for large enough nj that

H
(

Znj
,Y

)

< H
(

Z,Y
)

+ δ

< H
(

Z,Z
)

≤ H
(

Znj+1,Znj+1

)

≤ H
(

Znj
,Znj+1

)

.

14

This contradicts to the fact that

H
(

Znj
,Znj+1

)

= minYH
(

Znj
,Y

)

.

Thus, the theorem is proved.

The above theorem may be simply classified as a theorem for the global con-

vergence of subsequences of the Lloyd algorithm. It leads to a more precise charac-

terization of the algorithm and a hint on why it rarely fails, while also motivating

the global convergence theorems for the whole sequence with some additional as-

sumptions that we are going to present next.

2.3.3 Global convergence

As an immediate consequence of Theorem 2.3.3, we easily get the following result:

Corollary 2.3.4. If the fixed point is unique, Lloyd algorithm converges globally.

The uniqueness of the fixed point has been established in some special cases in

the literature. We will come back to this point later in the section. The uniqueness

is obviously not a necessary condition, but we may in fact derive the following

convergence theorem:

Theorem 2.3.5. If the set of fixed points with any particular distortion value is

finite, the Lloyd algorithm converges globally.

Proof. Convergence may fail only if the generated sequence possesses infinitely

many jumps from a neighborhood of one fixed point to another. Suppose U and

V are two fixed points with ||U − V|| = δ > 0 . Denote the generated sequence

of the Lloyd algorithm as Zn , i.e. Zn+1 = T(Zn) .

15

Suppose Znr
→ U and Znl

→ V . Then for any δ > 0 , there exists M > 0 ,

such that for all nr, nl > M we have ||Znr
− U|| < δ/3 and ||Znl

− V|| < δ/3 .

Lloyd map is continuous near the fixed points (see Proposition 3.5, [15]), so M

can be chosen to be suitably large to assure

||T(Znr
) − Znr

|| < δ/3.

Now suppose the sequence makes infinitely many jumps from subsequence {nr} to

{nl} , i.e. there are infinitely many µ, ν s.t. nlµ = nrν
+1 . Then ||T(Znrν

)−V|| =

||Znrν +1 − V|| = ||Znlµ
− V|| . Hence

δ = ||U − V|| ≤ ||U − Znrν
|| + ||Znrν

− T(Znrν
)|| + ||T(Znrν

) − V|| < δ.

We get a contradiction.

To this end, we have proved the global convergence of the Lloyd method in

case the set of fixed points, Γ , does not have an accumulation point. Note that

there are situations where Γ contains accumulation points and all points in Γ

share the same distortion value. For example, consider the CVTs formed with two

generators in a unit disc centered at the origin for the constant density function,

simple calculation shows that the critical points fill a circle of radius 4/(3π) . That

is, due to the rotation symmetry, any pair of points in the opposite ends of such a

circle determines a CVT and all the critical points share the same energy values.

Of course, cases like this are very rare, so this fact does not present any difficulties

for the convergence of the Lloyd algorithm in most practical applications.

We now present another result which further substantiates the global conver-

gence of Lloyd algorithm in general.

16

Theorem 2.3.6. If the iterations in the Lloyd algorithm stay in a compact set

where the Lloyd map T is continuous, then the algorithm is globally convergent to

a critical point of H .

Proof. The proposition follows from the Global Convergence Theorem (GCT) [55]

and similar arguments have been made in [64]. Indeed, Lloyd algorithm can be

regarded as a descent method with the descent function given by H(·,T(·)) . Let

{Zn}∞n=1 be a sequence generated by Zn+1 = T(Zn) . All Zn ’s are contained in

a compact set. If Γ is the set of solutions, H(Y,T(Y)) < H(Z,T(Z)) for all

Z /∈ Γ , Y ∈ T(Z) and H(Y,T(Y)) = H(Z,T(Z)) for all Z ∈ Γ , Y ∈ T(Z) .

The continuity implies the closedness of T in a compact set. Applying the GCT,

we get the convergence of the sequence Zn and the limit Z is a fixed point of T ,

thus, the algorithm converges to a critical point of H .

We note that the compactness of the iteration seems to be intuitively true but

it has not been rigorously justified in the literature. The difficulty is related to

showing that during the iteration, the generators of the Voronoi regions do not get

arbitrarily close as the Lloyd map is not well defined at degenerating points where

some of the generators may coincide.

2.3.4 The compactness in the one dimensional case

Here, we take Ω = [a, b] , a compact interval, let ρ be smooth and positive and

assume that 0 < M1 ≤ ||ρ||∞,Ω ≤ M2 < ∞ . Let Mc = M2/M1 , obviously,

Mc ≥ 1 . We verify that throughout the Lloyd algorithm, the Voronoi regions

remain non-degenerate, (i.e., the generating points remain distinct), thus, it will

lead to the global convergence.

First, we have the following simple fact:

17

Lemma 2.3.7. Given an interval V = [zl, zr] ∈ Ω and let z∗ be the mass centroid

of V with respect to the density function ρ , then we have

L(V) ≤ 2Mc min(z∗ − zl, zr − z∗) (2.3.2)

where L(V) denotes the length of V .

Proof. Without loss of generality, we suppose that z∗ − zl ≤ zr − z∗ . By the

definition of mass centroid, we have

z∗ − zl =

∫ zr

zl

(x − zl)ρ(x) dx

∫ zr

zl

ρ(x) dx

≥ M1

2M2

(zr − zl),

so we get

zr − zl ≤ 2Mc(z
∗ − zl).

With z∗ − zl ≤ zr − z∗ , we get the inequality (2.3.2).

Denote by {z(n)
i }k

i=1 (z
(0)
1 < z

(0)
2 < · · · < z

(0)
k , n ≥ 0) the positions of the

generators after n iterations in Lloyd method and by {V (n)
i = (y

(n)
i−1, y

(n)
i)}k

i=1 the

corresponding Voronoi regions. Clearly, y
(n)
0 = a and y

(n)
k = b . We now present a

non-degeneracy result:

Lemma 2.3.8. For any 1 < i < k , we have

L(V
(n+1)
i) < min

(L(V
(n)
i) + L(V

(n)
i+1)

2
+ L(V

(n+1)
i−1),

L(V
(n)
i) + L(V

(n)
i−1)

2
+ L(V

(n+1)
i+1)

)

.

18

Proof. First we have

L(V
(n+1)
i) =

z
(n+1)
i+1 − z

(n+1)
i

2
+

z
(n+1)
i − z

(n+1)
i−1

2
.

Since z
(n+1)
i ∈ V

(n)
i , z

(n+1)
i+1 ∈ V

(n)
i+1 , we know

z
(n+1)
i+1 − z

(n+1)
i

2
<

L(V
(n)
i) + L(V

(n)
i+1)

2
.

With L(V
(n+1)
i−1) > (z

(n+1)
i − z

(n+1)
i−1)/2 , we get

L(V
(n+1)
i) <

L(V
(n)
i) + L(V

(n)
i+1)

2
+ L(V

(n+1)
i−1). (2.3.3)

Similarly, we can prove that

L(V
(n+1)
i) <

L(V
(n)
i) + L(V

(n)
i−1)

2
+ L(V

(n+1)
i+1). (2.3.4)

Combining (2.3.3) and (2.3.4), we complete the proof.

This leads to the following uniform lower bound between the adjacent genera-

tors throughout the Lloyd algorithm:

Proposition 2.3.1. Let d
(n)
i = z

(n)
i+1 − z

(n)
i for i = 1, 2, · · · , k − 1 . then we have

d
(n)
i >

b − a

k42k−1Mk
c

, n > k , (2.3.5)

and consequently,

L(V
(n)
i) >

b − a

k42k−1Mk
c

, 1 < i < k, n > k (2.3.6)

19

and

L(V
(n)
i) >

b − a

2k42k−1Mk
c

, i = 1 or k, n > k (2.3.7)

Proof. Let us consider any d
(n)
i for 1 ≤ i ≤ k − 1 and n > k . Since d

(n)
i =

z
(n)
i+1 − z

(n)
i and y

(n−1)
i < z

(n)
i+1 , we have

y
(n−1)
i − z

(n)
i < d

(n)
i .

Then from Lemma 2.3.7, we have

L(V
(n−1)
i) < 2Mcd

(n)
i . (2.3.8)

On the other hand , we know L(V
(n−1)
i) > (z

(n−1)
i+1 − z

(n−1)
i)/2 which means

d
(n−1)
i < 2L(V

(n−1)
i) < 4Mcd

(n)
i .

Again by Lemma 2.3.7, we know

L(V
(n−2)
i−1) < 8M2

c d
(n)
i .

Repeat this process, we have for j = 1, · · · , i ,

L(V
(n−j)
i−j+1) < 22j−1M j

c d
(n)
i .

20

Now let us consider j = i . Clearly, V
(n−i)
1 = (a, y

(n−i)
1) , and we have

L(V
(n−i+1)
1) < L(V

(n−i)
1) + L(V

(n−i+1)
2)

< 22i−1M i
cd

(n)
i + 22i−3M i−1

c d
(n)
i

< 4iM i
cd

(n)
i .

Furthermore, by Lemma 2.3.8, we get

L(V
(n−i+2)
2) <

L(V
(n−i+1)
2) + L(V

(n−i+1)
1)

2
+ L(V

(n−i+2)
3)

<
22i−3M i−1

c d
(n)
i + 4iM i

cd
(n)
i

2
+ 22i−5M i−2

c d
(n)
i

< 4iM i
cd

(n)
i .

Repeat this process, we have for j = 1, · · · , i − 1,

L(V
(n−i+j)
j) < 4iM i

cd
(n)
i ,

which means

L(V
(n−1)
i−1) < 4iM i

cd
(n)
i .

Using the same trick again and again, we finally arrive at

L(V
(n−1)
i−j) < 4i+j−1M i

cd
(n)
i , j = 1, · · · , i − 1.

Combining (2.3.8) and and the above equation with i, j ≤ k , we get

L(V
(n−1)
j) < 42k−1Mk

c d
(n)
i , j = 1, · · · , i . (2.3.9)

21

By symmetry, we also have

L(V
(n−1)
j) < 42k−1Mk

c d
(n)
i , j = i + 1, · · · , k .

Then, we get

b − a = L(Ω) =
k

∑

j=1

L(V
(n−1)
j) < k42k−1Mk

c d
(n)
i ,

which implies (2.3.5), (2.3.6) and (2.3.7).

We then have

Theorem 2.3.9. For any positive and smooth density function in 1d and a given

set of k distinct generators as a starting point, the Lloyd map is continuous at

any of the iteration points.

Proof. In order to show the continuity it is enough to justify the fact that Voronoi

cells do not collapse. Indeed, after sufficient number of steps, the latter is the

direct consequence of Proposition 2.3.1. For the initial finite number of iterations,

the continuity is obvious.

Finally, using Theorems 2.3.6 and 2.3.9, we get

Theorem 2.3.10. Lloyd algorithm is globally convergent in 1d for any positive

and smooth density function.

Proof. Using the result of Theorem 2.3.9, we see that we can define a compact

set (away from the degenerating points) such that for any initial condition, the

Lloyd iteration (the images of the Lloyd maps) will stay in such a compact set

after sufficiently many steps. Thus, we may apply the Theorem 2.3.6 to deduce

the convergence of the algorithm.

22

The above theorem provides an affirmative answer to the global convergence of

the Lloyd algorithm for the one dimensional interval case without any restrictive

assumptions on the density functions. It remains open to verify the same conclusion

in the multidimensional case.

2.3.5 The logarithmic concave density in the one dimen-

sional case

Beyond the study on the global convergence, the characterization of the conver-

gence rate is often also important in practice. For instance, one may inquire if a

geometric convergence rate can be established. This is indeed verified in [15] for the

constant density function corresponding to the unit interval [0, 1] , where, via the

spectral analysis of dT at the minimizer, the established geometric convergence

rate r is shown to satisfy

sin2(
π

2(k + 1)
) ≤ r ≤ sin2(

π

2(k − 1)
) , (2.3.10)

so that asymptotically for large k (the total number of generators) the convergence

rate is on the order of 1 − π2/(4k2) , as verified by the numerical experiments in

the next section.

In general, finding the convergence rate exactly is not possible but estimates

may be obtained from the analytical bounds of the ‖dT‖ .

First, it follows from Theorem 2.3.9 that T : Ωk → Ωk is a continuously dif-

ferentiable mapping away from the degenerate points where the generating points

collapse. If this mapping T is a contraction, i.e. ||dT|| < 1 at all nondegenerate

points, the Contraction Mapping Theorem can be used to get a good estimate of

23

the local convergence rate for the corresponding fixed point iteration, which in

our case is the Lloyd algorithm. Moreover, the contraction mapping properties

also imply that T has a unique fixed point z∗ in the set of nondegenerate points

upon a consistent ordering. Indeed, if there existed two fixed points x = {xi}k
i=1

and y = {yi}k
i=1 , with components corresponding to generating points whose co-

ordinates are ordered from small to large, that is xi < xi+1 and yi < yi+1 for

all indices i , then any point along the line segment (1 − t)x + ty would remain

nondegenerate and thus, by uniform continuity, we may assume that

sup
0≤t≤1

||dT(x + t(y − x))|| ≤ α(x,y) < 1

for some constant α(x,y) independent of t . From the multidimensional form of

the mean value theorem, we then get

||x − y|| = ||Tx − Ty|| ≤ sup
0≤t≤1

||dT(x + t(y − x))|| ||x − y|| ≤ α||x − y|| ,

which is only possible if x = y , thus, we have the uniqueness. We refer to [48] for

a similar discussions.

The concept of logarithmic concavity has played an important role in the classi-

fication of one dimensional density functions since it is a class of density functions

for which the Lloyd maps can be shown to be contractions [15].

Let us take a closer look at the structure of the Jacobian dT . By the notations

of the previous section, for the 1d case (i.e., Ω = [a, b]), we have

∂Ti

∂zi

=
∂Ti

∂zi−1

+
∂Ti

∂zi+1

,

24

∂Ti

∂zi−1

=
ρ(z−i)(Ti − z−i)

2Ri

and
∂Ti

∂zi+1

=
ρ(z+

i)(z+
i − Ti)

2Ri

(2.3.11)

where Ri =
∫

Vi
ρ(y)dy and Vi = [z−i , z+

i] .

The following useful relation may be found in [15, 37]:

R2
i

(

1 −
∑

j

∂Ti

∂zj

)

=
1

2

∫

Vi

∫

Vi

ρ(t)ρ(s)
(ρ′(s)

ρ(s)
− ρ′(t)

ρ(t)

)

(t − s)dt ds (2.3.12)

at a fixed point z = T(z) .

Based on this, it can be shown that for the class of logarithmically concave

functions (i.e., (log ρ)′′ < 0), the spectral radius of the Jacobi map is less than 1 in

the neighborhood of a fixed point. In fact, it is easy to show that the same estimate

holds for all points as the identity (2.3.12) remains universally true. Hence the fixed

point of the Lloyd map is unique when the generators are ordered in increasing

manner. The following convergence of the Lloyd algorithm for the logarithmically

concave case is easily one of the most popular results studied in the literature.

Proposition 2.3.2. In 1d, in case of logarithmically concave density, the Lloyd

algorithm converges globally to the unique fixed point.

The class of logarithmically concave functions covers many densities used in

practice, for instance, linear densities and normal distributions. Notice that the

result quoted in Proposition 2.3.2 does not provide the estimate of the actual

distance of the spectral radius from 1 . We now focus on getting estimates on

θ = 1 − ||dT|| more accurately. For this, we use a more precise measure of the

logarithmic concavity for the density, that is, we assume that:

ρ(t)ρ(s)
(ρ′(s)

ρ(s)
− ρ′(t)

ρ(t)

)

(t − s) ≥ c2
0(t − s)2 (2.3.13)

25

for some constant c0 > 0 and any (t, s) except for a set of measure zero. Upon

availability of an estimate of this type, the following conclusion can be reached

1 − ||dT|| ≥ c2
0 min

i
{R−2

i

∫

Vi

∫

Vi

(t − s)2dtds} ∼ c2
0

12
min{ h2

i

ρ(ζi)2
}

for some ζi ∈ Vi and hi = z+
i − z−i . Let h = mini hi , the smallest Voronoi cell

size, and M = supx∈[0,1] ρ(x) , then we can rewrite the above result as:

Lemma 2.3.11. For any smooth density ρ satisfying (2.3.13) on the unit interval,

the Lloyd algorithm is globally convergent with a geometric convergence rate no

larger than

||dT|| ≤ 1 − c2
0

12

h2

M2
. (2.3.14)

Convergence estimate obtained here essentially depends on characteristics c0

and the relative size of a Voronoi cell in comparison with the density distribu-

tion. Since the minimizer of the energy gives a non-degenerate Voronoi diagram

(Proposition 3.5 in [15]), there is a positive lower bound for the distance h in the

neighborhood of the solution in terms of the density and the number of generators.

Moreover, for large k , due to the asymptotic equi-partition of energy property in

1d [15], after sufficiently many iterations, one can roughly estimate each cell size

as

hi ∼ k−1ρ(ζi)
−1/3

∫ 1

0

ρ1/3(x)dx .

Thus, we have effectively θ = 1 − ||dT|| ≥
(c1

k

)2

, where for large k ,

c1 ∼
c0√

12M4/3

∫ 1

0

ρ1/3(x)dx . (2.3.15)

26

The estimate (2.3.15) in general tends to be rather pessimistic, for instance, for a

linear perturbation of the constant density ρ(x) = 1 − εx for a small ε , we have

c1 ∼ 3
4
√

12
(1 − (1 − ε)4/3) which is significantly different from π/2 in the limit

as ε → 0 (for constant density case, c1 can be estimated more accurately from

the estimate (2.3.10) as π/2). This is due to the fact that the class of constant

densities shares zero value of the parameter c0 . However, it allows us to reach the

conclusion that the geometric convergence rate for all densities satisfying (2.3.13)

is comparable with that of the constant density in the sense that θ remains to be

of the order k−2 for large values of k .

We expect that such conclusion holds for even more general density functions,

but the rigorous analysis is still not available.

2.4 Extensions to constrained CVTs

We now make a brief illustration that much of our earlier analysis can be extended

to more general settings where the concept of CVTs can be defined. The example

to be used is the constrained CVTs on general surfaces as defined in [18].

Consider a compact and smooth surface S ⊂ RI N . Similar to the definition

of conventional CVTs, for a given set of points {zi}k
i=1 ∈ S , one may define their

corresponding Voronoi regions on S by

Vi = {x ∈ S : |x − zi| < |x − zj| for j = 1, . . . , k, j 6= i }. (2.4.16)

For a density function ρ defined on the surface S and positive almost every-

where, one may encounter a problem with the original definition when one defines

centroidal Voronoi tessellations {(zi, Vi)}k
i=1 of S : the mass centroids {z∗i }k

i=1 of

27

{Vi}k
i=1 as defined by (2.1.1) do not in general belong to S . For example, the mass

centroid of any region on the surface of a sphere is always located in the interior

of the sphere. Therefore, a generalized definition of a mass centroid on surfaces is

needed. For each Voronoi region Vi ⊂ S , we call zc
i the constrained mass centroid

of Vi on S if zc
i is a solution of the following problem:

min
z∈S

Fi(z) , where Fi(z) =

∫

Vi

ρ(x)|x − z|2 dx . (2.4.17)

The integral over {Vi} is understood as standard surface integration on S . Note

that the constrained mass centroid coincides with the conventional mass center if S

is replaced by R
N and Vi is a convex subset of R

N . Clearly, for each i = 1, . . . , k ,

Fi(·) is convex. Since S is compact and ρ(·) is continuous almost everywhere,

there exists a constant C such that for any z1, z2 ∈ S , we have

|Fi(z1) − Fi(z2)| =

∣

∣

∣

∣

∫

Vi

ρ(x)(|x − z1|2 − |x − z2|2) dx

∣

∣

∣

∣

≤ C|z1 − z2| .

Thus, Fi is continuous and compact, and consequently we have the existence of

solutions of (2.4.17), although the solution may not be unique.

We call the tessellation defined by (2.4.16) a constrained centroidal Voronoi

tessellation (CCVT) if and only if the points {zi}k
i=1 which serve as the generators

associated with the Voronoi regions {Vi}k
i=1 are the constrained mass centroids of

those regions [18]. This definition of CCVT conforms with that of CVT for general

spaces and clearly the energy H defined in (2.4.17) for CVTs is still valid for

CCVTs. In Figure 2.3, we give two examples of CCVTs, one with six generators

constrained to a circle (one dimensional curve), and the other with 162 generators

constrained to a sphere (two dimensional surface), both correspond to the constant

28

density.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

0 0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

Figure 2.3. Examples of constrained CVTs (CCVTs) for a circle (dots are for generators
and dash lines show the partition of the constrained Voronoi regions) and for a sphere
(dots are generators, lines are planar projections of Voronoi edges, only portion in one
hemisphere is shown).

The generalized Lloyd algorithm for computing CCVTs was proposed in [18]:

Algorithm 2.4.1. (Lloyd algorithm for computing CCVTs)

Input:

S , the surface of interest; ρ , a density function defined on S ;

k , number of generators; {zi}k
i=1 , the initial set of generators.

Output:

{Vi}k
i=1 , a CCVT with k generators {zi}k

i=1 in S .

Iteration:

1. Construct the Voronoi tessellation {Vi}k
i=1 of S with generators {zi}k

i=1 .

2. Take the Constrained mass centroids of {Vi}k
i=1 as the new set of

generators {zi}k
i=1 .

3. Repeat the procedure 1 and 2 until some stopping criterion is met.

It is clear that Algorithm 2.4.1 is almost identical to Algorithm 2.2.1 except

the constrained mass centroids are used instead of standard mass centroids in the

29

step 2 of each iteration. So the Algorithm 2.4.1 again can be regarded as a fixed

point iteration of T , the Lloyd map for CCVTs which now is defined to map the

current generators to the constrained mass centroids of the corresponding Voronoi

regions. It is transparent that the analysis done in Sections 2.1 and 2.2 can all be

applied here, so we obtain the following general results similar to Theorems 2.3.3

and 2.3.5:

Theorem 2.4.1. Any limit point Z of the Lloyd algorithm for computing CCVTs

is a fixed point of the Lloyd map for CCVTs, and thus, (Z,Z) is a stationary

point of H . The set of limit points share the same distortion value H for a given

iteration. Furthermore, if the set of fixed points with the same distortion value is

finite, the Lloyd iteration for CCVTs converges globally.

Now suppose that S is a smooth curve without self-intersection such as S =

f(Ω) where Ω = [a, b] for some smooth function f , then using the analysis similar

to that provided in Section 2.3, we obtain the following result:

Theorem 2.4.2. The Lloyd algorithm for computing CCVTs of S is globally

convergent for any positive and smooth density function when S is a bounded

smooth curve.

Note that unlike the one dimensional conventional CVT in R
1 , we have not

given any general estimate here on the convergence rate of the Lloyd algorithm

for CCVTs. Even for the case where S is a bounded smooth curve, the geometric

convergence rate has not been carefully derived, though the notion of contraction

for the Lloyd map has been studied for density functions which share similar log-

arithmic concave properties with respect to the angular variable in the case of a

perfect disc [18]. There are also natural generalizations of the Lloyd algorithm to

the anisotropic CVTs as defined in [26] and also [27]. The details are omitted here.

30

2.5 Numerical examples

To further substantiate some of our earlier analysis, we now present a few numerical

examples. All examples given below correspond to the Lloyd iteration on the

interval [0, 1] .

2.5.1 Constant density

In Figure 2.4, we show a log-log plot of both the numerical estimates and the

analytical estimate 1−||dT|| ∼ π2/(4k2) with respect to the constant density, for

various values of k , the number of generating points. The two estimates match

very well and the results verify that the analytical estimates are very sharp.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

log(k)

lo
g(

1−
||d

T
||)

numerical log(1−||dT||)
analytical log(1−||dT||)

Figure 2.4. Convergence of Lloyd method for constant density.

2.5.2 Non-constant density

Consider the case of ρ(x) = e−x2
. Figure 2.5 compares the analytical estimate

with the computed norms of the Jacobian for different system sizes. Here, the

analytical estimate is based on c2
1k

−2 with the constant c1 estimated by (2.3.15)

with c0 =
√

2/e , M = 1 and
∫ 1

0
ρ1/3(x)dx =

√
3π · Erf(1/

√
3)/2 which leads to

c1 =
√

π · Erf(1/
√

3)/2e ∼ 0.19 . The plot is again given in log-log scale, and we

31

see that although we underestimated the exact value of c1 , the slope was equal

to −2 for both estimates, which indicates the good agreement of the asymptotic

rates on the order of 1 − O(1/k2) .

0.5 1 1.5 2 2.5 3 3.5 4
−12

−10

−8

−6

−4

−2

0

log(k)

lo
g(

1−
|||

dT
||)

numerical log(1−||dT|||)
analytical log(1−||dT||)

Figure 2.5. Convergence factor of Lloyd method for ρ(x) = e−x2
.

Figure 2.6 gives a similar comparison for ρ(x) = 1+x4cos(πx) . The numerical

data in this case was compared to the asymptotic rate of 1 − π2/4k2 .

0.5 1 1.5 2 2.5
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

log(k)

lo
g(

1−
||d

T
||)

numerical log(1−||dT||)
analytical log(1−||dT||)

Figure 2.6. Convergence factor of Lloyd method for ρ(x) = 1 + x4cos(πx) .

Figures 2.7-2.9 provide some insight into the dependence of the actual con-

vergence factor on the number of generators and on the density function. The

convergence factor in the plot is defined as the ratio of the 2-norm defects between

two consecutive iterations after sufficiently many steps. A density function of the

form ρ(x) = 1 + ε cos2 (πx) is chosen. In Figure 2.7, we fix the number of genera-

tors to be k = 16 , while letting ε vary in the range [10−10, 1010] . It is seen that

32

the actual convergence factor and the theoretical estimate given by ||dT|| agree

well in general.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

i=log
10

(ε)

||dT||
conv. factor

Figure 2.7. Convergence factor for k = 16 and ρ(x) = 1+ ε cos2 (πx) with ε = 10−10 :
1010 .

To see the effect of the increasing k , in Figure 2.8, we fix ε and let the number

of generators vary. The two estimates again compare well with each other.

5 10 15 20 25 30 35 40
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

k

||dT||
conv. factor

Figure 2.8. Convergence factor for ρ(x) = 1 + 103 cos2 (πx) and k = 2 : 40 .

To see more clearly the dependence of convergence rates on k , we again plot

the data in a log-log scale for the density ρ(x) = 1 + 103 cos2 (πx) against the

number of generators. The slope value of −2 is very evident from the picture,

which is consistent with our earlier analysis.

33

1.5 2 2.5 3 3.5 4
−7

−6

−5

−4

−3

−2

−1

log(k)

log(1−||dT||)
log(1−conv. factor)
log(π2/4k2)

Figure 2.9. Asymptotic behavior of the convergence factor for ρ(x) = 1+103 cos2 (πx) .

2.6 Conclusions

In many practical applications of the centroidal Voronoi tessellations, it is very

important to find their reliable and efficient constructions. Lloyd algorithm has

been one of the most widely used techniques for such purposes. In this chapter,

a systematic study on both the local and the global convergence properties of the

Lloyd algorithm was presented. We carried out the proofs of several recent conver-

gence theorems, made further characterization on the properties of the iteration,

established geometric convergence rate for a wider class of functions and performed

relevant numerical experiments. We also extended our discussion to more general

settings such as the construction of the constrained CVTs on a manifold. Still,

one important open question remains, that is, the global convergence of the Lloyd

algorithm in any dimensions for any smooth density. The non-degeneracy of the

Lloyd map should be true in this general case, but its proof has not been produced

rigorously except for the one-dimensional case discussed here. We hope that our

present study generates further interest along this direction as there are certainly

many issues that remain to be considered. In particular, the improvement of the

Lloyd method for large number of generators. Even in the one-dimensional case,

34

both our theoretical estimates and the experiments indicate the possible slow con-

vergence rates. The next chapter presents the results of our recent work toward

such improvements. There are two major directions of this work, so the chapter

can be roughly divided into two parts. The first one explores the coupling of Lloyd

iteration with Newton-like methods, while the second one introduces the ideas of

multigrid in the quantization setting. As previously studied in [45], one may also

consider parallelization issues for these approaches, that we also briefly discuss in

Chapter 3.

Chapter 3
New algorithms for the construction

of CVTs

3.1 Overview

The evidence of slow convergence of the Lloyd iteration and its descent properties

motivated our search for a Lloyd iteration based numerical scheme with superior

convergence properties. One may view finding the mass centers of the CVT as

a problem of solving a nonlinear system of equations. Thus, Newton’s method is

a natural candidate for performing such a task. However, the cost of inverting

the Jacobian can be expected to raise the complexity of such a scheme, while the

convergence region of the Newton iteration is not guaranteed to be large enough

to provide the desired acceleration.

In the first half of this chapter, we design a Newton-based algorithm that

represents a coupling of the global descent properties of the Lloyd iteration with

the acceleration provided by the Newton iteration within its convergence radius.

In Section 3.2.2 we provide several theoretical estimates on the convergence of the

36

associated quasi-Newton algorithm using the results of Chapter 2. In Section 3.2.3

we provide a detailed description of the proposed algorithm followed by the results

of numerical experiments in Section 3.2.7. These results demonstrate how we can

achieve the best performance of the proposed method and discuss the improvement

of convergence rate it provides for the Lloyd iteration. Computational complexity

estimates are provided in Section 3.2.5.

The second part is dedicated to another possible approach to the problem

of accelerating convergence of the Lloyd’s method. In Section 3.4.2 we give the

details of the new algorithm, that is based on a multilevel nonlinear scheme and

takes advantage of energy minimizing properties of the Lloyd iteration. In Section

3.4.6 we show that energy minimization possesses sufficient smoothing properties

for both scalar and higher dimensional quantization to be used as an effective

relaxation in the multigrid cycle and show the results of the numerical experiments.

Rigorous proof of the uniform convergence of the proposed method for a large class

of densities in 1-dimensional case is provided in Sections 3.4.3, 3.4.4.

3.2 Newton’s method and related results

3.2.1 Notations

For a general nonlinear equation f(z) = 0 with vector argument z , the Newton

iteration is given by:

zn = zn−1 − df |−1
zn−1

f(zn−1)

where df is the Jacobian matrix of the map f . Applying Lloyd’s algorithm to

the computation of CVT, we obtain the problem of solving T(Zn−1) = Zn , as

37

discussed earlier. Newton’s method in this setting takes on the form

Zn = Zn−1 + (dT|Zn−1 − I)−1(Zn−1 − T(Zn−1))

Since T : RI kN → RI kN , corresponding Jacobi matrix dT = {∂Ti

∂Zj
}i,j has

dimensions kN × kN :

dT =

∂T
(1)
1

∂Z
(1)
1

. . .
∂T

(1)
1

∂Z
(1)
k

. . .
∂T

(1)
1

∂Z
(N)
1

. . .
∂T

(1)
1

∂Z
(N)
k

... . . .
... . . .

... . . .
...

∂T
(N)
1

∂Z
(1)
1

. . .
∂T

(N)
1

∂Z
(1)
k

. . .
∂T

(N)
1

∂Z
(N)
1

. . .
∂T

(N)
1

∂Z
(N)
k

... . . .
... . . .

... . . .
...

∂T
(1)
k

∂Z
(1)
1

. . .
∂T

(1)
k

∂Z
(1)
k

. . .
∂T

(1)
k

∂Z
(N)
1

. . .
∂T

(1)
k

∂Z
(N)
k

... . . .
... . . .

... . . .
...

∂T
(N)
k

∂Z
(1)
1

. . .
∂T

(N)
k

∂Z
(1)
k

. . .
∂T

(N)
k

∂Z
(N)
1

. . .
∂T

(N)
k

∂Z
(N)
k

We arrive at a necessity to calculate partial derivatives of Ti(Z) . The following

result (see [15]) is of use:

Lemma 3.2.1. Let Ω = Ω(U) be a region that depends smoothly on U and that

has a well-defined boundary. If F =
∫

Ω(U)
f(y)dy , then

dF

dU
=

∫

∂Ω(U)

f(y)ẏ · n dy

where n is the unit outward normal and ẏ denotes the derivative of the boundary

points with respect to changes in U .

Since

Ti(Z) =

∫

Vi(Z)
yρ(y) dy

∫

Vi(Z)
ρ(y) dy

,

38

we have that

∂T
(m)
i

∂Z
(n)
j

=
(

∫

∂Vi

ρ(y)y(m) ∂y

∂Z
(n)
j

· n dy
)/

∫

Vi(Z)

ρ(y) dy−

−
(

∫

∂Vi

ρ(y)
∂y

∂Z
(n)
j

· n dy
)

∫

Vi(Z)

ρ(y)y(m) dy
/(

∫

Vi(Z)

ρ(y) dy
)2

Here 1 ≤ m ≤ N and 1 ≤ n ≤ N .

Analytic representation of ∂y

∂Z
(n)
j

can be obtained from the following identity:

Lemma 3.2.2. If {ul} are the vertices of the common face ∆j
i between adjacent

Voronoi regions generated by Zi and Zj , then for any set of {λl}, λl ≥ 0 with
∑

l≥0 λl = 1 , such that
∑

l≥0 λlul ∈ ∆j
i

(

∑

l≥0

λlul −
Zi + Zj

2

)

· (Zj − Zi) = 0

Differentiating the above expression with respect to Z
(m)
i , for any point y ∈ ∆j

i

we get
∂y

∂Z
(m)
i

· (Zj − Zi) = 1
2

em · (Zj − Zi) + em · (y − Zi+Zj

2
)

∂y

∂Z
(m)
j

· (Zj − Zi) = 1
2

em · (Zj − Zi) − em · (y − Zi+Zj

2
)

where em =
m

(0, . . . , 1, . . . , 0)T∈ RI N . Since n =
Zj−Zi

‖Zj−Zi‖ , the necessary expression

for ∂y

∂Z
(m)
i

· n can be easily obtained and used for integration purposes.

3.2.2 Theoretical results

Classical convergence analysis of the Newton’s method adopted in the current

context relies on the following lemma (see for example [14]):

Lemma 3.2.3. Suppose F(z) = z − T(z) : R
kN → R

kN is continuously differ-

39

entiable in an open convex set D ⊂ R
kN . Assume that there exists a z∗ ∈ R

kN ,

such that F(z∗) = 0 and there are constants β, γ, r > 0 , such that

1) B(z∗, r) ⊂ D is an open ball of radius r around z∗

2) (I − dT(z∗))−1 exists and ||(I − dT(z∗))−1|| < β

3) (I − dT) ∈ Lip(γ,B(z∗, r))

Then there is a radius ε = min{r, 1/2βγ} , such that for any z0 ∈ B(z∗, ε) , the

sequence generated by zn = zn−1 − (I − dT)−1F(zn−1) converges to z∗ and obeys

||zn − z∗|| ≤ βγ||zn−1 − z∗||2 .

It is hard in general to produce criteria for the global convergence of the New-

ton’s method. Here we discuss some of the results that help to further characterize

the convergence radius of the Newton scheme in quantization context.

First let us denote hi(z) = diam(Vi) for each Voronoi cell Vi corresponding to

the generators z , and let D be a compact and convex set in the neighborhood of

a solution z∗ , such that dT is continuous in D and there are uniform bounds

H = max
z∈D

hi(z), h = min
z∈D

hi(z)

for all 1 ≤ i ≤ k . Moreover, let

M = max
x∈Ω

ρ(x), m = min
x∈Ω

ρ(x) and M ′ = max
x∈Ω

|∇ρ(x)| .

With these notations, we can claim the following Lipschitz continuity result for

the Jacobian:

Lemma 3.2.4. There is a constant γ > 0 such that I − dT ∈ Lip(γ,D) . More-

over, in one space dimension, we can explicitly take γ =
36M2M ′H4

m4h4
.

Proof

40

Using the relation given in [15], we have

∣

∣

∣

∑

j

(∂Ti

∂xj

− ∂Ti

∂yj

)∣

∣

∣
=

∣

∣

∣

∑

j

(

1 − ∂Ti

∂yj

− (1 − ∂Ti

∂xj

)
)∣

∣

∣

∣

∣

∣R2
i (x)Qi(y) − R2

i (y)Qi(x)
∣

∣

∣

R2
i (x)R2

i (y)

where Qi(y) =

∫∫

Vi(y)×Vi(y)

∇ρ(s)ρ(t)(t−s)dtds and Ri(y) =

∫

Vi(y)

ρ(s)ds . Hence

∣

∣

∣

∑

j

(∂Ti

∂xj

− ∂Ti

∂yj

)∣

∣

∣ =

∣

∣

∣
(R2

i (x) + R2
i (y))(Qi(x) − Qi(y)) − (R2

i (x) − R2
i (y))(Qi(x) + Qi(y))

∣

∣

∣

2R2
i (x)R2

i (y)
≤

(R2
i (x) + R2

i (y))
∣

∣

∣Qi(x) − Qi(y)
∣

∣

∣ + (Qi(x) + Qi(y))
∣

∣

∣R2
i (x) − R2

i (y)
∣

∣

∣

2R2
i (x)R2

i (y)
.

Let Vi(x−y) = (Vi(x)\Vi(y))∪ (Vi(y)\Vi(x)) . Notice that there exists a constant

such that |Vi(x − y)| ≤ c||x − y|| . For the one dimensional case, we can simply

take c = 2 . We then have the following upper bounds:

Qi(x) ≤ MM ′H3, Ri(x) ≤ MH and
∣

∣

∣
Qi(x) − Qi(y)

∣

∣

∣
≤ 2N+1MM ′HN+1|Vi(x − y)| ≤ 2N+1cMM ′HN+1||x − y|| ,

∣

∣

∣
R2

i (x) − R2
i (y)

∣

∣

∣
=

∣

∣

∣
Ri(x) − Ri(y)

∣

∣

∣

(

Ri(x) + Ri(y)
)

≤ 2cM2H||x − y|| .

Hence we end up with the following Lipschitz condition for dT :

||dT(x) − dT(y)|| ≤ γ||x − y||

where, for the 1-d case, by keeping track of the constants, we have γ =
36M2M ′H4

m4h4
.

Proposition 3.2.1. For the computation of one dimensional CVTs in the case of

constant or log-concave densities, the Newton’s method is quadratically convergent

41

in a subset of D where ||z − z∗|| < θ
2γ

, with (I − dT) ∈ Lip(γ,D) and θ =

1 − max
D

||dT|| > 0 .

Proof

It was shown in [22] that Lloyd’s map is continuous in the neighborhood D for

any smooth density in 1d. Notice also, that in the regions where the Lloyd’s map is

continuous, it is, in fact, continuously differentiable, so it remains to estimate the

constants β and γ in this region. As shown in [22], for constant and log-concave

densities we have θ = 1 − max
D

||dT|| > 0 . Notice that ||dT|| < 1 implies that

I−dT is invertible with ||(I−dT)−1|| ≤ β with β =
1

1 − ||dT|| ≤
1

θ
(see [36]).

The conclusion then follows from Lemmas 3.2.3, 3.2.4.

Now let us investigate the effect of the round-off and integration errors on the

convergence of the algorithm.

Proposition 3.2.2. If θ = 1 − max
D

||dT|| > 0 and ||E|| < θ for some either

constant or log-concave density in 1d, then the quasi-Newton iteration given by

zn = zn−1 + (dT|zn−1 − I + E)−1(zn−1 − T(zn−1))

is locally convergent and the convergence is at least superlinear.

Proof

Notice that for superlinear convergence we only need to show that dT − I + E

is nonsingular and continuous. Continuity in the neighborhood of the solution

is guaranteed by the results in [22] , while dT − I + E is nonsingular whenever

||dT+E|| < 1 . We know that for this class of densities there is a constant θ > 0 ,

such that ||dT|| ≤ 1 − θ . Hence if the perturbation satisfies ||E|| < θ , we have

42

||dT+E|| ≤ ||dT||+ ||E|| ≤ 1−θ+ ||E|| < 1 , so the iteration remains convergent.

We can regard the application of the approximate evaluations of the Jacobian,

e.g. by a quadrature scheme, as a quasi-Newton method, since it amounts to the

use of an approximate Jacobi matrix. ¿From a different perspective, we can also

consider a sequence of algorithms An representing numerical approximations to

the Newton algorithm denoted by A , an approach used in [64] for the treatment

of the Generalized Lloyd Algorithm. Denote {An(x)}− the set consisting of all

points y such that xn → x, yn ∈ An(xn) and y is an accumulation point of yn .

The sequence {An}− : x → {An(x)}− is called the sequential accumulation of

An . It is a generalization of the concept of the closed algorithm in a sense that if

An = A for each n , {An}− ⊂ A is equivalent to A being closed.

The following proposition can be proved (see [64]):

Proposition 3.2.3. Suppose {An}− ⊂ A and Γ is a set of fixed points of A . If

x∗
n is a fixed point of An , then σ(x∗

n, Γ) → 0 .

This proposition shows that a fixed point of An is nearly equal to some fixed

point of A , so the use of An is consistent with the use of the original scheme A .

With these ideas in mind, let us now design a new algorithm to accelerate

the convergence of the Lloyd iteration. Knowing the issues associated with both

Lloyd and Newton approaches, we will try to incorporate their best features into

a coupled Lloyd-Newton scheme, as described next.

3.2.3 Description of the algorithm

The results mentioned above do not provide means of identifying the actual region

of convergence for an arbitrary density function. In order to use the Newton’s

43

approach to speed up the fixed point Lloyd’s iteration, we can deal with this

problem by coupling the two algorithms into one hybrid scheme. For example, let

us look at the following implementation of this idea.

Algorithm 3.2.1. Lloyd-Newton iteration

Input:

Ω , the domain of interest; ρ , a probability distribution on Ω ;

k , number of generators; Z = {zi}k
1 , the initial set of generators; ε - tolerance.

Output:

{Vi}k
1 , a CVT with k generators {zi}k

1 in Ω

Method:

1. Construct the Voronoi tessellation {Vi}k
1 of Ω with generators Z = {zi}k

1 .

2. Compute the mass centroids X = {xi}k
1 of {Vi}k

1 .

3. If ‖H(X, Vi) −H(Z, Vi)‖ ≥ ε , take mass centroids as generators, goto step 1.

Otherwise fix α = 1 .

4. Let T(X) = Z . Perform a step of Newton’s method:

Z̃ = Z + α(dT|Z − I)−1(Z − T(Z))

5. Let I = {i|1 ≤ i ≤ k , z̃i /∈ Ω }.

If |I| = 0 take Z̃ as generators and goto step 4.

If |I| = 1 reduce Newton’s step size: α = α/2 , goto step 4.

Otherwise take Z as generators and goto step 1.

6. Repeat until some stopping criterion is met.

We will show that this approach can be used to accelerate the Lloyd’s scheme.

As shown in Section 3.2.2, Newton iteration gives superlinear convergence, when-

ever the convergence region is reached. However, there are possible difficulties

44

associated to this approach. Namely,

• Numerical error in calculation of elements of Jacobi matrix

• Possible increase of the condition number resulting in instability

• The region of convergence for Newton iteration can be hard to reach

As shown in Proposition 3.2.2, relatively small numerical error does not represent

a threat for the general superlinear convergence of the algorithm. However, the

associated convergence region might potentially become too small to yield notice-

able improvement over the Lloyd iteration. In the examples presented in 3.2.7

we address these issues and show the numerical results that justify the use of the

Newton approach as a local accelerator of the Lloyd iteration.

3.2.4 Local vs. global minimizers

Let us note that in general, there is no guarantee for the Lloyd’s method to converge

to the global minimizer of the energy. Take the example of two points and the

square [−1, 1]2 given in Figure 3.1. One can show that the partition along the

midline corresponds to a local minimum but the one along the diagonal corresponds

to a saddle point. In fact, the energy decreases as the diagonal rotates toward the

middle vertical line.

The methods discussed in this Chapter do not provide the means of reaching

the global minimizer, but instead concentrate on the acceleration of convergence

in the local vicinity of any solution. However, it is possible to couple these fast

converging schemes with some global minimization methods to achieve the optimal

performance. We will return to this discussion later in Chapter 5.

45

Figure 3.1. Convergence of Lloyd’s method to local and global minimizers

3.2.5 Computational complexity

Let us now briefly look at the complexity of the proposed algorithm. Each step of

the adaptive Lloyd-Newton algorithm includes:

1. Construction of Voronoi diagram.

For two dimensions, we use an embedded Matlab routine, which is of order

O(k) [2, 32]. In N -dimensions, the average complexity estimate of O(k) is

expected when the average number of Voronoi neighbors is bounded [29].

2. Calculation of centroids for each region.

This involves calculation of two integrals per region, hence a total of 2k

integrals, again O(k) .

3. Calculation of the Jacobi matrix.

Each element of the matrix involves four new integrations, assuming we store

the results of the previous centroidal calculations. There are k elements.

Assume each one has on average m neighbors, m < k . Then we need

a total of 4m k integrations. If we are sufficiently close to the optimal

configuration, m does not exceed 8 (see [62]), which makes this step worth

O(k) .

46

4. Solving the resulting linear system.

The complexity of the linear solver highly depends on the structure of the

matrix. With a sparse banded matrix structure due to limited number of

neighbors for each generator we can adopt fast inversion algorithms that

minimize the fill in of the LU decomposition, for instance, the nested dissec-

tion methods with complexity on the order O(k3/2) . Iterative methods with

lower complexity can also be considered, we comment on this in the later

discussions.

5. Updating procedure for generators.

This is a simple element-by-element addition, requiring 2k operations.

Overall, it is clear that the total complexity depends critically on the linear solver

and the algorithm for the construction of the Voronoi tessellations. For well-

distributed points, however, it is reasonable to expect an optimistic linear time

complexity.

3.2.6 Parallel implementation

Due to a large amount of calculations involved in the realization of Newton scheme,

it seems natural to look at possible parallelizability of the algorithm. There are

several places where parallelism could be exploited:

• Domain decomposition can bring significant speedup in the construction of

Voronoi diagram as well as in the calculation of centroids

• Jacobi matrix computation is the most computationally intensive procedure,

which can be parallelized using block matrix structure or by splitting the

individual tasks in element calculations

47

These and other algorithmic improvements will be considered in our upcoming

publications on this subject.

3.2.7 Numerical Implementation

We present the results of numerical computations on the square Ω = [0, 1]2 for

different types of density functions. All computations were made in Matlab 6.5. We

used embedded Matlab functions voronoi and voronoin for diagram construction.

For the Lloyd’s method, once the Voronoi construction is available, the only

computational task left is to find the mass centroids of the Voronoi regions. For

Newton’s method, we also need to compute the entries of the Jacobian matrix,

which adds up to the complexity of the problem. Computational properties of the

problem heavily depend on the form of the density function used. One always

needs to find a compromise between the accuracy and resource consumption for

a particular algorithm. Since complexity of the quadrature is tightly bound with

the computational cost of the algorithm, quadrature rules have to be tuned up

depending on the form of the density function.

In 1-d case, integrals can be computed exactly. In two dimensional case, the

Voronoi regions are of polygonal shape, so one may use triangle based integration

rules or tensor-product based one dimensional rules. This can be done using a

triangulation of any kind.

We tested different integration rules for various types of density functions. For

boundary integrals, we used Simpson’s rule for polynomial densities of degree less

than 3 and k-node quadrature rules otherwise. For area integrals, midpoint ∆ rule

is used for all densities. This rule was exact for polynomials of degree no greater

than 3.

48

Here the name ”midpoint ∆ rule” refers to the following triangular based

quadrature rule:
∫

∆
f = 1

3
|∆| · (f(x12) + f(x13) + f(x23)) , where x12, x23, x13 are

the midpoints of the sides of the triangle ∆ .

3.2.8 Stopping criterion

There are several criteria one can adopt in this situation:

1. ‖Zn − Zn−1‖ < ε

i.e. when the distance between two consecutive configurations becomes small

enough

2. ‖En − En−1‖ < ε

i.e. when changes in energy become sufficiently small

3. Nstep > MaxNumSteps

i.e. maximum number of steps is reached

Quite often it is a combination of the above conditions that makes a good

stopping criterion. In our examples, the algorithm was stopped whenever a failure

of either condition 1. or 3. was discovered.

3.2.9 One-dimensional examples

For one-dimensional intervals, since finding the Voronoi regions is trivial, most of

the computation is associated with finding centroids. Numerical errors for such

tasks are negligible, so the algorithm converges in several steps.

In Figure 3.2 we plot the ratio log(ek)
/

log(ek−1) for both Newton (top) and

Lloyd (bottom) iterations. It can be readily seen that the limit is 2 in the Newton

49

Figure 3.2. 1d convergence rates comparison for k = 4 (left) and k =
64 (right) with ρ(x) = 1 + x4 cos(π(x − 0.5)) . Top curves are for Newton

iteration and the bottom ones are for Lloyd.

case, which justifies the quadratic convergence. Lloyd’s method converges at a

linear rate.

3.2.10 Two-dimensional examples

In the two dimensional case, the effect of the roundoff and numerical integration

errors becomes more pronounced. In case of a constant density, we are still able to

get almost flawless performance. Figure 3.3 shows convergence of both methods for

a random 5 generator configuration. Here dots denote positions of the generators at

each step of the iteration and lines are used to separate the corresponding Voronoi

50

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Newton iteration

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Lloyd iteration

Figure 3.3. Iteration history of (a) Lloyd-Newton vs. (b) Lloyd method

for ρ(x) = 1, k = 5 .

regions. Lloyd-Newton iteration converged after 7 Newton steps, and convergence

became quadratic as soon as the convergence region was reached, as shown in

Figure 3.4.

3 3.5 4 4.5 5 5.5 6 6.5 7
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Figure 3.4. Convergence rate of the Lloyd-Newton method (top graph) vs.

Lloyd iteration (bottom) for Ω = [0, 1]2 , ρ(x) = 1 , k = 5

The next two pictures (Figures 3.5 and 3.6) demonstrate the performance of

both methods in non-constant density cases. The Lloyd-Newton method converged

51

after 6 Newton steps for ρ(x) = 1 + x + 0.1x2 and after 9 Newton steps for

ρ(x) = 1 + x4 .

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 3.5. Iteration history of (a) Lloyd-Newton vs. (b) Lloyd method

for ρ(x) = 1 + x + 0.1x2 , k = 4 . Here the lines connect the generators

For a more precise comparison, Table I below shows the decrease of the error

for Lloyd-Newton and Lloyd methods in the case of a quadratic density function

ρ(x) = 1 + x + 0.1x2 after 5 consecutive iterations respectively:

Iteration Lloyd’s iteration error Lloyd-Newton’s iteration error

1 0.08641081909378 0.16571484289620

2 0.03313222925306 0.03144575914202

3 0.01849005608503 0.00159901251769

4 0.01041059669286 0.00000571605675

5 0.00599684938138 0.00000000572324

Table I. Error reduction of the Lloyd-Newton and the Lloyd

iterations.

Adding higher order terms to the density function introduces numerical error

52

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Newton iteration

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Lloyd iteration

Figure 3.6. Iteration history of (a) Lloyd-Newton vs. (b) Lloyd method,

ρ(x) = 1 + x4, k = 4

in the calculation of both boundary and area integrals. Here we compare the exact

and inexact calculations made using Simpson’s rule for line integrals and midpoint

triangle rule for the area. Figure 3.7(a) shows results we got for a quadratic

function, for which integration is exact, whereas the graph in Figure 3.7(b) shows

convergence for a quartic polynomial density function.

Clearly, the integration errors do have an effect on the convergence of the

overall scheme, so for the best performance of the algorithm the optimal tradeof

of the integration scheme accuracy and overall complexity should be made. As

mentioned above, for the density functions up to certain order it is possible to

nullify the numerical integration error by picking a more accurate quadrature rule.

However, this might not be possible for a large class of functions, e.g. functions

with singularities of a much higher order. Despite these natural restrictions, the

results shown above justify the fact that for an adequately chosen quadrature

Newton-Lloyd method outperforms the Lloyd iteration and allows to reach the

53

3 3.5 4 4.5 5 5.5 6
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

3 4 5 6 7 8 9
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Figure 3.7. Comparison of convergence factors for Newton-Lloyd iteration (top) vs.
Lloyd (bottom) for different densities: (a) ρ(x) = 1 + x + 0.1 x2 , k = 4 ; (b) ρ(x) =
1 + x4 , k = 4

desired solution significantly faster.

Another possible approach, as mentioned above, consists of taking a Newton

iteration as part of the relaxation within the outer framework provided by some

type of nonlinear multigrid procedure. The next section is dedicated to a possible

implementation of this type of algorithm.

3.3 Newton-based multilevel algorithm

While the results presented in the previous section show that the Lloyd-Newton

scheme generally performs better than the traditional fixed-point iteration, im-

54

provement can be made, in particular, by reducing the computational cost of solv-

ing the linear system for the Newton increment. In this regard, one possibility is

to use multilevel techniques to solve the linear system inside the Newton iteration

framework. We refer to this approach as the inner multigrid scheme. Naturally,

the other possibility is to rely on the nonlinear multigrid solver with the Lloyd-

Newton scheme being part of the inner relaxation procedure which would give an

outer multigrid approach. We now first discuss the former case while leave the

latter to the next section.

Recall that the nonlinear problem under consideration is to find the fixed points

of the Lloyd map T(Z) = Z . As shown above, the Newton linearization

(I − dT|Zn−1)(Zn − Zn−1) = T(Zn−1) − Zn−1

gives a fast convergent iterative scheme in the neighborhood of the solution The

performance can be greatly enhanced if some fast sparse solvers are used to reduce

the computational complexity associated with the solution of linear systems. For

instance, let us outline an algorithm that uses algebraic multigrid techniques for

these purposes.

55

Algorithm 3.3.1. AMG-BGS-Newton iteration

Input:

Ω , the domain of interest; ρ , a probability distribution on Ω ;

k , number of generators; Z = {zi}k
1 , the initial set of generators;

Output:

{Vi}k
1 , a CVT with k generators Z = {zi}k

1 in Ω

Method:

1. Given n − th iterate Zn , calculate T(Zn) , dT(Zn) .

2. Put

A = I − dT(Zn) =

I − Txx Txy

Tyx I − Tyy

, M =

I − Txx 0

Tyx I − Tyy

and b = T(Zn) − Zn .

3. Solve MZn+1 = b − (A − M)Zn , where the system for each of the diagonal

blocks involving (I − Txx) and (I − Tyy) is solved using AMG

4. Repeat the procedure 1 to 3 until some stopping criterion is met.

Let us now discuss the key elements of the scheme introduced above. First key

observation is related to the choice of a triangular iteration matrix

M =

I − Txx 0

Tyx I − Tyy

for solving the linearized system. In making this choice, we relied on the fact that

the matrix A = I − dT has a block structure with the contribution of the off-

56

diagonal blocks being relatively small. To solve the corresponding linear system,

one can either perform the GMRES iteration with M being a preconditioner or

resort to the block Gauss-Seidel (BGS) method taking M to be the corresponding

iteration matrix.

The next key feature of this algorithm is the use of the algebraic multigrid

method (AMG) [4, 7, 63] to solve the linear systems corresponding to each of

the diagonal blocks of M . Indeed, such an approach is justified by the fact that

both of the blocks I − Txx and I − Tyy are symmetric and often share diagonal

dominance properties. An example of using the classical AMG approach based on

the standard coarse-grid correction scheme is given as follows:

1. Perform relaxation of the fine grid until the error is smooth: Ahuh = bh

2. Compute residual rh = bh−Ahbh and transfer to the coarse grid r2h = I2h
h rh

3. Solve the coarse-grid residual equation in terms of the error A2he2h = r2h

4. Interpolate the error to the fine grid and correct the fine-grid solution: uh =

uh + Ih
2he

2h .

Here the restriction operator I2h
h is dependent on the solution at the current

iteration and represents a coarsening procedure, while the iteration dependent

operator Ih
2h represents the standard interpolation. Naturally, a setup phase has

to be implemented first based on the entries of A so that these operators are

suitably defined [63]. Combining these considerations, we can design the AMG-

BGS-Newton scheme, as shown in Algorithm 3.3.1.

The efficiency of such an algebraic multigrid implementation relies on the ob-

servation that each of the diagonal blocks of the M matrix become diagonally

dominant in the vicinity of the solution. Theoretical arguments leading to this

57

conclusion have been carried out in 1d for the class of strongly logarithmically

concave densities in [22]. In fact, in this case the Lloyd map was shown to be

a local contraction, implying diagonal dominance for the matrix I − dT . For

these densities, a multilevel scheme designed this way outperforms regular Newton

iteration in its convergence.

3.4 The new energy-based nonlinear multilevel

algorithm

Another possible approach to the problem of speeding up convergence for Lloyd’s

method is to use a domain decomposition or multigrid strategies. Since the original

concept of centroidal Voronoi tessellations is related to the solution of a nonlinear

optimization problem, and the monotone energy descent property is preserved by

the Lloyd’s fixed point iteration ([15]), we may investigate whether monotone en-

ergy reduction can be achieved in a multilevel procedure which would also improve

the performance of the simple-minded fixed point iteration.

The problem of constructing a CVT is nonlinear in nature, hence standard

linear multigrid theory cannot be directly applied. There are still several ways one

could implement a nonlinear multilevel scheme in this context (see [23],[24],[50],[51]).

The Newton type acceleration methods described earlier are based on some global

linearization as the outer loop, coupled with other fast solvers in the inner loop.

Alternatively, we now study an approach that overcomes the difficulties of the

nonlinearity by essentially relying on the direct energy minimization without any

type of global linearization.

We note that the optimality property implies that at the CVT (or optimal

58

quantizer), we have ∇H = 0 . This is the key characterization to be used in the

later discussion.

3.4.1 Space decomposition

Since the energy functional is in general non-convex, it turns out to be very effec-

tive to relate our problem to a convex optimization problem through a technique

that mimics the role of a dynamic nonlinear preconditioner. More precisely, de-

note R = diag{R−1
i }, i = 1, . . . , k + 1 where Ri =

∫

Vi
ρ(y) dy are the masses

of the corresponding Voronoi cells. We arrive at an equivalent formulation of the

minimization problem: R∇H = 0 , or min ||R∇H||2 . A key observation is that

as R varies with respect to the generators, the above transformation or dynamic

preconditioning makes the modified energy functional convex in a large neighbor-

hood of the minimizer and therefore makes the new formulation more amenable

than the original problem. Hence, let us define the set of iteration points W by

W = {(wi)|k+1
i=0 | 0 = w0 ≤ wi ≤ wi+1 ≤ wk+1 = 1, ∀0 ≤ i ≤ k} ,

and let us design a new multilevel algorithm based on the following nonlinear

optimization problem

min
Z∈W

H̃(Z), where H̃(Z = {zi}k+1
i=0) = ||R∇H({zi}k

i=1, {Vi}k
i=1)||2 (3.4.1)

Here {Vi}k
i=1 is the Voronoi tessellation corresponding to the generators {zi}k

i=1 .

Let us take T = TJ as a finite element mesh corresponding to W . Consider a

sequence of nested quasi-uniform finite element meshes T1 ⊂ T2 ⊂ . . . TJ , where

Ti consists of all finite element meshes {τ i
j}ni

j=1 with mesh parameter hi , such that

59

∪ni

j=1τ
i
j = Ω . Corresponding to each finite element partition Ti there is a finite

element space Wi defined by

Wi = {v ∈ H1(Ω) | v|τ ∈ P1(τ),∀τ ∈ Ti}

For each Wi there corresponds a nodal basis {ψi
j}ni

j=1 , such that ψi
j(x

i
k) = δjk ,

where {xi
k}ni

k=1 is the set of all nodes of the elements of Ti and xJ
1 = 0, xJ

nJ
= 1 .

Define the corresponding one-dimensional subspaces Wi,j = span{ψi
j} . Then the

decomposition can be regarded as

WJ =
J

∑

i=1

ni
∑

j=1

Wi,j =
J

⊕

i=1

W̄i

where W̄i = Wi/Wi−1 for i > 1 and W̄1 = W1 . Now clearly for every func-

tion ψi
j ∈ Wi we can find a vector ψ̄i

j = {ψ̄i
jm} ∈ R

nJ , such that ψi
j(x) =

nJ
∑

m=1

ψ̄i
jmψJ

m(x),∀x ∈ Ω .

We note that in the 1-dimensional case, the set of basis functions

Qi = [ψ̄i
1, . . . , ψ̄

i
ni

]T ∈ R
ni×k

used at each iteration can be pre-generated using the recursive procedure: QJ =

Ik×k and QJ−s = (Πs
i=1PJ−i)QJ where Pi is the basis transformation from space

Wi+1 to Wi which plays a role of a restriction operator.

3.4.2 Description of the algorithm

Using the above notations, we design a multilevel successive subspace correction

algorithm (Algorithm 3.4.1). Each step of the procedure outlined below involves

60

solving a system of nonlinear equations which plays the role of relaxation. We

can use the Newton iteration to solve this nonlinear system. Solution at current

iterate is updated after each nonlinear solve by the Gauss-Seidel type procedure,

hence the resulting scheme is successive in nature. The algorithm essentially only

depends on the proper space decompositions and the correspondence with the set

of generators thus is applicable in any dimension. The more general forms will be

discussed in our subsequent works.

Algorithm 3.4.1. Successive correction V (ν1, ν2) scheme

Input:

Ω , the domain of interest; ρ , a probability distribution on Ω ;

k , number of generators;

Z = {zi}k+1
i=0 ∈ W , the ends plus the initial set of generators.

Output:

Z = {zi}k+1
i=0 , the ends plus the set of generators for CVT {Vi}k

i=1 .

Method:

1. For i=J:-1:2

Repeat ν1 times: given Z , find Z = Z + α0
j ψ̄

i
j ∈ W sequentially for 1 ≤ j ≤ ni

such that H̃(Z + α0
j ψ̄

i
j) = minαj

H̃(Z + αjψ̄
i
j)

endfor

2. Z ←CoarseGridSolve(Z)

3. For i=2:1:J

Repeat ν2 times: given Z , find Z = Z + α0
j ψ̄

i
j ∈ W sequentially for 1 ≤ j ≤ ni

such that H̃(Z + α0
j ψ̄

i
j) = minαj

H̃(Z + αjψ̄
i
j)

endfor

4. Repeat the procedure 1 to 3 until some stopping criterion is met.

61

Supply W with the following norm:

||y||21,W =
1

k

k+1
∑

i=1

(yi − yi−1)
2

This definition of the norm on W is justified by the fact that if
k+1
∑

i=1

(yi − yi−1)
2 =

0 , we have yi−yi−1 = 0 ∀i , which contradicts the condition that y0 = a, yk+1 =

b for all points in W , unless yi = a,∀0 ≤ i ≤ k + 1 .

3.4.3 Technical lemmas

Before we introduce our main convergence results, let us first establish some im-

portant properties of the energy functional defined in 3.4.1

In the discussion that follows we will say that a functional F satisfies the

convexity and continuity properties in V , if there exist constants K > 0, L >

0, p ≥ q > 1 s.t.

(F ′(w) − F ′(v), w − v) ≥ K||w − v||pV ,∀w, v ∈ V (3.4.2)

(F ′(w) − F ′(v), w − v) ≤ L||w − v||qV ,∀w, v ∈ V (3.4.3)

To simplify the presentation, let us introduce the following notations: u−
i =

ui+ui−1

2
, u+

i = ui+ui+1

2
, i = 1, . . . , k . We also let ai = ui −ui−1, bi = wi −wi−1, xi =

ui − wi , with u0 = w0 = a, uk+1 = wk+1 = b being fixed ends of the interval.

This said, let us first turn our attention to the case of constant densities. In this

simple case for the preconditioned energy functional we get the following result.

Proposition 3.4.1. Let ρ(x) = 1 be the density function on [a, b] . Then the

62

following relation holds:

(H̃′(u) − H̃′(w), u − w) =
1

2

k+1
∑

i=1

(ai − bi)
2

where ai = ui − ui−1, bi = wi − wi−1, i = 1, . . . , k , u0 = w0 = a, uk+1 = wk+1 = b .

Proof.

∂H̃
∂ui

= 2(ui − Ti) = 2
(

ui −
u+

i + u−
i

2

)

=
1

2
(ai − ai+1)

(H̃′(u) − H̃′(w), u − w) =
1

2

k
∑

i=1

(ui − wi)(ai − ai+1 − bi + bi+1) =

=
1

2

k
∑

i=1

(ui − wi)(ai − bi) −
1

2

k
∑

i=1

(ui−1 − wi−1)(ai − bi) =
1

2

k+1
∑

i=1

(ai − bi)
2

Corollary 3.4.1. For constant densities the energy functional H̃ satisfies conti-

nuity and convexity conditions with K = L = k/2 for all points in W .

It is possible to extend this result to a broader class of density functions. First

let us prove the following auxiliary lemma.

Lemma 3.4.2. If ρ(x) = 1 + εg(x) , g(x) = xn and

Qi(u) =

∫

(2u − (u+
i + u−

i))g(u)du

(u+
i − u−

i) + ε
∫

g(u)du
,

then |Qi(u) − Qi(w)| ≤ (1 + ε)(2n + 7)(|u+
i − w+

i | + |u−
i − w−

i |) .

Proof. Since g(x) = xn , we get the following expression for Qi =
Ni

Di

. For the

63

numerator we have:

Ni(u) =

∫

(2u − (u+
i + u−

i))g(u)du =

= 2

∫

un+1 du − (u+
i + u−

i)

∫

un du =
2un+2

n + 2
|u

+
i

u−

i

−
(u+

i + u−
i)un+1|u

+
i

u−

i

n + 1
=

=
(

u+
i − u−

i

)(2

n + 2

∑

k+l=n+1

(u+
i)k(u−

i)l − (u+
i + u−

i)

n + 1

∑

k+l=n

(u+
i)k(u−

i)l
)

while the denominator is equal to

Di(u) = (u+
i − u−

i)
(

1 +
ε

n + 1

∑

k+l=n

(u+
i)k(u−

i)l
)

Finally, for the ratio Qi =
Ni

Di

we have

Ni(u)

Di(u)
=

(2

n + 2

∑

k+l=n+1

(u+
i)k(u−

i)l − (u+
i + u−

i)

n + 1

∑

k+l=n

(u+
i)k(u−

i)l
)

/

(

1 +
ε

n + 1

∑

k+l=n

(u+
i)k(u−

i)l
)

=

=
(2

n + 2
Sn+1(u

+
i , u−

i) − (u+
i + u−

i)

n + 1
Sn(u+

i , u−
i)

)

/
(

1 +
ε

n + 1
Sn(u+

i , u−
i)

)

where

Sn(u+
i , u−

i) =
∑

k+l=n

(u+
i)k(u−

i)l

For simplicity let us redefine the modified numerator as Ñi(u) =
2

n + 2
Sn+1(u

+
i , u−

i)−
(u+

i + u−
i)

n + 1
Sn(u+

i , u−
i) and denominator as D̃i(u) = 1 +

ε

n + 1
Sn(u+

i , u−
i) ≥ 1 .

Then

|Qi(u) − Qi(w)| ≤ 1

D̃i(u)D̃i(w)

∣

∣

∣
Ñi(u)D̃i(w) − Ñi(w)D̃i(u)

∣

∣

∣
≤

≤ 1

2

∣

∣

∣Ñi(u) − Ñi(w)
∣

∣

∣

(

D̃i(u) + D̃i(w)
)

+
1

2

(

Ñi(u) + Ñi(w)
)∣

∣

∣D̃i(u) − D̃i(w)
∣

∣

∣

64

Notice further that

∣

∣

∣
D̃i(u) − D̃i(w)

∣

∣

∣
=

ε

n + 1

∣

∣

∣
Sn(u+

i , u−
i) − Sn(w+

i , w−
i)

∣

∣

∣

∣

∣

∣Ñi(u) − Ñi(w)
∣

∣

∣ =
∣

∣

∣

2

n + 2

(

Sn+1(u
+
i , u−

i) − Sn+1(w
+
i , w−

i)
)

−

− 1

n + 1

(

(u+
i + u−

i)Sn(u+
i , u−

i) − (w+
i + w−

i)Sn(w+
i , w−

i)
)∣

∣

∣

In general, if Sn(a, b) =
∑

k+l=n akbl , then it is not hard to show that
∣

∣

∣
Sn(a, b) −

Sn(c, d)
∣

∣

∣ ≤ n(n+3)
2

(

|a − c| + |b − d|
)

and
∣

∣

∣(a + b)Sn(a, b) − (c + d)Sn(c, d)
∣

∣

∣ ≤

(n+4)(n+1)
(

|a−c|+|b−d|
)

. Hence we immediately get the following inequalities:

|D̃i(u) − D̃i(w)| ≤ ε(n + 3)

2
(|u+

i − w+
i | + |u−

i − w−
i |)

|Ñi(u) − Ñi(w)| ≤ (n + 4)(|u+
i − w+

i | + |u−
i − w−

i |)

Finally, since D̃i ≤ 1 + ε , and Ñi ≤ 2 ,

|Qi(u) − Qi(w)| ≤ (1 + ε)|Ñi(u) − Ñi(w)| + 2|D̃i(u) − D̃i(w)| ≤

(1 + ε)(2n + 7)(|u+
i − w+

i | + |u−
i − w−

i |)

so that

|Qi(u) − Qi(w)| ≤ (1 + ε)(2n + 7)(|u+
i − w+

i | + |u−
i − w−

i |) (3.4.4)

Now let us consider a small enough perturbation of a density in the form ρ(x) =

1 + εg(x) , where g(·) is any smooth function on [a, b] . With the help of Lemma

3.4.2 we can derive the following

Proposition 3.4.2. For any ρ(x) = 1 + εg(x) , there exist constants Cl(ε, k) and

65

Cu(ε, k)) such that

Cl(ε, k)
k+1
∑

i=1

(ai − bi)
2 ≤ (H̃′(u) − H̃′(w), u − w) ≤ Cu(ε, k)

k+1
∑

i=1

(ai − bi)
2

where ai = ui − ui−1, bi = wi − wi−1, i = 1, . . . , k , u0 = w0 = a, uk+1 = wk+1 = b

and

Proof. Let Ti be the centroid of the i -th cell. Then for any density function of

the form ρ(x) = 1 + εg(x) , we have

∂H̃
∂ui

= 2(ui − Ti) =
2

Mi(u)

(

∫

(ui − u)du + ε

∫

(ui − u)g(u)du
)

=

=
(u+

i − u−
i)(2ui − u+

i − u−
i) + 2ε

∫

(ui − u)g(u)du

(u+
i − u−

i) + ε
∫

g(u)du
=

= 2ui − u+
i − u−

i +
2ε

∫

(ui − u)g(u)du − ε(u+
i − u−

i)
∫

g(u)du

(u+
i − u−

i) + ε
∫

g(u)du
=

=
1

2

(

ai − ai+1

)

− ε
(

∫

(2u − (u+
i + u−

i))g(u)du

(u+
i − u−

i) + ε
∫

g(u)du

)

=
1

2

(

ai − ai+1

)

− εQi

Then

(H̃′(u) − H̃′(w), u − w) =
1

2

k
∑

i=1

(ai − bi)
2 − ε(Q(u) − Q(w), u − w) (3.4.5)

The first term in (3.4.5) comes from the constant part of the density and hence

complies with the results of the previous theorem. It remains to get a similar

estimation for the second term. From Cauchy inequality,

|(Q(u) − Q(w), u − w)| ≤
k

∑

i=1

|Qi(u) − Qi(w)| · |ui − wi| (3.4.6)

66

Combining (3.4.4), (3.4.5) and (3.4.6), we get

(H̃′(u) − H̃′(w), u − w) ≤

≤ 1
2

N
∑

i=1

(ai − bi)
2 + 2ε(1 + ε)(2n + 7)

∑ |u+
i − w+

i ||ui − wi|

≤ 1
2

N
∑

i=1

(ai − bi)
2 + 2ε(1 + ε)(2n + 7)

∑ |ui − wi|2

Since xi = xi − x0 =
∑i

l=1 (xl − xl−1) , L2 -norm can be dominated by H1 -

norm as follows:
∑

x2
i ≤ 2k

∑

(xi − xi−1)
2 . Hence

(H̃′(u)−H̃′(w), u−w) ≤ (
1

2
+4ε(1+ε)k(2n+7))

k
∑

i=1

(ai − bi)
2 = Cu(ε, k, n)||u−w||21

Same arguments applied to the lower bound yield

(H̃′(u)−H̃′(w), u−w) ≥ (
1

2
−4ε(1+ε)k(2n+7))

k
∑

i=1

(ai − bi)
2 = Cl(ε, k, n)||u−w||21

By using Taylor expansion, this result can be extended to all smooth functions

g(·) on [a, b] . The statement of the lemma follows.

Note that it follows from Proposition 3.4.2 that in order to preserve convexity

the perturbation has to be of the order of ε = O(k−1) .

In addition to showing that the energy functional possesses convexity and conti-

nuity properties, we also need the following conditions on the space decomposition

to be satisfied:

Condition 3.

∀v ∈ W,∃vi ∈ W̄is.t.
∑J

i=1 vi = v , and

(
J

∑

i=1

||vi||21,W)1/2 ≤ C1||v||1,W

67

Condition 4. ‘Strengthened Cauchy-Schwartz’

∀wij ∈ W, ui ∈ W̄i, vj ∈ W̄j ⇒

J
∑

i,j=1

(H̃′(wij + ui) − H̃′(wij), vj) ≤ C2(
J

∑

i=1

||ui||21,W̄i
)1/2(

J
∑

j=1

||vj||21,W̄j
)1/2

Theorem 3.4.3. For the nested subspace decomposition with the choice of ”‘hat”’

basis functions, (
J

∑

i=1

||vi||21,W)1/2 = ||v||1,W , so that C1 = 1 . Moreover, C2 can

be estimated as C2 = L · max
j

(
J

∑

l=1

2−|j−l|) ≤ 2L .

Proof. Notice that ”‘hat”’ functions form an orthogonal basis, so

(
J

∑

i=1

||vi||21,W)1/2 = ||v||1,W

follows easily from calculation. As for the C2 , first notice that for any w, u, v ∈

W ,

(F ′(w + u) − F ′(w), v) ≤ L||u||1,W,supp(u)∩supp(v)||v||1,W,supp(u)∩supp(v)

Now since supp(u) ∩ supp(v) ⊆ supp(v) ∀u ∈ Wj, v ∈ Wl , for the ”‘hat”’ basis

we get ||v||1,W,supp(v)∩supp(u) = (1
2
)|j−l|||v||1,W . Then

∑J
i,j=1 (F ′(wij + ui) − F ′(wij), vj) ≤ L

∑J
i,j=1 (1

2
)|i−j|||ui||1,W||vj||1,W ≤

≤ L
(

maxj

∑J
i=1 (1

2
)|i−j|

)(

∑J
i=1 ||ui||21,W̄i

)1/2(
∑J

j=1 ||vj||21,W̄j

)1/2

Henceforth, C2 = L · maxj

∑J
i=1 (1

2
)|i−j| ≤ 2L

68

3.4.4 Uniform convergence theorem

Finally, putting together Conditions 3,4 and using convexity and continuity of H̃

in W , we’re equipped to prove the following uniform convergence result:

Theorem 3.4.4. Under assumptions 3,4 on space decomposition, Algorithm 3.1

converges uniformly in W for any density of the type ρ(x) = 1 + εg(x) with

dn = H̃(un) − H̃(u) satisfying

dn ≤ rdn−1, ρ ∈ (0, 1)

for some constant r = C
1+C

, where C = C2
1C

2
2L/K3 .

The proof of this result is similar to the one given in [66] and is provided below.

Corollary 3.4.5. In the case of a ”‘hat”’ basis, the constants C1 and C2 can be

estimated as C1 = 1 and C2 = 2L , so for example when ρ(x) = 1 , C = 4 .

3.4.5 Proof of the main result

In order to prove the main theorem, first consider the following lemma.

Lemma 3.4.6. Suppose the functional F satisfies conditions 1 and 2 in W .

Then the following statements are true for all points v, w ∈ W :

F (v) − F (w) ≥ (F ′(v), w − v) + K
2
||w − v||2W

F (v) − F (w) ≤ (F ′(v), w − v) + L
2
||w − v||2W

Proof. Let φ(λ) = F (u + λ(v − u)) . Then φ′(λ) = (v − u, F ′(u + λ(v − u))) ,

φ(0) = F (u) , φ(1) = F (v) . First inequality can be verified using fundamental

69

theorem of calculus and convexity assumption:

F (u) − F (v) = φ(0) − φ(1) = −
∫ 1

0

φ′(t)dt =

= −
∫ 1

0

(v − u, F ′(u + t(v − u)))dt =

∫ 1

0

(u − v, F ′(u + t(v − u)))dt =

=

∫ 1

0

(u − v, F ′(u + t(v − u)) − F ′(v))dt +

∫ 1

0

(u − v, F ′(v))dt =

= (F ′(v), u − v) +

∫ 1

0

(F ′(u + t(v − u)) − F ′(v), u + t(v − u) − v)
dt

1 − t
≥

≥ (F ′(v), u − v) + K

∫ 1

0

||(1 − t)(u − v)||2 dt

1 − t
= (F ′(v), u − v) +

K

2
||u − v||2

The proof of the second inequality is analogous and follows from the continuity of

functional F .

Proof of Theorem 3.4.4. Denote u to be the exact solution. First notice that

F (un) − F (un+1) =
∑

(F (un+ i
J
) − F (un+ i−1

J
)) ≥

≥
∑

(F ′(un+ i−1
J

), un+ i
J
− un+ i−1

J
) +

K

2
||un+ i

J
− un+ i−1

J
||21,W =

K

2

m
∑

i=1

||ei
n||21,W

Next, let’s use Condition 3 to decompose un+1 − u =
∑J

i=1 vi . Then

(F ′(un+1) − F ′(u), un+1 − u) =
J

∑

i=1

(F ′(un+1) − F ′(un+ i−1
J

+ en
i), vi) =

=
J

∑

i=1

J
∑

j≥i

(F ′(un+ j

J
) − F ′(un+ j−1

J
), vi) ≤ C2(

J
∑

j=1

||ej
n||21,Wj

)1/2(
J

∑

i=1

||vi||21,Wi
)1/2

Hence

(F ′(un+1) − F ′(u), un+1 − u) ≤ C1C2(
J

∑

j=1

||ej
n||21,Wj

)1/2||un+1 − u||1,W ≤

≤ C1C2(
2

K
(F (un) − F (un+1)))

1/2||un+1 − u||1,W

70

Denote rn = F (un)−F (u) , then F (un)−F (un+1) = rn−rn+1 and it follows from

the inequality above that

(
2

K
(rn − rn+1))

1/2 ≥ (F ′(un+1) − F ′(u), un+1 − u)

C1C2||un+1 − u||1,W

⇒

rn − rn+1 ≥
K

2
(
(F ′(un+1) − F ′(u), un+1 − u)

C1C2||un+1 − u||1,W

)2 ≥
K

2
(C1C2)

−2K2||un+1 − u||21,W ≥ K3

C2
1C

2
2L

rn+1

Last step of the argument uses the result of Lemma 1: rn+1 = F (un+1) − F (u) ≤
L
2
||un+1 − u||21,W . As a consequence, we get

rn+1 ≤
C2

1C
2
2L

K3
(rn − rn+1) ⇒ rn+1 ≤

C

1 + C
rn, where C =

C2
1C

2
2L

K3

It follows that for the suitable choice of decomposition in 1D the asymptotic

factor is independent of the size of the problem and the number of grid levels,

which gives a significant speedup comparing to other methods, like the traditional

Lloyd iteration. We justify this in the numerical examples that follow.

It follows that for a suitable choice of decomposition in 1D the asymptotic

convergence factor of our multilevel algorithm is independent of the size of the

problem and the number of grid levels, which gives a significant speedup comparing

to other methods, like the traditional Lloyd iteration. This claim can be justified by

the following numerical examples, computed using the Matlab 6.5 implementation

of the new algorithm on a Pentium IV with 512MB RAM.

3.4.6 Numerical results

• One-dimensional examples

71

Below are the computational results obtained for the V(1,1) multigrid imple-

mentation of the new algorithm in comparison with the regular Gauss-Seidel

performance. We plot the convergence factor ρ ≈ zn+1 − zn

zn − zn−1

for each V(1,1)

cycle with respect to the total number of generators (grid points) involved.

50 100 150 200 250 300 350 400 450 500 550 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of generators

ρ=
(x

n+
1
−x

n
)/

(x
n
−x

n−
1
)

MG C=5 rho=1
MG C=5 rho=1+0.1x
Gauss−Seidel

Figure 3.8. Plot of the convergence factor over the number of generators for the multi-
grid method vs. regular Gauss-Seidel method for ρ = 1 and ρ = 1 + 0.1x

Table I shows the number of multigrid cycles V (ν1, ν2, µ) needed to reduce

the error to ε = 10−12 .

72

k/V (ν1, ν2) V(1,0) V(0,1) V(1,1) V(2,0) V(0,2) V(2,2)

3 7 8 6 6 7 4

5 11 11 8 8 8 6

9 13 14 9 9 9 7

17 18 18 12 12 12 8

33 21 20 13 12 13 8

65 21 22 12 12 12 8

129 21 21 12 12 12 8

257 20 23 12 12 13 7

513 20 22 12 11 13 7

1025 19 22 11 11 13 7

Table I. Number of V (ν1, ν2) cycles needed to reduce the error

to machine zero vs. number of generators.

Figure 3.8 justifies the fact that the speed of convergence for proposed scheme

does not grow with the number of generators.

The geometric rate of energy and error reduction asserted by the Theorem

3.4.4 is confirmed by the experiments. Indeed, Figure 3.9 shows convergence

history of a V (1, 1) -cycle vs. total number of relaxations for the k = 64

case.

The results for other nonlinear densities , though not shown here, comply

with the theoretical conclusions reached above (see [23]).

• Two-dimensional examples

Let us look at the possibility of extending this framework to higher dimen-

sions. One of the big questions arising with the increase of dimension is

73

0 50 100 150
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iterations

L
2 e

rr
or

0 50 100 150
10

−22

10
−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

iterations

E
ne

rg
y

Figure 3.9. (a) Convergence history for k = 64 generators (log-normal scale);
(b)Energy reduction for k = 64 generators (log-normal scale)

whether the multidimensional Lloyd iteration will possess enough smoothing

properties to efficiently damp the higher frequency modes of the error. This

fact can be readily observed if we plot the components of the error after suf-

ficiently many relaxations compared to the original distribution (see Figure

3.10). More precisely, one can fix a particular coarsening scheme and look

Figure 3.10. (a)Original error distribution; (b) x -component of the error after 50
Lloyd iterations; (c) y -component of the error after 50 Lloyd iterations

at the performance of the relaxation on the fine grid points with the exact

solution fixed at the coarse positions. This process of leaving the coarse grid

variable invariant was first introduced by Achi Brandt in [3], where he called

74

it a compatible relaxation. In Figure 3.11(left picture), we show an example

of the performance of a coarsening scheme for the parallelogram grid and

plot the corresponding convergence factor of the Lloyd smoothing applied to

the fine grid versus the performance of the full multigrid cycle, shown on the

left.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = number of grid points

ρ
=

co
nv

er
ge

nc
e

fa
ct

or

0 500 1000 1500 2000 2500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = number of grid points

ρ
=

co
nv

er
ge

nc
e

fa
ct

or

Figure 3.11. (a) Convergence factor for the compatible relaxation; (b) Convergence
factor of the smoother

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 3.12. (a) Distribution of basis functions supports on the coarsest level; (b)
Corresponding hierarchical basis functions

Clearly, convergence factor does not grow with k , justifying the fact that

Lloyd iteration is an appropriate smoother for this type of problem.

75

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.5

1

1.5

2

2.5

3
x 10

−3

number of cycles

lo
g(

er
ro

r)

size=23 N=49
size=24 N=225
size=25 N=961
size=26 N=3969
Lloyd iteration

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10

−6

10
−5

10
−4

10
−3

10
−2

number of cycles

lo
g(

er
ro

r)

size=23 N=49
size=24 N=225
size=25 N=961
size=26 N=3969
Lloyd iteration

Figure 3.13. (a)Convergence history of multigrid for k = 8, 16, 32, 64 vs. Lloyd it-
eration; (b) Log-normal plot of the convergence history for k = 8, 16, 32, 64 vs. Lloyd
iteration

The rigorous multidimensional extensions are discussed in more details in

[24] .

3.5 Conclusion

In this chapter we introduced two methods for finding optimal quantizers that

overcome the drawbacks of the Lloyd algorithm outlined in Chapter 2. The cou-

pling of the fixed point Lloyd iteration with quasi-Newton approach yields faster

convergence speeds close to the solution, as demonstrated by the numerical ex-

amples. Theoretical results were provided that can help estimate the radius of

the convergence region and get the best algorithm performance. Advantages and

disadvantages of this scheme were discussed in details.

Another approach presented in this chapter is the new energy-based multigrid

method for quantization where a dynamic nonlinear preconditioning helps to take

advantage of a nonlinear convex optimization setting. This is the first multigrid

quantization scheme in literature with a rigorous proof of uniform convergence with

76

respect to the grid size and the number of grid levels. The scheme demonstrated

significant speedup comparing to the traditional Lloyd’s method. More work is

under way for the analysis of the multigrid scheme in higher dimensions.

Both of the algorithms presented in this Chapter focus primarily on the effi-

ciency of finding a local minimizer and do not provide any guarantees of global

optimality for the solution. As mentioned earlier, the possible ways to combine

these schemes with global minimization techniques are part of the ongoing research

in the area. In some applications, however, it may be more critical to find an ac-

ceptable approximation to the global solution. For these problems, the concepts

of adaptivity and efficient data sampling often play important roles. In the next

Chapter, we will discuss a problem arising in materials science that requires this

type of global optimization techniques.

Chapter 4
A new algorithm for the automation

of phase diagram calculation

4.1 Overview

In this Chapter we take a slightly different view of the problems arising in nonlinear

optimization context. Along with the issues of stability and fast local convergence

discussed in the previous Chapters, other features such as robustness and global

optimality may play equally important roles in many practical applications. For

the materials science problem we consider next, for example, it is crucial to get a

solution sufficiently close to the global minimizer in order to produce the correct

phase diagram and even small deviations from the exact solution may have severe

manufacturing consequences. There have been several studies of the global opti-

mization problems for nonconvex functionals in various settings, but no universal

solution is known to this point. One of the common drawbacks of these numerical

methods is the slow adjustability to the geometry and as a consequence a possibly

poor quality of the starting point for a general type of the cost functional. The

78

approach we take is based on the concept of adaptivity and effective sampling

techniques that help to improve the initial guess and increase the attainability of

the global solution. Apart from the mathematical perspective, the optimization

problem presented here has its own materials related specifics that also plays a

role in the numerical model.

To give a short overview of the background underlying current study, let us

look at the concept of phase diagrams the way they are used in materials science

applications. Phase diagrams are visual representations of the equilibrium phases

in a material as a function of temperature, pressure and concentrations of the

constituent components and are frequently used as basic blueprints for materials

research and development. Under typical experimental conditions of constant pres-

sure and temperature and a closed system, calculated phase equilibria are obtained

via minimization of the total Gibbs energy of a system by adjusting the composi-

tions and amounts of all individual phases in the system. As in any minimization

procedure, the starting values play an important role due to the existence of many

possible metastable states.

Many existing software packages lack the ability to automatically determine

system properties from initial data and can produce metastable equilibria instead

of stable ones or simply diverge if the initial guess is not good enough. Several

algorithms were proposed to automate the process of finding suitable starting posi-

tions, all of which carry an increased computational cost. In this chapter we make

an attempt to improve on the existing strategies for automating phase diagram cal-

culations by introducing a novel reduced complexity algorithm based on adaptive

critical point detection approach. In doing so we will mostly rely on the results of

[30], where it was first presented. The main advantage of the new scheme lies in

its ability to effectively reduce the total number of trial calculations by recognizing

79

the importance of geometry specific properties of the Gibbs energies.

We start with an introduction to the necessary theoretical background and a

short overview of existing techniques in section 4.2, which are succeeded by the

detailed description of the new algorithm as well as its generalizations in section

4.3. Section 4.4 contains the results of several numerical calculations for binary

and ternary systems. Some concluding remarks are made in section 4.5.

4.2 Theoretical aspects of phase diagram calcu-

lation

4.2.1 Mathematical model

Let us fix both the temperature and the pressure as independent system variables

with a total of one mole of components. Let fk be the total content of the k -th

component in the system and f i
k the content of the k-th component in the i-th

phase and f (i) the number of moles of the phase i (by our assumption
K
∑

k=1

f i
k =

f (i)). We also let f = (fk)k=1,...,K . Since it is easier to work with molar quantities,

we use x(i) = (xi
k)k=1,...,K = (f i

k/f
(i))k=1,...,K to denote the vector consisting of mole

fractions of the k -th component in the phase i and G(i) is the corresponding

molar Gibbs energy. In this case, the equilibrium analysis of a K -component

80

system with n phases leads to the following Gibbs energy minimization problem:

min
(f,x)

G =
n

∑

i=1

f (i)G(i)(x(i))

n
∑

i=1

f (i)x(i) = f

K
∑

k=1

xi
k = 1, i = 1, . . . , n

f (i) ≥ 0, xi
k ≥ 0

(4.2.1)

The equality constraints given in the above equations arise from the preserva-

tion of both component and total mass. The minimization problem is also subject

to the above natural inequality constraints that guarantee nonnegativity of con-

tents and mole fractions for each of the phases.

Suppose x∗ =
(

f (i), x(i)
)∗

is an extremum of G . An index set A is defined

to include those indices whose corresponding inequality constraint belongs to the

active set of constraints at x∗ . Recall that a local constrained extremum x∗ co-

incides with an unconstrained critical point of the following Lagrangian, where

λi, ηk, γi, τ
i
k are the Lagrange multipliers corresponding to the equality and in-

equality constraints introduced above:

L =
n
∑

i=1

f (i)G(i)
(

x(i)
)

−
n
∑

i=1

λi

(

K
∑

k=1

xi
k − 1

)

−
K
∑

k=1

ηk

(

n
∑

i=1

f (i)xi
k − fk

)

−

− ∑

i∈A

γif
(i) − ∑

i,k∈A

τ i
kx

i
k

(4.2.2)

Here, we may use the theory on the complementarity property of the constraints

and the Lagrange multipliers so that only active constraints at the extremum point

need to be considered. Notice, however, that if an inequality constraint given in

4.2.1 becomes active, the total content for some phases becomes zero, which implies

81

that there are phases that do not take part in the equilibrium. If these phases are

known at the beginning, we can discard them and therefore reduce the problem

dimension. However, it is sometimes difficult to determine which phases would

form an equilibrium a priori, so a generalized approach is preferred.

We can, however, make the computation more efficient by monitoring the phase

contents in the process of optimization and eliminate those phases whose contents

become insignificant. The issue with this approach is that a phase content may

accidentally become very small in the course of the numerical procedure, so dis-

carding a phase completely without allowing it to reappear may lead to unwanted

consequences. The usual tactic is to assign a small tolerance value ε > 0 to all

phases whose contents are lower than ε during the equilibrium calculation. This

assures that all phases have equal chances of contributing to the equilibrium state,

at the same time making all inequality constraints inactive. In other words, we

arrive at the following problem:

L =
n

∑

i=1

f (i)G(i)
(

x(i)
)

−
n

∑

i=1

λi

(

K
∑

k=1

xi
k − 1

)

−
K

∑

k=1

ηk

(

n
∑

i=1

f (i)xi
k − fk

)

(4.2.3)

The well known Karush-Kuhn-Tucker theorem for optimization problems (see [61])

asserts that at the critical point, the following set of first order conditions is met:

∂L

∂f (i)
(x∗) = G(i)

(

x(i)
)

−
K

∑

k=1

ηkx
i
k = 0

∂L

∂xi
k

(x∗) = f (i) ∂G(i)

∂xi
k

− λi − f (i)ηk = 0

(4.2.4)

where λi, ηk ≥ 0 at x∗ and constraint equations in 4.2.1 are satisfied. We can

82

now solve for ηk from the second equation and substitute into the first one to get:

ηk =
∂G(i)

∂xi
k

− λi

f (i)

G(i)(x(i)) −
K

∑

j=1

∂G(i)

∂xi
j

+
λi

f (i)
= 0

It follows that

ηk =
∂G(i)

∂xi
k

+ G(i)
(

x(i)
)

−
K

∑

j=1

∂G(i)

∂xi
j

xi
j (4.2.5)

for all i = 1, . . . , n . Notice that the expression at the right hand side is the full

derivative of the Gibbs energy G̃(i)((f i
k)k=1,...,n) = f (i)G(i)(x(i)) with respect to

contents f i
k of the k -th component in the i -th phase. In other words, making

a change of variables back from molar quantities to f i
k , we conclude that for

given temperature, pressure and overall composition, the minimum of the objective

function satisfies the following equations:

µ1
1 = µ2

1 = . . . = µn
1 = η1

µ1
K = µ2

K = . . . = µn
K = ηK

(4.2.6)

where µi
k = ∂G̃/∂f i

k . These equations are called Gibbs equilibrium conditions,

which imply that the value of the chemical potential for each component k is the

same in all phases i = 1, . . . n .

Furthermore, from the first equation in 4.2.4, we get that

G(i)
(

x(i)
)

− G(j)
(

x(j)
)

= ηT
(

x(i) − x(j)
)

Coupled with 4.2.6, this implies the common tangent hyper-plane property in the

G-x space with the Lagrange multiplier η being the normal to the plane. Such a

83

property is well known for the phase diagram calculation.

It should be mentioned that these equations provide only necessary conditions.

In order to guarantee that the solution found at this step is indeed a minimizer,

one should verify that wT (∇2L)w > 0 at x∗ for all limiting directions w of a

feasible sequence. Notice that at x∗ ,

wT (∇2L)w =
∑

i

wiT

f (i)

(

∂2G(i)

∂xi
k∂xi

j

) (

∂G(i)

∂xi
k

− ηk

)

(

∂G(i)

∂xi
k

− ηk

)

0

wi =

=
∑

i

wiT

f (i)

(

∂2G(i)

∂xi
k∂xi

j

)

λi

f (i)
e

λi

f (i)
e 0

wi

Here, e denotes the column vector with all components being equal to 1. We may

write any feasible direction as wi = (wi
1, w

i
2)

T and then make it adhere to the

space of constraints (see [61]), which in this case leads to wiT
1 e = 0 . Thus, we

get wT (∇2L)w =
∑

i

f (i)wiT
1

(

∂2G(i)

∂xi
k∂xi

j

)

wi
1 It follows that the solution x∗ of the

unconstrained problem 4.2.3 is a local minimum of the total Gibbs energy of the

system provided that the Hessian of the mixing energy is positive definite at x∗ ,

otherwise it is possible that the point at hand is a maximum or a saddle. This

observation explains why the regions of positive concavity are so important for the

process of finding good initial guess that we are going to discuss in the following

sections.

While the set of conditions provided by the KKT theorem is capable of identify-

ing local solutions of the problem 4.2.3, phase diagrams often require the knowledge

of stable equilibria of the system and hence call for a more careful analysis of the

minimizers of the total Gibbs energy. As we have already noted, any local solu-

84

tion should satisfy the common tangent hyper-plane property in the G-x space,

whereas stable solutions would have to belong to the lower convex hull determined

by these points. In order to eliminate points belonging to the interior of the con-

vex hull at any stage of the algorithm, one can perform two kinds of tests. The

first one, referred to as a stability check, consists in determining whether a given

phase possesses the minimal energy among all phases considered at this point.

The remaining coplanarity check identifies whether there are solutions lying below

the plane determined by a set of test points. Clearly any subset of points on the

boundary of the convex hull satisfies both of these tests, and we’re going to exploit

this fact later in designing our method for stable diagram construction.

Going back to equations 4.2.6, notice that they result in a system of nonlinear

equations which should be solved numerically. Hence the success of the whole task

of calculating phase equilibria depends on the effectiveness of the scheme chosen

to solve the nonlinear system.

Technical implementations of the nonlinear solution procedure differ from al-

gorithm to algorithm. The two most popular ones rely on the Newton-Raphson

and the simplex methods for iterative solution of the system 4.2.6. All of the

CALPHAD-type software tools use methods like the two-step method of Hillert

([1],[44],[43]) or the one step method of Lukas et al. [56] to minimize the Gibbs

energy. Typical drawbacks of these strategies include the use of prior knowledge in

providing suitable starting points and the possibility of divergence or convergence

to metastable minima.

Other methods were proposed that attempt to get a direct solution to the

minimization problem 4.2.1 either by constructing phase field boundaries or de-

termining the minimum free energy surface directly [12]. These algorithms do not

suffer from stability issues as much as the iterative methods mentioned above, but

85

face problems with higher computational costs and the possible loss of information

due to limited resolution.

We will focus our attention on improving the iterative solution adopted in the

packages of the Thermocalc family. In doing so, we are going to follow the line of

direct methods by recognizing the importance of geometrical information for the

design of an efficient minimization scheme.

4.2.2 Geometrical considerations

As shown above, the procedure of finding solution to the minimization problem

described here, from the geometric perspective, is nothing but a common tangent

hyper-plane construction for the equilibrium phase surfaces in the G − x space.

Indeed, to give a more detailed illustration, let us consider the binary 2-phase case

as an example. From the conservation of phase mass condition we have

x1
1 = x(1); x1

2 = 1 − x(1)

x2
1 = x(2); x2

2 = 1 − x(2)

Hence, the minimization problem can be written as

min
(f,x)

{G = f (1)G(1)(x(1)) + f (2)G(2)(x(2))}

f (1)x(1) + f (2)x(2) = f1

f (1)(1 − x(1)) + f (2)(1 − x(2)) = f2

86

In simpler form,

min
(f,x)

{G = f (1)G(1)(x(1)) + f (2)G(2)(x(2))}

f (1)x(1) + f (2)x(2) − f1 = 0

f (1) + f (2) − (f1 + f2) = 0

By means of the Lagrange multipliers µ and η , we can represent the above

system in form of the following unconstrained minimization problem:

L = f (1)G(1)(x(1)) + f (2)G(2)(x(2)) −µ
(

f (1)x(1) + f (2)x(2) − f1

)

−η
(

f (1) + f (2) − (f1 + f2)
)

At an equilibrium, the partial derivatives of the Lagrangian with respect to

(~f, ~x) become zero:

∂L

∂x(1)
= f (1)

(

∂G(1)(x(1))

∂x(1)
− µ

)

= 0;
∂L

∂x(2)
= f (2)

(

∂G(2)(x(2))

∂x(2)
− µ

)

= 0

∂L

∂f (1)
= G(1)(x(1)) − µx(1) − η = 0;

∂L

∂f (2)
= G(2)(x(2)) − µx(2) − η = 0;

It follows that η = G(1)(x(1)) − µx(1) = G(2)(x(2)) − µx(2) (similar derivation can

be found e.g. in [65]. Hence the solution should satisfy the following equations

µ =
∂G(1)(x(1))

∂x(1)
=

∂G(2)(x(2))

∂x(2)

µ =
G(1)(x(1)) − G(2)(x(2))

x(1) − x(2)

Geometrically, it is the common tangent line of Gibbs energy curves. Similar

argument can be carried out in higher dimensions.

With this observation in mind, we are now ready to discuss the problems asso-

ciated with the construction of phase diagrams using the existing algorithms and

87

some improved techniques.

4.2.3 Existing algorithms and motivation

As mentioned earlier, the minimization procedures adopted in existing iterative-

type software have the following drawbacks:

• (stability) They either fail to converge or perhaps converge to some meta-

stable equilibrium when a starting point is taken too far from the desired minimizer.

• (user-dependence) The computer programs cannot independently deter-

mine the existence of a miscibility gap, hence some prior knowledge of system

properties is required.

Figure 4.1 demonstrates the problem in producing a correct phase diagram

for a system with a miscibility gap. The diagram in Figure 1(a) is the correct

phase diagram of the Ca-Li-Na system at T = 900K produced by specifying the

“set miscibility gap” option, while the wrong diagram in Figure 1(b) is the result

of calculations when this option is not provided by the user.

Figure 4.1. (a) Correct Ca-Li-Na phase diagram; (b) Incorrect Ca-Li-Na diagram
produced by Thermocalc

88

Mathematically speaking, a miscibility gap arises when the Gibbs energy of

a phase exhibits multiple minima. We need to design an algorithm capable of

predicting system properties of this kind from the initial data. Ultimately this

algorithm may be used as a basis to automate phase diagram calculation process

as a whole.

The problem with miscibility gaps has been addressed before. A solution has

been proposed by Chen et al [8], [9], [10]. Their method relies on a discretization

of composition axis in order to represent solution phases by a set of stoichiomet-

ric compounds. It performs a series of tests to reveal the pairs of points which

can coexist in stable equilibrium. These tests include stability checks (discarding

points with higher energy values) and “coplanarity” checks, which test a pair for

stable 2-phase equilibrium. As soon as candidate pairs are identified, they are

taken as initial approximations for a consecutive minimization procedure, which is

supposed to lead to the exact solution. In a two-phase case with N stoichiometric

compounds the coplanarity (collinearity) condition holds, if

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Gs Gi Gj

x1,s x1,i x2,j

x2,s x2,i x2,j

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1,i x1,j

x2,i x2,j

∣

∣

∣

∣

∣

∣

∣

> 0

for any of the compounds Ax1,s
Bx2,s

, s = 1, ...N, s 6= i, j (see [8]).

This method generally gives a much better initial point for optimization, but at

a higher computational cost. Indeed, even in 2D, the coplanarity check performed

for each of the (N(N − 1))/2 pairs of stoichiometric phases involves (N − 2)

89

calculations of the determinants specified above. Since the numerator needs a

total of 12 multiplications and 5 additions, while the denominator is calculated

after 2 multiplications and 1 addition, the total complexity for the coplanarity

check is of the order O (N(N − 1)(N − 2)) ⇒ O (N3) operations, where N is the

number of points in the subdivision.

4.3 A new algorithm

Both of the aforementioned drawbacks have to do with the fact that Thermocalc

does not possess the ability to recognize and utilize the geometric properties of

Gibbs energy curves. The method of Chen et al described above takes into ac-

count system geometry, but limits its operation to function values, while it is the

derivative information that seems to provide the best insight into the geometric

structure of the object under study. Knowledge of the critical and inflection points

of a system is a helpful tool in designing an efficient minimization algorithm. This

is the key idea behind the new numerical scheme we are about to propose next,

which overcomes the drawbacks of the previously mentioned algorithms, at the

same time giving comparable accuracy to the solution.

4.3.1 Description of the algorithm: binary case

Since in general the Gibbs energy is represented by a nonlinear functional, the

task of finding precise locations of its critical points may be too arduous. It makes

sense to either deal with numerical derivatives instead, or to consider a reasonable

approximation to the given functional. Although we are going to follow the first

approach when presenting the algorithms, it is worth noting that in the binary

case it is possible to use a polynomial least-squares fitting. We will return to this

90

point later in the discussion on the numerical characteristics of the algorithm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−6

−5

−4

−3

−2

−1

0

1

2
x 10

4

Mole fraction, Na

G
ib

bs
 e

ne
rg

y

original arrangement of the energy curves for the 3 phases

transformed energy curves

Figure 4.2. Affine transformation of the axis

First, notice that the procedure of finding critical points becomes much more

difficult with the decrease of curvature values. Hence it is desirable to deal with

functions that are not flat to begin with. In practice, many complex systems

exhibit this type of behavior, thus leading to numerous problems and possible

failures of computational software. Being aware of this fact, we use the follow-

ing idea. Since a linear transformation of the carrying axis does not change the

relative positions of minima for energy curves and does not significantly change

their absolute locations, we can tilt the axis and use the modified geometry to get

an initial approximation for the optimization procedure that is carried out later

for the original configuration. The transformation suitable for these purposes has

the form: ynew(x) = M(y(x) − (ym(1) − ym(0))x − ym(0)) . The constants here

are chosen to make sure that the curve having the minimal value at the right end

(ym(x)) approaches zero on both sides. A scaling constant M is introduced to

increase the curvature (we use M = 2 in the examples below). In Figure 4.2 we

91

display such a transformation for the Ca-Na system.

The transformation described here is performed only once at the initial stage

of the construction so it does not increase the scheme complexity.

The main component of the algorithm to be proposed for a binary phase dia-

gram construction is the recursive procedure of finding positions of critical points.

This procedure relies on the adaptive refinement strategy and uses first and sec-

ond order derivatives information to detect possible miscibility gaps and identify

local minima with a prescribed accuracy ε . The other user defined parameters

include the maximum number of refinements and the total number of axis subdivi-

sions at each step. All derivatives in the algorithms described below are computed

numerically by some finite difference approximation schemes.

Function minima = AdaptiveSearch(a, b, phase, iter)

Global parameters: N - the number of axis subdivisions, ε - tolerance,

Niter - maximum number of allowed refinements

Input parameters: a, b - ends of the interval, phase – phase index,

iter – iteration index

Output parameters: minima – approximate position of the minima

for the energy of the phase

while (iter<=Niter)

1. Sample N points a = x0 < x1 < . . . < xN < xN+1 = b.

2. For (iter == 1) % finding concavity regions

(a) Calculate G̃ for j = 1, . . . , N .

(b) Locate inflection points by finding indices s|1 ≤ s ≤ N such that G̃.

(c) Identify interval(s) for refinement by counting inflection points.

92

If no inflection points found, put k=1, a(1) = a, b(1) =b, endif.

If one inflection point xs found and G̃, put k=1, a(1) = a, b(1) =xs, endif

If one inflection point xs found and G̃, put k=1, a(1) = xs, b(1) =b, endif

If two inflection points xs1 , xs2 found, put k=2, a(1)=a, b(1) =xs1 ,

a(2)= xs2 , b(2)=b, endif

(d) Perform recursive search on each of the identified intervals (a(j), b(j)):

minima(j)= AdaptiveSearch(a(j), b(j), phase, 2)

3. For (iter > 1) % recursive search procedure

(a) Calculate G′, j = 1, . . . , N .

(b) Find s = argminj=1,...,NG′

(c) If (G′) or (iter == Niter) % met stopping criteria

minima= xs, return minima

else %recursive refinement

For δ = (b − a)/(2N) do

minima = AdaptiveSearch(xs − δ, xs + δ, phase, iter + 1)

end if

end while

return minima

In simple words, the method attempts to find approximate locations of all pos-

sible minima of the energy functional and take them as starting points for the

subsequent minimization procedure. Note that since there are at least one and

at most two minima for any unordered phase under consideration, the algorithm

will refine the grid as long as it cannot detect any of them. As with any discrete

numerical approximation, there may still be a chance of missing a minimum. If

after a sufficient number of refinements, critical points are still not found, the

93

algorithm resorts to taking points with the lowest first derivative values as start-

ing points for the later optimization. However, such situations are very rare in

practice and are unlikely to cause troubles for most energy functionals due to the

adaptive refinement strategy described above. The detection of a miscibility gap

is straightforward due to availability of second derivative information.

It has to be noted that, in the 2D case, it is possible to avoid explicit calculations

of the derivatives by making use of polynomial (in this case, quadratic) approxi-

mation. This approach has the same order of complexity as the method described

above, but loses effectiveness when the dimension of the problem is increased. For

the sake of generality we will use direct differentiation in all algorithms presented

in this chapter.

We now are ready to present the algorithm of calculating the stable binary

2-phase equilibria. First let us introduce a couple of auxiliary structures.

The matrix A(1 : ind, 1 : 4) is used to record stability regions after the first

sweep. Its first and second columns represent the coordinates of the left and right

ends of the stability regions respectively, while the indices of the phases having

lowest energy at those ends are recorded in the third and fourth columns.

Matrix C contains all the points that are obtained as suitable candidates for

starting positions after the second sweep. The coordinate(s) of these points is

recorded in the first (or first two in the ternary case) column(s) and the index of

the corresponding phase goes into the last column of this matrix. The operation

of adding a new row to this matrix is denoted everywhere in the text by the arrow

sign “← ”. With these notations, the stability region calculation procedure is given

as follows.

94

Function [A, ind] = StabilityRegions(a, b,N,K)

Input parameters: a,b – ends of the interval. N – number of grid points

K - number of phases present

Output parameters: A – array recording stability regions information

ind – total number of stability regions in array A

1) Subdivide domain V = [a, b] into N − 1 subdomains Vj = [xj, xj+1],

a = x1 < x2 < . . . < xN = b

2) Initialize ind = 1, A(1, 1) = a,A(1, 2) = a,A(1, 3) = 1, A(1, 4) = 1;

For j = 2, ..., N − 1 do

For i = 1, . . . K do

(a) Calculate G(i)(xj)

(b) Find the phase with lowest energy among calculated energy values

at xj and xj+1:

σj,left =
{

s|G(s)(xj) < G(i)(xj),∀i < s
}

;

σj,right =
{

s|G(s)(xj+1) < G(i)(xj+1),∀i < s
}

(c) If σj,left = σj,right,

A(ind, 2) = xj, A(ind, 4) = σj,right % extend old stability region

else % start new stability region

A(ind, 2) = xj, A(ind, 4) = σj,right, ind = ind + 1;,

A(ind, 1) = xj, A(ind, 3) = σj,right

end if

end for;

end for

return [A, ind]

The algorithm for constructing binary phase diagram with K phases can be

95

summarized as follows:

Algorithm 4.3.1. Binary diagram construction

1) Fix N – the number of grid points in major axis subdivision, ε - tolerance,

Niter - maximum number of allowed refinements

2) Do [A, ind] = StabilityRegions(0,1,2N,K) % Identify stability regions

3) Calculate starting points for optimization

For i = 1, ..., ind , do

phase1 = A(i, 3) , phase2 = A(i, 4)

If (phase1 6= phase2) %add points at the boundaries of stability regions

C ← (A(i, 1), phase1) and C ← (A(i, 2), phase2);

else % find minima inside each stability region

minima= AdaptiveSearch(A(i, 1), A(i, 2), phase1, 1)

C ← (minima, phase1)

end if

end for

4) Perform coplanarity checks to get the convex hull of points in C

5) Carry out optimization for all remaining pairs of points,

check result for consistency

6) Construct phase diagram using solution obtained in step 5.

Essentially, the method first detects the stability regions of the diagram, i.e.

identifies which phase has the lowest energy in each of the intervals formed by

the intersection points (see Figure 4.3). Then it proceeds to examine each of the

intervals separately, identifying extrema and possibly other points (at most two per

each region) that would serve as candidate ends of the common tangents between

96

curves. As soon as all such points are found, a coplanarity check removes all

points that could possibly appear inside the convex hull. At this stage, an exact

(or more precisely, a good numerical) solution is obtained by solving the nonlinear

optimization problem described earlier. To ensure the most reliable results, the

solution is further checked for consistency with one additional coplanarity check.

Figure 4.3. Stability regions

Notice that, in general, it is not possible to provide a good initial guess by only

considering critical points of the energy curves. An example of such a situation is

shown in Figure 4.4.

Although the minima of both parabolas can be easily detected by the adaptive

scheme described above, only one of them provides a suitable initial guess for

the optimization procedure. In this case it is necessary to pay attention to the

appropriate endpoint of the stability region, as explained in the step 3(a) of the

algorithm.

97

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−600

−500

−400

−300

−200

−100

0

100

200

x1

calculated minima

exact solution and common tangent line

boundary of the stability region

adjusted starting points

Figure 4.4. An example of one possible distribution of the starting points

4.3.2 Description of the algorithm: ternary case

In two and higher dimensions, due to changes in topological properties comparing

to the 1D case, our algorithm needs to be modified accordingly in order to keep

the calculation efficient. The first issue is the difficulty of working with curvilinear

boundaries. If we want to identify the stability regions like we did in the binary

case, we are up for a complicated task of working with unordered sets of data with

various possible intersections. Instead of following this approach, we first identify

critical point locations for all phases and then perform the coplanarity checks. This

reduces the overall complexity, but leaves the necessity of adding boundary points

to the set of candidate starting positions.

Another observation that has to be made is that the derivative calculation can

hardly be avoided in dimensions higher than two, hence the scheme relies on the

numerical differentiation, which calls for a good meshing approach. Some of the

possible sampling strategies will be discussed in section 3.3. Here we only mention

the importance of data ordering for the successful implementation of the general

98

Function minima = AdaptiveSearch2D(V, phase, iter)

Global parameters: N - the number of axis subdivisions, ε - tolerance,

Niter - maximum number of allowed refinements

Input parameters: V – given domain, phase – phase index,

iter – iteration index

Output parameters: minima – positions of minima for the energy of the phase

while (iter¡=Niter)

1. Sample N points xj = (xj(1), xj(2)), j = 1, ..., N on V .

2. For (iter == 1) % finding concavity regions

(a) Calculate G′′(phase)(xj) for j = 1, . . . , N

(b) Find regions of positive concavity by identifying the sets Vi such that

G′′(phase)(xj) for any x in Vi. If there is only one such set, put V = V1

(c) Perform recursive search on each of the identified regions Vi:

minima(i)= AdaptiveSearch2D(Vi, phase, 2))

3. For (iter > 1) % recursive search procedure

(a) Calculate G′(phase)(xj), j = 1, . . . , N

(b) Find s = argminj=1,...,NG′(phase)(xj)

(c) If (G′(phase)(xs)) or (iter == Niter) % met stopping criteria

minima= xs, return minima

else for δ = diam(V)/(2
√

N) and

Vs = [xs(1) − δ, xs(1) + δ] × [xs(2) − δ, xs(2) + δ]

minima = AdaptiveSearch2D(Vs, phase, iter + 1)%recursive refinement

end if

end while

return minima

99

algorithm to be presented. The recursive procedure of finding the critical points

in the ternary case is given above. Below we give the details of the algorithm for

computing stable 2-phase equilibia in ternary systems with a total of K phases.

ZPF stands for the Zero Phase Fraction method, traditionally used to trace phase

boundaries (see for example [10]).

Algorithm 4.3.2. Ternary diagram construction

1) Fix original domain as V = {(x, y)|x + y ≤ 1} ,

N – the number of grid points in major axis subdivision,

ε - tolerance, Niter - maximum number of allowed refinements

2) For phase = 1, ..., K do

(a) minima= AdaptiveSearch2D(V, phase, 1)

C ← (minima, phase)

(b) Sample N points bdrypts on the boundary of domain V,

C ← (bdrypts, phase)

end

3) Perform coplanarity checks to get the convex hull of points in C

4) Carry out optimization for all remaining pairs of points,

check result for consistency

5) Use ZPF to track the boundaries and complete the phase

diagram construction.

Similar scheme can be constructed in higher dimensions. Notice that the algo-

rithm is capable of predicting multiple minima using the second order derivative

information, which makes it applicable even in the difficult multiphase miscibility

gap situations.

The overall performance of this scheme is mostly influenced by the two major

100

factors: the accuracy in the detection of the critical points and the effectiveness

of the chosen sampling scheme. In the later sections, we discuss the theoretical

and practical advantages of the new method, in comparison with other existing

techniques.

4.3.3 Computational complexity estimate for the binary

case

In this section we will compare complexity of our algorithm to other existing

schemes from the point of view of required resources and computational work-

load. First, let h be the smallest mesh size required in order to identify points

with the lowest energy on any one of stability regions with a given accuracy ε .

By measuring the total number of grid points needed to reach this mesh size, we

claim that, due to the adaptivity, our proposed scheme requires significantly less

subdivisions than other comparable methods.

Indeed, suppose the number of levels required for the adaptive scheme to reach

this mesh size is denoted as L . Since after a refinement stage, each interval is

either subdivided into N subintervals (there are at most two such intervals) or

left unchanged, the mesh size at each level is reduced by a factor of 1/N and the

total number of intervals is increased by at most 2(N − 1) . Hence h = 1/NL or

L = logN 1/h . It follows also that the total number of intervals needed to reach

a mesh size h is NT = N + 2(N − 1) · L = N + (2(N − 1) ln 1/h)/ ln N . Note

that N is taken to be a constant independent of h (we use a fixed N = 10 in the

numerical experiments). A comparable full uniform grid scheme (like the one in

the Chen et al algorithm) should have approximately N ′ grid points to yield the

same accuracy as the scheme proposed above. In other words, NT = O(ln N ′) ,

101

which implies a significant reduction in the number of axis subdivisions comparing

to the uniform scheme.

Second, let us assess the amount of work required by each of the algorithms

for finding a starting point for the two-phase equilibrium calculation prior to the

optimization based on the same mesh size h . We again can claim an advantage

of our scheme in comparison with the approach of Chen et al due to a significant

reduction in the number of required coplanarity checks. Below is the step by step

analysis of the computational complexity that verifies to our claim.

From the point of view of complexity, Algorithm 1 as given in section 3.1.1 can

be divided into the following major stages:

i) [A, ind] = StabilityRegions(0,1,2N,K) – stability region calculation

To compare energy values for all K phases at each grid point, we need 2N ·K

operations, which is the total complexity for this stage. Notice that this estimate

has no dependence on h.

ii) Starting points calculation

AdaptiveSearch procedure is performed on each of the ind stability regions

where the total number of stability regions ind is a constant independent of h.

At the first sweep, we detect inflection points by calculating second derivatives at

each grid point: a total of 3N function evaluations if a 3-point stencil is used in

the derivative calculation. At the second sweep, N first derivatives are calculated

on at most 2 subintervals, which adds up to a total of 4N function evaluations if

a 2-point stencil is used in derivative calculation. If the critical point was detected

with predefined accuracy ε after L = (ln 1/h)/ ln N adaptive grid refinements, the

first derivative calculation had to be repeated (ln 1/h)/ ln N times. It follows that

the overall complexity of this stage is given by 3N · ind+4N · ind ·(ln 1/h) / ln N =

O (ln 1/h) .

102

iii) Coplanarity checks

At the last stage of the Algorithm 1, two coplanarity checks are performed for

all selected pairs. A coplanarity check for p selected points requires a calculation

of a total of 0.5p(p − 1)(2 + 12(p − 2)) operations (determinant calculations for

each of the 0.5p(p − 1) pairs). The total complexity of this stage is thus P =

p(p− 1)(2 + 12(p− 2)) . Since the total number of selected pairs is specific to the

system configuration and does not depend on the refinements, the final stage does

not raise the overall algorithm complexity in terms of 1/h .

It follows from the above estimation that, for fixed parameter N without

further refinement, our scheme has a total complexity of O (ln 1/h) . Likewise we

can calculate the number of operations required for the Chen et al algorithm of

comparable accuracy (N ′ = 1/h is the total number of subdivisions required). As

we have seen in Section 2.3, it can be roughly estimated as

K ·N ′+
1

2
N ′(N ′−1)(2+12(N ′−2)) =

K

h
+

1

2h

(1

h
−1

)(

2+12
(1

h
−2

))

= O
(1

h3

)

Here K · N ′ operations are spent on stability checks, while the coplanarity

check for each of the pairs takes up the rest of the complexity.

It is obvious that for small h our complexity O (ln 1/h) is significantly lower

than the O (1/h3) complexity of the Chen et al algorithm.

As an illustration, let us fix N = 10 , ind = 2K (the maximum number of

stability regions in 2d) and p = 2 · ind . The graph in Figure 4.5 illustrates the

behavior of calculated complexity estimates for the uniform Chen et al type scheme

versus the new algorithm for the K = 2 (two phase) case.

It is clear that for a mesh size smaller than a critical value (h ≈ 0.05 for

our example), the adaptive scheme proposed above outperforms the uniform grid

103

Figure 4.5. Complexity comparison

algorithm, and its advantage becomes even more visible as the mesh size required

to detect the lowest energy decreases.

4.3.4 Generalization to higher dimensions and sampling

schemes

In light of the results derived in the previous section, the new adaptive technique

possesses an advantage over other schemes in that it needs significantly less points

and operations to achieve the required accuracy. Still, such a scheme also becomes

computationally demanding when the dimension of the system starts to grow.

However, there are some ideas that can be entertained in order to reduce the

complexity of the method in higher dimensions.

For instance, the Hammersley or Halton quasi-random sequences can help re-

duce the complexity while allowing for critical point detection with the same accu-

racy in dimensions up to s = 8 (degradation and correlation can occur in higher

dimensions). These sequences are low-discrepancy point sets in a sense that the

discrepancy (deviation from the uniform distribution) of an N point sequence in

104

s -dimensional case satisfies D∗
N = O(N−1(log N)s−1) (see [60]). The Halton se-

quence is superior to that of the Hammersley in that it builds upon the previous

sets as the number of points increases. We can hope that the use of these sequences

will allow to detect inflection points with the accuracy similar to a uniform ap-

proach while reducing the overall computational cost. Figure 4.6 shows an example

of detecting concavity regions using both quasirandom and uniform approaches. It

is clear that quasirandom sampling helps to identify the miscibility gap earlier than

the regular grid. Indeed, by cooling the system from T = 600 to T = 450 , we see

an appearance of the miscibility gap much earlier for the quasirandom sequence

(at T = 525) than for the uniform sampling.

0 0.5 1
0

0.5

1
T=525

0 0.5 1
0

0.5

1
T=525

0 0.5 1
0

0.5

1
T=600

0 0.5 1
0

0.5

1
T=600

0 0.5 1
0

0.5

1
T=450

0 0.5 1
0

0.5

1
T=450

Figure 4.6. Effectiveness of the quasirandom (left) vs. uniform(right) sampling in
detecting concavity change. Squares denote the points of negative concavity, while dots
are positive concavity regions. 50 sampling points are used for both sampling schemes.

The difficulty of using quasi-random approach with any adaptive refinement

strategy is the need for a careful point ordering. One should also think about the

possible loss of accuracy in derivative calculations done on such a mesh. The last

105

obstacle can be avoided by introducing a finer regular grid around each point for

finite difference calculations. For sufficiently small grid size h , the error introduced

by such types of calculation is at least of the order of O(h) and often O(h2) for

the first and second order derivatives depending on the difference scheme [14]. The

overall complexity will not be affected if a fixed number of auxiliary points is used

for all grid points. To overcome the ordering difficulty, one can reorder the points

independently on each subset after each refinement.

The most attractive property of quasi-random sequences is that they dramati-

cally reduce the error bounds for integration [60]. This gives us reason to believe

that the quasi-random construction can potentially work very well in our case,

especially if the derivative information is used adaptively in the process of mesh

construction.

4.4 Results for binary and ternary systems

All examples given below rely on the following form of the Gibbs energy func-

tional, where the excess Gibbs energy is expressed in the form of Redlich-Kister

polynomial:

GΦ
m =

∑

i

x0
i G

Φ
i + RT

∑

i

xi log xi +xs GΦ
m

xsGΦ
m =

∑

j>i

xixj

n
∑

k=0

LΦ
i,j(xi − xj)

k

Performance estimates have been done with the Matlab 6.5 implementation of

the algorithm on a Pentium 4 2.4Ghz machine with 512MB RAM Figures 4.7(b)

through 4.9(b) show phase diagrams computed using this implementation of the

new method, while Figures 4.7(a) through 4.9(a) are reproduced from [70] and

are created using Thermocalc software with the aid of a priori knowledge of the

106

system.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
200

400

600

800

1000

1200

1400

1600
CaNa PHASE DIAGRAM

MOLE FRACTION, Na

T
E

M
P

E
R

A
T

U
R

E
, K

Figure 4.7. (a) Ca-Na diagram produced by Thermocalc; (b) Ca-Na diagram produced
by the new method

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
300

350

400

450

500

550

600
LiNa PHASE DIAGRAM

MOLE FRACTION, Na

T
E

M
P

E
R

A
T

U
R

E
, K

Figure 4.8. (a) Li-Na diagram produced by Thermocalc; (b) Li-Na diagram produced
by the new method

4.4.1 Binary examples

First, we consider a Ca-Li-Na system. Figure 4.7(a) represents its binary Li-Na

projection for T = 900K , where the miscibility gap occurs. As shown in Figure

4.1, the phase diagram calculation done by the Thermocalc software independently

107

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
300

400

500

600

700

800

900

1000
AlZn PHASE DIAGRAM

WEIGHT FRACTION, Zn

T
E

M
P

E
R

A
T

U
R

E
, K

Figure 4.9. (a) Al-Zn diagram produced by Thermocalc; (b) Al-Zn diagram produced
by the new method

produces unacceptable results when the miscibility gap is not specified manually.

The method described above detects the existing liquid and bcc miscibility gaps

and correctly predicts the corresponding phase diagram with absolutely no addi-

tional input from the user.

In the Matlab 6.5 implementation, the complete Li-Na phase diagram con-

struction with the temperature step size dt = 1oK took about 232 sec. Another

example is the Ca-Na projection calculated at T = 900K . Here all three phases

(liquid, bcc, fcc) form stable equilibria at different temperatures and a liquid misci-

bility gap occurs at temperatures higher than 1000oK . It took 261 sec to produce

the complete diagram which is given in Figure 4.8(a).

4.4.2 Ternary examples

Figure 4.10 shows the Gibbs energy of the ternary Ca-Li-Na system at T = 900K .

The straight line indicates the common tangent found by the new algorithm for

the miscibility gap, which remained undetected during unassisted Thermocalc run

108

producing incorrect diagram in Figure 4.1(b). The outline of the procedure used to

compute ternary diagrams is as follows. The preprocessing module was designed

that is capable of handling arbitrary ternary systems from given database spec-

ifications and can be integrated directly into the Thermocalc. Steps 1 and 2 of

the Algorithm 4.3.2 discussed in section 4.3 are performed in this preprocessing

module prior to the optimization. Results of the preprocessing calculation are then

automatically recorded in the corresponding macro file that can be further fed into

Thermocalc to produce the complete diagram as the one shown in Figure 4.1(a).

The timing overhead of the preprocessing routine did not exceed 5 sec for any of

the above fixed temperature calculations.

Figure 4.10. Gibbs energy of the Ca-Li-Na system at T = 900K .

4.5 Conclusion

In this chapter, we propose a new scheme to optimize the phase diagram construc-

tion algorithm adopted in Thermocalc. The new algorithm possesses advantages

over existing methods in terms of the convergence speed, the computational com-

plexity and the robustness. It can be used to automate the calculation of phase

109

equilibria in complicated systems. Numerical results for binary and ternary sys-

tems show good agreement of automatic calculations with prior results.

As discussed earlier for the higher space dimensions, the new approach carries

an increased computational load, so a tradeoff must be made between the accuracy

of the solution and the complexity of the scheme. Possible higher dimensional

solutions including better sampling techniques discussed above are the main focus

of our current research and will be discussed in future publications.

Chapter 5
Summary and discussion

In this thesis we have successfully developed, analyzed and implemented efficient

novel methods for solving some nonlinear optimization problems. Numerical tech-

niques that have been elaborated within the scope of this work have a broad range

of applications, including problems not related directly to optimization. A number

of important theoretical questions that provide further insight into the characteris-

tics of the applied problems having significant practical value have been answered.

Quantization: results and open questions

In Chapter 2, we have provided some theoretical analysis of the quantization

problem and demonstrated the need for a numerical algorithm with superior con-

vergence properties. Two such algorithms have been proposed in Chapter 3 and

their advantage over existing algorithms have been shown both theoretically and

numerically. One of them explores the coupling of the Lloyd scheme with Newton-

like methods. We have numerical and analytical results justifying super-linear

convergence of the algorithm within the convergence region, which can be reached

after some initial Lloyd iterations.

Another algorithm represents a multilevel scheme in a nonlinear energy-based

111

optimization setting. Due to the nonlinear nature of the quantization problem

it cannot be analyzed using standard linear multigrid approach. Some recent at-

tempts by other groups to construct a multigrid method for quantization problems

via conventional full approximation scheme methods have resulted only in limited

success for some 1-d problems [50]. We avoided the difficulties associated with the

traditional approach essentially by relying on the energy minimization. Since the

energy functional is generally non-convex, a dynamic nonlinear preconditioner was

proposed to relate our problem to a problem of convex optimization. In the case of

one-dimensional problems, we have shown that the nonlinear multilevel algorithms

enjoy uniform convergence properties independent of the problem size k , thus a

significant speedup comparing to the Lloyd iteration is achieved.

Our theoretical framework can be potentially extended to higher space dimen-

sion as we have established proper relationship between CVTs, optimization prob-

lems and dynamic nonlinear preconditioning, and can be used for a wider class of

nonlinear problems. Numerically, a multilevel routine in the higher space dimen-

sion has been implemented with success, but the rigorous proof of convergence is

still not available. The analysis of multilevel quantization schemes and the proof

of global convergence of the Lloyd iteration in higher dimensions are among the

subjects of our current research.There are also a number of other questions that

are left to be answered:

• One of them is the geometric convergence rate of the Lloyd iteration for

smooth densities. Although it is confirmed by all numerical experiments we

have done to this point, this fact still remains to be a conjecture.

• It might be beneficial to explore possible coupling of our algorithm with

some existing global optimization techniques to see whether it can serve as

112

an accelerator in the neighborhood of the global solution. We’re currently

considering an implementation of this idea based on the multilevel trust

region method and other possible extensions.

• We are also constantly looking for new applications that might benefit from

the CVT approach. In fact, our short term plans include the application of

the techniques developed in this work to a couple of practical problems, such

as clustering, grain boundary analysis and different data mining applications.

Along these lines, we’re currently working toward extending the results of this

thesis to the discrete setting, that will make it applicable to a wider array

of tessellation contexts. One of the possible discrete analogues of the Lloyd

method that can be used to cluster a discrete set of data can be outlined

as follows. Given a discrete, finite-dimensional set of points W = {yl}m
l=1

belonging to R
N , and an initial set of cluster centers {zi}k

i=1 , then for each

y ∈ W ,

1. find the zi that is closest to y ; denote the index of that zi by i∗ ;

2. assign y to the cluster corresponding to z∗i ;

3. recompute the cluster center z∗i to be the mean of the points belonging

to the corresponding cluster.

If the centers are confined to W by the application requirements, step 3. can

be modified so that the new center is taken to be the point in i -th cluster

closest to the corresponding mean value. This version obviously amounts to a

combinatorial search and has a finite convergence time, but it suffers from the

same slow convergence issues that were established for the continuous version

earlier in Chapter 2. In fact, for quadratic problems in R
N its complexity

113

rises to O(mkN+1) , as shown in [15]. It is thus interesting to see whether

some speedup can be achieved via the same type of acceleration techniques

we used in this work.

Phase diagrams: results and open questions

In Chapter 4 we introduced a novel algorithm for automating phase diagram

construction for materials science applications. The nonlinear constrained opti-

mization problem has been put into geometric context, which allowed to develop

a user-independent method of choosing the starting values for the minimization.

Adaptive techniques were used to significantly reduce the problem complexity. An-

alytical and numerical results for two- and higher dimensional calculations have

been provided and the advantage of the new algorithm over existing software pack-

ages has been confirmed. Many important theoretical and computational questions

have been answered within the scope of this work, however, there are still several

issues to be discussed. Here’s a short summary of the directions of our current

work:

• Generalization of the algorithm to higher dimensions without loss of efficiency

requires the use of more advanced sampling schemes. Current efforts are de-

voted to incorporating advanced multidimensional sampling schemes to make

phase diagram calculations more computationally effective. Although it has

been shown that this approach has a big potential for the problems in mod-

erately high dimensions, it remains to justify its advantages in the case when

the number of dimensions is extremely high, where possible deterioration of

quasirandom sampling properties may occur.

• Another direction of the ongoing research is the complete integration of the

new algorithm with the Thermocalc package. We design a preprocessing

114

module that would be able to analyze the input data such as Gibbs energy,

number of phases and other simple system characteristics and automatically

produce a Tharmocalc-compatible macro files with the initial optimization

parameters. A user would then be able to use this file to produce the required

phase diagram without any additional input. Here’s the schematic flow chart

visualizing this approach:

After such an integration is complete, we expect to move to the next out-

standing challenge. Namely, we want to combine all the developed tech-

niques and design a standalone software package for automatic multiphase

and multicomponent phase diagram generation. Such a package will require

the development of the user friendly interface as well as good optimization

routines and will probably be a cumulative effort of a team of researchers.

Once such a package becomes available, it will allow to considerably speed

up construction and analysis of phase diagrams and will greatly improve the

productivity of research in materials science community.

Overall, this work has demonstrated the efficiency of multigrid and adaptive

115

techniques applied to some important nonlinear optimization problems and showed

the possibility of their rigorous analysis within the chosen framework. Current

study raised many interesting and important new questions that will be addressed

in the author’s future work.

Bibliography

[1] J. O. Andersson, T. Helander, L. H. Hoglund, P. F. Shi and B.

Sundman, THERMO-CALC & DICTRA, computational tools for materials
science, CALPHAD, Vol.26, 2002, pp. 273-312.

[2] F. Aurenhammer, Voronoi diagrams. A survey of a fundamental geometric
data structure, ACM Computing Surveys, 23, 1990, pp. 345-405.

[3] A. Brandt, General highly accurate algebraic coarsening, Electronic Trans-
actions on Numerical Analysis, 10, 2000, pp. 1-20.

[4] M. Brezina, A. Cleary, R. Falgout, H. Henson, J. Jones, T. Man-

teuffel, S. McCormick and J. Ruge, Algebraic multigrid based on el-
ement interpolation, SIAM Journal on Scientific Computing, 22, 2000, pp.
1570-1592.

[5] J. Burkardt, M Gunzburger and H.-C. Lee, Centroidal Voronoi
Tessellation-Based Reduced-Order Modeling of Complex Systems, to appear.

[6] M. Cappellari and Y. Copin, Adaptive spatial binning of integral-field
spectroscopic data using Voronoi tessellations, Monthly Notices Royal Astro-
nomical Soc., 342, 2003, pp.345-354.

[7] Q. Chang and Z. Huang, Efficient algebraic multigrid algorithms and their
convergence, SIAM Journal on Scientific Computing, 24, 2002, pp. 597-618.

[8] S.-L. Chen, K.-C. Chou and Y.A. Chang, CALPHAD, 17, 1993, pp.
237-250.

[9] S.-L. Chen, K.-C. Chou and Y.A. Chang, CALPHAD, 17 (1993) 287-
302.

[10] S.-L. Chen, S. Daniel, F. Zhang, Y. A. Chang, X.-Y. Yan, F.-Y.

Xie, R. Schmid-Fetzer, W. A. Oates, The Pandat Software Package
and its Applications, CALPHAD, 26, 2002, pp.175-188

117

[11] D. Cohen-Steiner, P. Alliez, M. Desbrun, Variational shape approxi-
mation, ACM Transactions on Graphics, 23, 2004, pp.905-914.

[12] J.A.D. Connoly, D. M. Kerrick, An algorithm and computer program
for calculating composition diagrams, CALPHAD, 11, 1987, pp. 1-54

[13] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, Coverage control
for mobile sensing networks IEEE Tran. Robotics and Automation, 20, 2004,
pp.243-255.

[14] J.E. Dennis, R. Schnabel, Numerical Methods for Unconstrained Opti-
mization and Nonlinear Equations, Prentice-Hall, 1983

[15] Q. Du, V. Faber and M. Gunzburger, Centroidal Voronoi tessellations:
applications and algorithms, SIAM Review, 41, 1999, pp. 637–676.

[16] Q. Du and M. Gunzburger, Grid Generation and Optimization Based on
Centroidal Voronoi Tessellations, Appl. Math. Comp., 133, 2002, pp. 591–607.

[17] Q. Du and M. Gunzburger, Centroidal Voronoi Tessellation Based Proper
Orthogonal Decomposition Analysis, International series of Numerical Math-
ematics, 143, pp.137-150, Birkhauser, 2002

[18] Q. Du, M. Gunzburger, and L. Ju, Constrained centroidal Voronoi tes-
sellations on general surfaces, SIAM J. Sci. Comput., 24, 2003, pp. 1488–1506.

[19] Q. Du, M. Gunzburger, and L. Ju, Meshfree, probabilistic determination
of point sets and support regions for meshless computing, Comput. Meths.
Appl. Mech. Engrg., 191, 2002, pp. 1349–1366.

[20] Q. Du, Max Gunzburger, and L. Ju, Voronoi-based finite volume meth-
ods, optimal Voronoi meshes, and PDEs on the sphere, Comput. Meth. Appl.
Mech. Engrg., 192, 2003, pp. 3933–3957.

[21] Q. Du, M. Gunzburger, L. Ju and V. Faber, Finite volume methods on
a sphere based on the constrained centroidal Voronoi tessellations, to appear
in Comput. Meth. Appl. Mech. Engrg.

[22] Q. Du, M. Emelianenko and L. Ju, Convergence Properties of the Lloyd
Algorithm for Computing the Centroidal Voronoi Tessellations, submitted to
SIAM J. Num. An., 2004.

[23] Q. Du and M. Emelianenko, Uniform Convergence of an Energy-based
Multilevel Quantization Scheme, preprint, 2004.

[24] Q. Du, M. Emelianenko and L. Zikatanov, An Energy-based Multigrid
Quantization Scheme in Multidimension, in preparation, 2005.

118

[25] Q. Du and D. Wang, Tetrahedral mesh generation and optimization based
on centroidal Voronoi tessellations, Int. J. Numer. Meth. Eng., 56, No.9,
pp.1355-1373, 2002

[26] Q. Du and D. Wang, Anisotropic centroidal Voronoi tessellations and their
applications, SIAM J. Sci. Comput., 26, 2004, pp.737-761.

[27] Q. Du and X. Wang, Centroidal Voronoi tessellation based algorithms for
vector fields visualization and segmentation, in Proceedings of the IEEE Vi-
sualization 2004, Austin, TX, Oct. 2004, IEEE.

[28] Q. Du and T. Wong, Numerical studies of the MacQueen’s algorithm for
computing the centroidal Voronoi tessellations, Comp. Math. Appl, 2001.

[29] R. Dwyer, Higher-dimensional Voronoi diagrams in linear expected time,
Discrete and Computational Geometry, 6, 1991, pp.343-367.

[30] M. Emelianenko, Z.-K. Liu and Q. Du, A New Algorithm for the Au-
tomation of the Phase Diagram Calculation, to appear in Computational Ma-
terials Science, 2005.

[31] P. Fleischer, Sufficient conditions for achieving minimum distortion in a
quantizer, IEEE Int. Convention Record, I, 1964, pp.104-111.

[32] S. Fortune, A sweepline algorithm for Voronoi diagrams, Algorithmica, 2,
1987, pp. 153-174.

[33] S. Fortune, Voronoi diagrams and Delaunay triangulations, in Computing
in Euclidean geometry, World Sci. Publishing, River Edge, NJ, 1992, pp. 193–
233,

[34] A. Gersho, Asymptotically optimal block quantization, IEEE Trans. In-
form. Theory, 25, 1979, pp. 373–380.

[35] A. Gersho and R. Gray; Vector Quantization and Signal Compression,
Kluwer, Boston, 1992.

[36] G. Golub, C. Van Loan, Matrix Computations, The John Hopkins Uni-
versity Press, 1989

[37] R. Gray, J. Kieffer, and Y. Linde, Locally optimal block quantizer
design, Inform. Control, 45, 1980, pp. 178–198.

[38] R. Gray and D. Neuhoff, Quantization, IEEE Trans. Inform. Theory,
44, 1998, pp. 2325–2383.

119

[39] P. Gruber, Optimum quantization and its applications, Advances in Math-
ematics 186, 2004, pp.456–497.

[40] J. Hartigan and M. Wong, A k-means clustering algorithm, Appl. Stat.,
28, 1979, pp. 100–108.

[41] P. Heckert, Color image quantization frame buffer display, ACM Trans.
Comp. Graph., 16, 1982, pp. 297–304.

[42] S. Hiller, H. Hellwig, O. Deussen, Beyond stippling - Methods for
distributing objects on the plane, Computer Graphics Forum, 22, 2003, p.515–
522.

[43] M. Hillert, A discussion of methods of calculating phase diagrams, Bulletin
of Alloy Phase Diagrams, 2, pp. 265–268.

[44] Bo Jansson, A General Method for Calculating Phase Equilibria under Dif-
ferent Types of Conditions, TRITA-MAC-0233, 1984.

[45] L. Ju, Q. Du, M. Gunzburger; Probablistic methods for centroidal
Voronoi tessellations and their parallel implementations, Parallel Computing,
28, 2002, pp.1477–1500

[46] L. Ju, M. Gunzburger and Q. Du, Meshfree, Probabilistic Determina-
tion of Points, Support Spheres, and Connectivities for Meshless Comput-
ing, Computer Methods in Applied Mechanics and Engineering, 191, 2002,
pp.1349–1366

[47] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman

and A. Wu, An efficient k-means clustering algorithm: Analysis and imple-
mentation, IEEE Trans. Pattern Analysis and Machine Intelligence, 24, 2002,
p.881–892.

[48] J. Kieffer; Uniqueness of locally optimal quantizer for log-concave density
and convex error function, IEEE Trans. Infor. Theory, 29, 1983, pp. 42–47.

[49] R. Klein; Concrete and Abstract Voronoi Diagrams, Lecture Notes in Com-
puter Science 400, Springer, Berlin, 1989.

[50] Y. Koren, I. Yavneh and A. Spira, A Multigrid Approach to the 1-D
Quantization Problem, May 2003

[51] Y. Koren, I. Yavneh, Adaptive Multiscale Redistribution for Vector Quan-
tization, Jan 2004

[52] Y. Linde, A. Buzo, and R. Gray; An algorithms for vector quantizer
design, IEEE Trans. Comm., 28, 1980, pp. 84–95.

120

[53] S. Lloyd, Least square quantization in PCM, IEEE Trans. Infor. Theory,
28, 1982, pp. 129–137.

[54] F. Lu and G. Wise; A further investigation of the Lloyd-Max algorithm for
quantizer design, Twenty-First Annual Allerton Conference on Communica-
tion, Control, and Computing, University of Illinois, 1983, pp. 481–490.

[55] D.G. Luenberger, Linear and Nonlinear Programming, Addison-Wesley,
1984

[56] H. L. Lukas, J. Weiss, E-Th. Henig, Strategies for the calculation of
phase diagrams, CALPHAD, 6, 1982, pp. 229–251

[57] J. MacQueen; Some methods for classification and analysis of multivariate
observations, Proc. Fifth Berkeley Symposium on Mathematical Statistics and
Probability, Vol. I, Ed. by L. Le Cam and J. Neyman, University of California,
1967, pp. 281–297.

[58] A. Mendes and I. Themido, Multi-outlet retail site location assessment.
Inter. Trans. in Operational Research, 11, pp1-18, 2004.

[59] U. Moller, M. Galicki, E. Baresova, and H. Witte, An efficient vec-
tor quantizer providing globally optimal-solutions, IEEE Trans. Signal Proc.,
46 , 1998, pp. 2515–2529.

[60] Harald Niederreiter, Random Number Generation and Quasi-Monte
Carlo Methods, CBMS-NSF regional conference series in applied mathemat-
ics, 1992

[61] J. Nocedal, S. Wright, Numerical Optimization, Springer-Verlag, 1999

[62] A. Okabe, B. Boots, and K. Sugihara; Spatial Tessellations; Concepts
and Applications of Voronoi Diagrams, Wiley, Chichester, 1992.

[63] J. Ruge and K. Stuben, Algebraic multigrid, in Mutigrid methods. Fronties
in applied mathematics. SIAM; Philadelphia, 1987: 73-130.

[64] J. Sabin and R. Gray, Global Convergence and Empirical Consistency
of the Generalized Lloyd Algorithm, IEEE Trans. on Inform. Theory, Vol.
IT-32, no.2, March 1986

[65] S. A. Safran, Statistical Thermodynamics of Surfaces, Interfaces and Mem-
branes, Addison-Wesley, 1994

[66] X.-C. Tai and J. Xu, Global and Uniform Convergence of Subspace Correc-
tion Methods for Some Convex Optimization Problems, Math. Comp., 1998

121

[67] A. Trushkin; On the design of an optimal quantizer, IEEE Trans. Infor.
Theory, 39, 1993, pp. 1180–1194.

[68] S. Valette and J. Chassery, Approximated Centroidal Voronoi Di-
agrams for Uniform Polygonal Mesh Coarsening, Computer Graph-

ics Forum, 23, 2004, pp.381–390.

[69] C. Wager, B. Coulland N. Lange, Modelling spatial intensity for
replicated inhomogeneous point patterns in brain imaging, J. Royal

Stat. Soc. B, 66, 2004, pp.429–446.

[70] S. J. Zhang, D. W. Shin and Z. K. Liu, Thermodynamic modeling
of the Ca-Li-Na system, CALPHAD, 27, 2003, pp. 235–241.

Vita

Maria Emelianenko

Maria Emelianenko was born on March 13, 1979 in Dubna, Russia. She received
a B.S. and M.S. in Computer Science and Applied Mathematics from Moscow State
University (1999 and 2001, respectively) and an M.A. in Mathematics from Penn-
sylvania State University in 2002. Maria’s research is focused on the analysis and
development of efficient numerical algorithms. She is a part of the MatCASE
project at PSU which is funded by a major NSF-ITR grant to develop compu-
tational tools for multicomponent materials design. Recently, she has worked on
the design of fast new algorithms for quantization and clustering with the use
of concepts like Centroidal Voronoi tessellations and optimization methods for
the determination of phase diagrams for multicomponent materials. Her earlier
research activities include the analysis of multidimensional birth-death processes
and development of efficient pricing schemes in next-generation telecommunication
networks, solution of ill-conditioned systems of linear equations, and mathematical
models in biology.

