Modern Methods in the Calculus of Variations: L ${ }^{p}$ Spaces, First edition
I. Fonseca and G. Leoni, Springer Monographs in Mathematics, Springer, 2007

July 302009
In this file we collect some additional material and comments that we receive from readers.

- The following modification of Theorem 2.112 for $p=1$ was proposed and written by Nguyen Huy Chieu. With respect to the original proof, it has more details and is more precise in terms of precise representatives. See also the file "Corrections and Improvements" for additional comments.

Theorem. Let $(\Omega, \mathcal{A}, \mu)$ be a measured space with a σ-finite measure, and let E be a separable Banach space. The following holds.
(i) If $L \in\left(L_{1}(\Omega ; E)\right)^{*}$ then there exists a unique $v \in L_{\infty}^{w}\left(\Omega ; E^{*}\right)$ such that

$$
\begin{equation*}
L(u)=\int_{\Omega}\langle v(\omega), u(\omega)\rangle d \mu \tag{0.1}
\end{equation*}
$$

for all $u \in L_{1}(\Omega ; E)$. Moreover, $\|L\|=\|v\|_{L_{\infty}^{w}\left(\Omega ; E^{*}\right)}$.
(ii) Every functional of the form (0.1), where $v \in L_{\infty}^{w}\left(\Omega ; E^{*}\right)$, is linear and continuous on $L_{1}(\Omega ; E)$.

Proof. (i) Let $L \in\left(L_{1}(\Omega ; E)\right)^{*}$. Since E is separable, there exists $\left\{e_{n}\right\} \subset E \backslash\{0\}$ such that $\overline{\left\{e_{n}\right\}}=E$. For each $n \in \mathbb{N}$,

$$
L_{n}(u):=L\left(u e_{n}\right) \quad \forall u \in L_{1}(\Omega)=L_{1}(\Omega ; \mathbb{R})
$$

is linear and continuous and

$$
\begin{equation*}
\left\|L_{n}\right\|_{\left(L_{1}(\Omega)\right)^{*}}=\sup _{u \in L_{1}(\Omega) \backslash\{0\}} \frac{\left|L\left(u e_{n}\right)\right|}{\|u\|_{L_{1}(\Omega)}} \leq\|L\|_{\left(L_{1}(\Omega ; E)\right)^{*}}\left\|e_{n}\right\|_{E}<\infty . \tag{0.2}
\end{equation*}
$$

By the Riesz representation in $L_{1}(\Omega)$, there exists $v_{e_{n}} \in L_{\infty}(\Omega)$ such that

$$
\begin{equation*}
L\left(u e_{n}\right)=\int_{\Omega} v_{e_{n}}(\omega) u(\omega) d \mu \quad \forall u \in L_{1}(\Omega) . \tag{0.3}
\end{equation*}
$$

We have

$$
\left\|L_{n}\right\|_{\left(L_{1}(\Omega)\right)^{*}}=\left\|v_{e_{n}}\right\|_{L_{\infty}(\Omega)} \leq\|L\|_{\left(L_{1}(\Omega ; E)\right)^{*}}\left\|e_{n}\right\|_{E} .
$$

Similarly, for each $\alpha, \beta \in \mathbb{Q}$ and $i, j \in \mathbb{N}$, there exists a unique $v_{\alpha e_{i}+\beta e_{j}} \in L_{\infty}(\Omega)$ such that

$$
L\left(u\left(\alpha e_{i}+\beta e_{j}\right)\right)=\int_{\Omega} v_{\alpha e_{i}+\beta e_{j}}(\omega) u(\omega) d \mu \quad \forall u \in L_{1}(\Omega) .
$$

We have

$$
\left\|v_{\alpha e_{i}+\beta e_{j}}\right\|_{L_{\infty}(\Omega)} \leq\|L\|_{\left(L_{1}(\Omega ; E)\right)^{*}}\left\|\alpha e_{i}+\beta e_{j}\right\|_{E} .
$$

Since $v_{\alpha e_{i}+\beta e_{j}}$ is unique and L is linear,

$$
\begin{equation*}
\alpha v_{e_{i}}(\omega)+\beta v_{e_{j}}(\omega)=v_{\alpha e_{i}+\beta e_{j}}(\omega) \quad \mu-a . e ., \tag{0.4}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\left\|\alpha v_{e_{i}}+\beta v_{e_{j}}\right\|_{L_{\infty}(\Omega)} \leq\|L\|_{\left(L_{1}(\Omega ; E)\right)^{*}}\left\|\alpha e_{i}+\beta e_{j}\right\|_{E} . \tag{0.5}
\end{equation*}
$$

Put

$$
\begin{aligned}
& \tilde{\Omega}=\left\{\omega \in \Omega:\left|\alpha v_{e_{i}}(\omega)+\beta v_{e_{j}}(\omega)\right| \leq\|L\|_{\left(L_{1}(\Omega ; E)\right)^{*}}\left\|\alpha e_{i}+\beta e_{j}\right\|_{E}\right. \\
&\left.\alpha v_{e_{i}}(\omega)+\beta v_{e_{j}}(\omega)=v_{\alpha e_{i}+\beta e_{j}}(\omega) \quad \forall i, j \in \mathbb{N}, \forall \alpha, \beta \in \mathbb{Q}\right\} .
\end{aligned}
$$

From (0.4) and (0.5) it follows that $\tilde{\Omega} \in \mathcal{A}$ and $\mu(\Omega \backslash \tilde{\Omega})=0$. Take any $e \in E$. Since $\left\{e_{n}\right\}$ is dense in E, there exists a sequence $\left\{e_{n_{j}}\right\}$ converging to e. For each $\omega \in \tilde{\Omega},\left\{v_{e_{n_{j}}}(\omega)\right\}$ is a Cauchy sequence in \mathbb{R}. Hence $\left\{v_{e_{n_{j}}}(\omega)\right\}$ converges to some $v_{e}(\omega) \in \mathbb{R}$. Obviously, $v_{e}(\omega)$ does not depend on the particular sequence $\left\{e_{n_{j}}\right\}$ provided that $\left\{e_{n_{j}}\right\}$ converges to e. Since $\omega \in \tilde{\Omega}$,

$$
\left|v_{e_{n_{j}}}(\omega)\right| \leq\|L\|_{\left(L_{1}(\Omega ; E)\right)^{*}}\left\|v_{e_{n_{j}}}\right\|_{E} \quad \forall j \in \mathbb{N} .
$$

Taking $j \rightarrow \infty$, we have

$$
\left|v_{e}(\omega)\right| \leq\|L\|_{\left(L_{1}(\Omega ; E)\right)^{*}}\|e\|_{E} \quad \forall \omega \in \tilde{\Omega} .
$$

Hence $v_{e} \in L_{\infty}(\Omega)$. Take any $e, \tilde{e} \in E$. Suppose that sequences $\left\{e_{n_{j}}\right\}$ and $\left\{e_{\tilde{n}_{j}}\right\}$ converge, respectively, to e and \tilde{e}. We have

$$
\left|v_{e_{n_{j}}}(\omega)-v_{e_{\tilde{n}_{j}}}(\omega)\right| \leq\|L\|_{\left(L_{1}(\Omega ; E)\right)^{*}}\left\|e_{n_{j}}-e_{\tilde{n}_{j}}\right\|_{E} \quad \forall j \in \mathbb{N}, \forall \omega \in \tilde{\Omega} .
$$

Letting $j \rightarrow \infty$, we have

$$
\begin{equation*}
\left|v_{e}(\omega)-v_{\tilde{e}}(\omega)\right| \leq\|L\|_{\left(L_{1}(\Omega ; E)\right)^{*}}\|e-\tilde{e}\|_{E} \quad \forall \omega \in \tilde{\Omega} . \tag{0.6}
\end{equation*}
$$

This implies that for each $\omega \in \tilde{\Omega}$ the function $E \ni e \mapsto v_{e}(\omega)$ is continuous. For any $\alpha, \beta \in \mathbb{R}$, there exists $\left(\alpha_{j}, \beta_{j}\right) \in \mathbb{Q} \times \mathbb{Q}$ such that $\left(\alpha_{j}, \beta_{j}\right) \rightarrow(\alpha, \beta)$ as $j \rightarrow \infty$. Take $\omega \in \tilde{\Omega}$. We have

$$
\alpha_{j} v_{e_{n_{j}}}(\omega)+\beta_{j} v_{e_{\tilde{n}_{j}}}(\omega)=v_{\alpha_{j} e_{n_{j}}+\beta_{j} e_{\tilde{n}_{j}}}(\omega) \quad \forall j \in \mathbb{N} .
$$

Note that the function $E \ni e \mapsto v_{e}(\omega)$ is continuous, taking $j \rightarrow \infty$, we have

$$
\alpha v_{e}(\omega)+\beta v_{\tilde{e}}(\omega)=v_{\alpha e+\beta \tilde{e}}(\omega) .
$$

Hence for each $\omega \in \tilde{\Omega}$ the function $E \ni e \mapsto v_{e}(\omega)$ is linear and continuous. Replacing n by n_{j} in (0.3) and then taking $j \rightarrow \infty$ yields

$$
\begin{equation*}
L(u y)=\int_{\Omega} v_{e}(\omega) u(\omega) d \mu \quad \forall u \in L_{1}(\Omega) \tag{0.7}
\end{equation*}
$$

Consider the function $v: \Omega \rightarrow E^{*}$ defined by

$$
\begin{aligned}
v(\omega): & E \rightarrow \mathbb{R}, \\
& e \mapsto v_{e}(\omega) .
\end{aligned}
$$

Since $\left\{e_{n}\right\}$ is dense in E and for each $\omega \in \tilde{\Omega}, v(\omega)(\cdot)$ is linear and continuous on E,

$$
\|v(\omega)\|_{E^{*}}=\sup _{n} \frac{\left|\left\langle v(\omega), e_{n}\right\rangle\right|}{\left\|e_{n}\right\|_{E}}=\sup _{n} \frac{\left|v_{e_{n}}(\omega)\right|}{\left\|e_{n}\right\|_{E}} \leq\|L\|_{\left(L_{1}(\Omega ; E)\right)^{*}}
$$

for all i $\omega \in \tilde{\Omega}$. For each $e \in E$ the mapping $\Omega \ni \omega \mapsto\langle v(\omega), e\rangle=v_{e}(\omega)$ is measurable, thus v is weak star measurable. We have

$$
\|v\|_{L_{\infty}^{w}\left(\Omega ; E^{*}\right)}=\underset{\omega}{\operatorname{ess} \sup _{\omega}}\|v(\omega)\|_{E^{*}}=\underset{\omega}{\operatorname{ess} \sup _{\omega}}\left(\sup _{n} \frac{\left|v_{e_{n}}(\omega)\right|}{\left\|e_{n}\right\|_{E}}\right) \leq\|L\|_{\left(L_{1}(\Omega ; E)\right)^{*}} .
$$

By Theorem 2.110(i) and the density of $\left\{e_{n}\right\}$ in E, the class \mathcal{S} of integrable simple functions of the form

$$
\begin{equation*}
s=\sum_{i=1}^{n} \chi_{F_{i}} c_{i} e_{i} \tag{0.8}
\end{equation*}
$$

where $c_{i} \in \mathbb{R}$ v $F_{i} \in \mathcal{A}(i=1, \ldots, n)$, is dense in $L_{1}(\Omega ; E)$. Hence

$$
\|L\|_{\left(L_{1}(\Omega ; E)\right)^{*}}=\sup _{s \in \mathcal{S} \backslash\{0\}} \frac{\mid L(s) \|}{\|s\|_{L_{1}(\Omega ; E)}}
$$

Take any $s \in \mathcal{S}$ of the form (0.8). By (0.3) and Hölder's inequality,

$$
\begin{aligned}
|L(s)| & =\left|\sum_{i=1}^{n} \int_{F_{i}} c_{i} v_{e_{i}} d \mu\right| \leq \sum_{i=1}^{n} \int_{F_{i}}\left|c_{i}\right|\left\|e_{i}\right\|_{E} \frac{\left|v_{e_{i}}(\omega)\right|}{\left\|e_{i}\right\|_{E}} d \mu \\
& \leq \int_{\Omega}\left(\sum_{i=1}^{n} \chi_{F_{i}}(\omega) \mid c_{i}\| \| e_{i} \|_{E}\right) \sup _{k} \frac{\left|v_{e_{k}}(\omega)\right|}{\left\|e_{k}\right\|_{E}} d \mu \\
& \leq\|s\|_{L_{1}(\Omega ; E)} \underset{\omega}{ } \underset{k}{\operatorname{ess} \sup ^{2}}\left(\sup _{k} \frac{\left|v_{e_{k}}(\omega)\right|}{\left\|e_{k}\right\|_{E}}\right) .
\end{aligned}
$$

Hence

$$
\|L\|_{\left(L_{1}(\Omega ; E)\right)^{*}}=\sup _{s \in \mathcal{S} \backslash\{0\}} \frac{|L(s)|}{\|s\|_{L_{1}(\Omega ; E)}} \leq \underset{\omega}{\operatorname{ess} \sup _{\omega}}\left(\sup _{k} \frac{\left|v_{e_{k}}(\omega)\right|}{\left\|e_{k}\right\|_{E}}\right)=\|v\|_{L_{\infty}^{w}\left(\Omega ; E^{*}\right)},
$$

and thus

$$
\|L\|_{\left(L_{1}(\Omega ; E)\right)^{*}}=\|v\|_{L_{\infty}^{w}\left(\Omega ; E^{*}\right)} .
$$

Since for each $\omega \in \tilde{\Omega}$ the mapping $E \ni e \mapsto v_{e}(\omega)$ is linear,

$$
\begin{aligned}
L(s) & =\sum_{i=1}^{n} \int_{F_{i}} c_{i} v_{e_{i}}(\omega) d \mu=\sum_{i=1}^{n} \int_{F_{i}} v_{c_{i} e_{i}}(\omega) d \mu=\sum_{i=1}^{n} \int_{F_{i}} v_{s(\omega)}(\omega) d \mu \\
& =\int_{\Omega} v_{s(\omega)}(\omega) d \mu=\int_{\Omega} v(\omega)(s(\omega)) d \mu=\int_{\Omega}\langle v(\omega), s(\omega)\rangle d \mu .
\end{aligned}
$$

Take any $u \in L_{1}(\Omega ; E)$. Then there exists $\left\{s_{j}\right\} \subset \mathcal{S}$ such that

$$
\lim _{j \rightarrow \infty}\left\|s_{j}-u\right\|_{L_{1}(\Omega ; E)}=0
$$

We have

$$
L(u)=\lim _{j \rightarrow \infty} L\left(s_{j}\right)=\lim _{j \rightarrow \infty} \int_{\Omega} v_{s_{j}(\omega)}(\omega) d \mu .
$$

From (0.6) it follows that

$$
\left|v_{s_{j}(\omega)}(\omega)-v_{u(\omega)}(\omega)\right| \leq\|L\|_{\left(L_{1}(\Omega ; E)\right)^{*}}\left\|s_{j}(\omega)-u(\omega)\right\|_{E}
$$

for all $\omega \in \tilde{\Omega}$. Hence

$$
L(u)=\int_{\Omega} v_{u(\omega)}(\omega) d \mu=\int_{\Omega}\langle v(\omega), u(\omega)\rangle d \mu
$$

and (i) is proved.
(ii) Let $v \in L_{\infty}^{w}\left(\Omega ; E^{*}\right)$ and L is the functional of the form (0.1). We need to prove that L is linear and continuous on $L_{1}(\Omega ; E)$. Indeed, since $v \in L_{\infty}^{w}\left(\Omega ; E^{*}\right)$, there exists $M>0$ such tha $\|v(\omega)\|_{E^{*}} \leq M \mu$-a.e.. Hence

$$
\begin{aligned}
|L(u)| & =\left|\int_{\Omega}\langle v(\omega), u(\omega)\rangle d \mu\right| \leq \int_{\Omega}|\langle v(\omega), u(\omega)\rangle| d \mu \\
& \leq \int_{\Omega}\|v(\omega)\|_{E^{*}}\|u(\omega)\|_{E} d \mu \leq M\|u\|
\end{aligned}
$$

for all $u \in L(\Omega ; E)$. Note that $\Omega \ni \omega \mapsto\langle v(\omega), u(\omega)\rangle$ is measurable and L is linear. Hence L is linear and continuous. The proof is complete.

