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Introduction 

The theory of  the "fiT~e structure" of  L is essentially tile a t tempt  to 
elucidate the way the constructible hierarchy grows by examining its 
l~havior at arbitrar~ levels. A typical question would be: At which 
t~ >- ~ does a new L~-definable subset of a occur (i.e. ~ (~) n La+ 1 q~ 
L0)? We find such questions both interesting and important in their 
own right. Admittedly, however, the questions - and the methods used 
to solve them - are somewhat remote from the normal concerns of the 
set theorist. One might refer to "micro set theory" in contradistinction 
to the usual "'macro set theory". Happily, micro set theory turns out  to 
have nontrivial applications in macro set tkeory. These will be treated 
in some detail in § 5, 6 and in Silver's note at the end of this paper (§ 7). 

We have found it convenient to replace the usual L~ hiei'archy by a 
new hierarchy I~. We define Jo,÷l not  as the collection of  definable sub- 
sets of  J,~ but as tile closure of  J,, u (J~} under a class of  functions 
which we call "rudimentary".  These are just the functions obtained by 
omitting the recursion schema from the usual list of  schemata for pri- 
mitive reeursive set functions. In a sense they form the smallest class of  
functions 01 such that there is a smooth definability theory for transi- 
tive domains closed under .~. The main difference between the two hie- 
rarchies is that Ja has rank ~o~ rather than a, However, the subsets ofJ  a 

* The typing of the manuscript was supported by Grant GP # - 27964. 
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which are elements ofJa+ l are just  the definable ones, Ja+i is, so to 
speak, the result of  "stretching" the collection of  the definable subsets 
of J~ upwards co levels in rank without adding new ones. The exact cor- 
respondence between the two hierarchies is given by: 

Jo = Lo = O: L~+~ = V~+,~ ¢3 JI~-Q . 

Thus Ja = L~ whenever ~ a  = a. 
§ 1 develops the theory of  rudimentary functions, t* § 2 defines the 

hie ra rchy  Ja and develops its elementary properties - including the 
basic lemmas on admissible ordinals, § 3 proves the Zn uniform isation 
lernma: Every ~ n ( J ~ )  relation is uniformisable by a Zn (J~) function. 

§4 extends the results of  §3. §5 uses the results of  §4 to prove some 
combinatorial principles in L. §6 then gives characterisations of  weak 
compactness in L. Specifically, it is shown that if V = L and r/is regular, 
then weak compactness is equivalent to each of  the following: 

(i) I fA c r/is stationary in ~, then A r~ vq is stationary in ~ lbr some 

(ii) The 7/Souslin Hypothesis. 
(iii) Any of  the partition properties 

n (n):,.- (* < 3" < 

(The last is proved by shewing that any Soustin tree ~.:an be partitioned 
so as to violate the principic~ (iii); Martin showed this for 3' = 3, r = 2. 
The full theorem was proved by Stare). An appendix written by Jack 
Silver (§ 7) uses a theor~:m of  § 5 to show that tile ga0-one form of  the 
two cardinals conjecture holds at singular cardinals in L, a His proof  is 
shorter and more elegant than my original one. 

To my knowledge, the first to study the fine structur~ of  L for its 
own sake was Hilary Putman who, together with his pupil George Boolas, 
first proved some of  the results in § 3. An account o f  their work can be 
found in [ 1 ]. For a lucid account o f  the basic properties of  L, the reader 
is referred to [6]. For admissible ordinals (and the related theory of  pri- 
mitive recursive set functions), see [51, The model theoretic lemmas used 
in Silver's note can be found in [31, 
* For notes see p. 308. 
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The material in this paper first appeared in a sequence of  handwrit ten 
notes: "SH = weak compactness in L", "'The Z,, uniformisation lemma", 
"A note on the two cardinals problem".  I am grateful to many people 

who struggled through these t:otes and gave me the benefit of  their 
comments.  I am particularly grateful to Silver and Solovay for several 
fruitful discussions. My deepest thanks go to Joseph Rebholz who, in 
addition to proofreading this paper, read it in manuscript form and made 
invaluable comments.  

§0, Preliminaries 

Consider a first order language £ with the predicates --- (identity),  
c (membership), We ad~4 other  predicates as necessary. In addition to 
the usual symbols  of  first order predicate logic, we suppose £ to con- 
tain bounded  quant( f~ersAx E.y ,  V x  ~ ), (thus e.g. A x  E y ~o means 
the same as A x (x ~ v -* ¢~). We call a tbrmula Z 0 (or 1I 0) if it contains 
no unbounded quantificrs. For n >- 1 we call ~ a 2; 0 ( I I , )  formula if it 

has the form: V x  I A x 2 V x  3 ... 10[ x,, @ (Ax~ V x 2 A x  3 . . . l~x n ~),  
where @ is ;Z 0. We shall deal with structures of  the form M = (  IMI; =, E, 
A 1 . . . . .  An) ,  where 13il is a domain of  sets and A 1 . . . . .  A n are relations 
on IMI. Since the first two predicates are fixed, we shall generally write: 

M = (IMI:A I . . . . .  An) .  l.et n >- O. By Zn(M)(11n(M)) we mean that set 
of  relations which are M-definable from arbitrary parameters in M by a 

v , ( I I , )  formula. If we wish to be specific about  the parameters, we 

write: R is Z,~(M) in the pa ramete r sp t ,  ..., Pro- 3 We set: 

& . = ~ .  nTI n ; ~,~ = U Z . .  

For m, n ->. 0, 2; n Z~n (M) denotes  the set o f  relations R which are 

Z,(< IMI; BI ,  ..., Bq) )  for B 1 . . . . .  Bq which are Z m (M) (similarly for 

Z ,  Ilm, ~0 Am, etc.). Obviously we have X, X 0 = X; n . We often write 

~ ,  (U;,41 . . . .  , A m ) as an abbreviation for Z n (( U; A 1 . . . . .  A,n ) ). We call 
M = < U, A l ...... A n) amenable iff U is transitive and A i n x E U for 
x E U. We note the fo l lowingabsoht teness  proper ty  of  Z0 formulae: 
I f M '  is a submodel  of  M, IM't is transitive, x E IM'I and 9 is a 2; 0 for- 
mula, then 
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+ - +  S + I x ]  • 

Wc write M ' < z n  M (n ~_ O) to mean that M' is a submodel o f  M and for 
ev,++ry Z n formula ~ and all x ~ M' we have 

Thus-<z, ° is the usual elementary st~bmodei relation. We write 
~r: M ~zn M o r M  -*z M to mean dlat lr is an lsomorpMsm of  M onto 
a n M  "<z M. I f X c  171,/I, we write x -<,, i4 to mean , !  -<,, M, where 
M is the result o f  restricting M to X. For  n >- I ,  ,-~ -<zn M is equivalent 
t%the condition: I fA  c M is lln_ l in parameters from X a n d A  :g 0, 
then A n X 4: 0, * ~ n  is the satisfaction relation on M for ,'L' n formulae  
rn(x) denotes the rank o f  the set x. ZF-- consists of  all axioms of  ZF set 
t h e o ~  except the power set axiom, u a(,,,) means the least ordinal 
such that .,. 

Now let IMI be closed under  finite subsets (i.e, x c IMI, ~ <  ~ --, x 

IMI). We list some closure properties :)f Zn(M) and An(M) (n ~ 1 ), 

Property 0.1. l f R y x  is ~n,  so is V y R y x .  

Proof. Le~ R y x  ~ V z Pz; x ,  where P is II,_ t. Then 

V y  R y x  ~ V u  (Q(U) ^ V z y  ~ t¢ P z y x ) ,  

where Q is the Z o condition 

Q ( u ) ~  V z y  ~ u A x E  u ( x  =z  v x  = 3 0 .  

I f P  is ~;o, we are done. Otherwise we use the equivalences 

Q(u) ~ (A x ~ u Vy S(x,  y )  ~ V r(Q(v) ^ 

A A x E u V v E I ,  ;~(x,y)) 

t6 bring the bounded quantifiers successively inward. 
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An immedia te  corol lary o f  Proper ty .  0. t is 

P roper ty  0.2. l f R 0 x ,  R l x  are E n , then so are (Rox v R~x)  and 

(Rox ^ Rlx) .  

Hence 

P rope r ty  0.3.  ~'n relat ions are closed under  all sentential  opera t ions  
( ^ ,  v, -3). 

We call a func t ion  ,/'(x) E,, iff the relation v = ,/'(x) is v • ~ ' * l  1 • 

Proper ty  0,4,  l f R z  i ,,, z m andJ}{x) ti = 1 . . . . .  m) are E n, then so is 

Proof.  Rf(X} *-'* V ~  (Ai~m I Zi =y}(X) ^ Rz), 

Proper ty  0.5.  If f is Z ,  and d o r a ( f )  is ,3 , ,  then f is ~, , .  

Proof .  y =~ f ( x )  ~ (x q~ d o ra ( f )  v V z (z = .f(x) ^ y -4= z)). 
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§ 1. Rudimentary functions 

Definit ion.  We call a f lmct ion f: V n --, V nMhnentao, (rud)  iff it is fini- 
tely generated by  the fol lowing schemata :  

(a)  [ ( x )  = x i ,  

~,b} f (x )  = x ; \ x i ,  

(c) fix) = {xj, xi}, 
(d) f(x) = h ~ x ) ) ,  
(e) f ( y ,  x) = Uz~ >, g(z, x). 

Note. This is the usual list o f  scl~emata for  primitive recursive set  func- 
tions, minus  the recursion schema.  

We list some e lementa ry  proper t ies  o f  rud funct ions:  
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Property 1.1. 
(a) f ( x )  = U x i is rud. 

(b) f ( x )  = x i 0 x~ = U {xi, xi  } is rud. 
(c) f ( x )  = {x} is rud. 

(d) f (x )  = (x) is rud. 

(e) I f f ( y ,  x )  is rud, so is g(y ,  x)  = ~J'(z, x)l z E 30 (since g (y ,  x)  = 
{</(z, x), z>}). 

Definition. R c V n is rud iff there is ~ rud function r : V n ~ V such that 
R = {<x)l r ( x ) ~  0}. 

Property 1.2. 

(a) ~ is rud, since y ~ x ~ {y} \ x  ~ 0. 

(b) If  f ,  R are rud, then so is g(x) = f ( x )  if Rx ,  and g(x) = 0 if not. 
[Proof: Let  R x  ~ r(x) ~ O. Then g(x) = U3~nx~.f(x). I 

Let Xn be the characteristic function o f  R. 
(c) R is rud ~ ×R is rud (proof  by 2b). 

Hence 
(d) R is rud ~ -1 R is ~ ud. 

[Proof: X--~ (x) = I\XR (x).] 
(e) Let f/: V n ~ V , R  i c V n be rud ( i=  1, ..., m). L e t R  i n R / =  O for 

i ~ ] and UiR i = V n . Then f is rud, whece f ( x )  = fi(x)  if Ri(x) .  

[Proof: Set f / (x)  = f /(x)  if Eix  and f/(:O = 0 if not. Then f (x )  = 

1 fax ) .  l 
(f) I f  R y x  is rud, so i s f ( y ,  x)  = y c'. { z lRzx} .  

[Proof: f ( y ,  x)  = UzEy h(z, x), where h ( z , x )  = {z} i f R z x  and 
h(z, x) = 0 if not. l  

(g) l f R  is rud and ^ x V v R y x ,  then so i s / ( ) , ,  x)  = that z ~ y such 

that R z x  if V z ~ y R z x  and f ( y ,  x) = 0 if not. 
[Proof: f ( y ,  x )  = U O' n {zIRzx}) .!  

(h) I f R y x  is rud, then so is V z  ~ y Rzx .  
(i) I fRzx is rud (i = 1 . . . .  , m), then so are V mi=l R i x  andA~l-  Rix .  

Property 1.3. The following functions are rud: 

(a) (x)~ (i < n < ~a), where ((z0, .... z ~  I ))~. = z i and (u) n = 0 other- 
wise. 
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[Proof: (x)~ = that z E h (x )  such tilat V u ~ h (x )  (x = <u) a u i = z)  if 
such z exists mad (x)~ = 0 if not, where tt(x ) = U x to U 2 x to ... to Unx.]  

(b) x ( y ) ,  where x ( y )  = the unique z E U~-x such that <z, y > E x if 
such z exists and x ( y )  = 0 otherwise, 

(c) dora(x) = {z ~ O 2 x l V  v ~ O2x <v,z>~ x}, 
(d) rng(x) = {z ~ U2xl  V v ~ U2x  (z ,  v> E x } .  

(e) x x y = Ouex O,,~,,{<u, v)}. 
(t) x I' y = x 0 (rng(x) × y). 
(g) x " y  = r n ~ x  t" y) .  
(h) x -1 = h " ( x  c~ (rng(x) × dora(x))),  ~'here h(z)  = <(z)~, (z)~).  

Lemma 1.1. I f  f is rod, then there is a p < to such that  

A x rn( f tx) )  < max(rn(x I ) . . . .  rn(x m )) + p . 

Proof. By induction on the defining schemata o f ] :  The induction is 
straightforward. 

By Property 1.2 (h), (i), every Z 0 relation is rud. We shall now prove 
the converse; we shall in fact prove a much stronger theorem. 

Definition. f :  V n -~ V is simple iff  whenever ¢ ( z , y )  is a E0 E-formula, 
then ~(j '(x), y )  is equivalent (in V) to a Z0 ~-formula s (i.e. it has only 
variables, bounded quantifiers and -I, a ,  E, =). 

Note that simple functions are closed under composition. Tile simpli- 
city o f  a function f i s  equivalent to the conjunction of  the two condi- 
tions: 

( i )  x ~ i'(Y) is .v 0 .  

(ii) If A z  is ~0,  then A x E f ( y ) A x  is Z 0 , 
for given these, we can prove by induction on S 0 formula ~ that ~00(x)) 
is X 0 . 

Lemma 1.2. Al l  rud f unc t ions  are simple. 

Proof. We verily by induction on the defining schemata of  f that f is 
simple, using (i), (ii) and the closure of  simple functions under compo- 

sition. 
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Note. Not all simple functions are r~Mimentary, For  instance f is simple, 

where f ( a )  = a + ¢o for ~ >__ ¢o and/ ' (x)  = 0 otherwise. 6 

It is often of  interest to consider functions which are rud in a relation 

A (more precisely: in the characteristic function o f  A ). Not every rela- 
tion which is rud in A will be X0 in A; for instance, {x. y} ~ A is not, 
in general, 2; 0 in A. However,  we do have 

Lemma 1.3. f f  f is (uni formly)  m d  in A.  then f i~ (un i lbnnly )  expressible 

as a composit ion o f r e d  funct ions  and the funct[cn a(x)  = A n x. 

Proof. Let  ~ be the collection of  all composit ions of  rud fimctions 
and a(x). It suffices to show 

(*) I f g E  ~ a n d f ( y , x )  = IJ g ( z , x ) ,  t h e n f E  ~ . 
z ~ y  

Let "~-o be the collection o f  all rud fimctions and ~,,+! the collection 
of  all functions of  the form 

f ( x )  = ho(x ,  A n h I (x)  . . . . .  A n h m ( x ) ) .  

where h 0 E ~" ~ o  and h I . . . . .  hm ~ ~n  It is readily checked that  

= On ~n  (by  induction Oh ,~ + m prove that .¢'E ,.. ~ ~t, g E ~..I 

f g ( x )  E @m+n ). 
By induction on n, we prove 

( * * ) I f g ~  ~n a n d f ( y , x ) =  O g ( z , x ) , t h e n f ~  ~. . 
zEy 

For n = 0 this is trivial. Now let n > 0 and let (**) hold for n - 1. Let 

g ~ ~n .  Then 

g ( z , x ) = h o ( z , x , A  n h l ( z , x )  . . . . .  A n h m ( z , x ) )  , 

where h 0 ~ ~ 0 ,  hi+l ~ ~ n - l "  Set 

g(z,  X, u)  = ho(z ,  x,  u n hl  (z, x)  . . . .  , u n h m (z, x ) )  , 
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then g ~ ~t~- l" Set 
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f ~ y , x , u )  = U g ( : , x , u ) ,  

t~'t 

h(~',x)= O IJ h,(z ,x),  
i=1 2 ~ ) "  

then,~, h ~ ~. by the induction hypothesis. But 

¢'~3', x)  = f ( y ,  x, A n/-~0', x ) ) ,  

which proves the lemma. 

Definition, X is rudimentarily vlosed (rud closed) iff X is closed under 
rud functions, M = ~ U, A > is rud closed iff U is closed under functions 
which are rud in A. The rudimentary closure of X is X u {f(x) lx  ~ X ,', .f 
is rudimentary}. 

As an immediate corollary of Lemma 1.3, we get 

Corollary 1.4, 
(a). 3I = ( IMt, A > is rud closed i/I" IMI is rud vlosed and M is amenable. 
(b). I f  f is ntd i~ A, ti~ .... f is uniformly ~ t ( U, A c~ U) for  all transi- 

live rud closed ( U, A :'~ U~. 

We now prove 

Lemma 1.5. Let U be transiti~,e. Then the rud closure o.f U is transitive. 

Proof, Let V = the rud closure o f  U. Let r',(x) mean: C({x}) c V (where 
C(z) is the transitive closure of  z ). By in~,,~ctior~, on the defining schemata 
o f f  we show 

~Z 

A Q(xi)-* Q ( f ( x ) ) .  
i-- I 

But Q(x) for x ~ U and V is the set o f  all f(x) such that f is rud and 
x ~  U. 
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An immediate consequence of  Lemma 1.2 is 

Lemma 1.6. Let  U be transitive ai'zd let V be the n td  closure o f  U. Then 
the restriction o f  any Zo(V)  relation to U is Zo(U). 

Definition. Let U be transitive. Set rud(U~ - the md  closure o f  U u {U}, 

Noting that $ (U)  n ~ 0 ( U u  {U}) = ~ ,  we get 

Corollary 1.7. ~(U)  n rud(U)= Z~ (U). 

Thus rud(U), while it has a higher rank than Z~ (U), really adds 
nothing new. It is the result of ~'stretching" Z~ (U), whictl has the un- 
wieldy rank rn(U) + 1, to length rn(U) + co. We shall define the J,~ hie- 
rarchy, exactly like the La hierarchy, except that we take J,~.l to be 
rud(J~) instead of  Z~ (J~), as in the case of  L. 

The following characterisation of  rud(U) may be more conceptual. 
though, since we shall not need it, we do not prove it: 

Let T = T(U) be the set of  U-definable trees of  finite length which 
have one initial point, and all of  whose endpoints have the tk~rm (x, 0>. 
For t ~  T, define a fimction o t on the nodes by setting 

ot((x, 0>) = x for ~mdpoints; 

o t ( Y )  = {Ot(Z)12 >t-V} otherwise. 

Set o(t) = ot(xo), where x o is the initial point of  '. Then 

rad(/~/3 = {o(t)lt  ~ T(U)}. 

It may also be o f  interest, in this context, to note that a transitive domain 
v is rud closed iff it satisfies the following axioms: 

A1. x \  y ,  {x, y} ,  Ltx ~ v .  

A2. {u n A ( x ) l x  ~ w} E v . 
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Here A is 2; 0 and  A ( x )  = { y l A y x } .  Again we omi t  the p roof ,  since this 

charac ter isa t ion  is n o t  needed.  

Call a family  ~ o f  f lmct ions  a basis i f f  every rud f,unction can bv ob- 

tained f rom '~ by compos i t i on  alone. We now prove that  the rud func- 

t ions have a finite basis, 

Lemma 1.8, Every m d  f imc t i on  is a compos i t ion  o f  the fo l lowing:  

Fotx, y)= {x, y}, 
F 1 (x, y )  = x \ y .  

F 2 ( x , y ) = x  x y ,  
F3(x ,  y )  = {~u, : ,  v>lz ~-x ^ <u, v) ~ y } ,  

F4tx ,  y ) =  {<,~. v. z>lz ~ x ^ (u. v> ~ y }  , 

F s ( x , y ) =  O x .  

1% (x,  y )  = d o r a ( x ) ,  

FT(x,  y )  = ~ c~ x 2 , 

Fs x,.v) = { x " { z I t z  e y }  . 

Proof .  Let  ~ be the class o f  func t ions  obta inable  by  co m p o s i t i o n  f rom 

F o . . . . .  F 8 . F o r  each ~ - fo rmula  ~o = ~o(x I . . . . .  x n ), set 

tCtU) = {(.v t . . . . .  X,, >Ix ~ U ^ b,,.s> ¢ [ x ] }  . 

L emm a  ! .8. I. t ~ ~ ~ for every ~ - jbrmMa ~. 

Proof .  (a). Let  ~o(x) ,-~. x i ~ x~ (i < j). Then  t~ ~ ~ .  

Let  P~ ( y )  = F3(x .  3'). Define Xn(x ,  y )  by  X l (x, y )  = x × y :  

Xn(x ,  y )  = x × X n - t  (x,  y) .  T h e n  assuming (x I , . . ,  x m ), m > 2, is de- 

f ined induct ively  by  <x I . . . . .  x m > = <x t , (x 2 , ..,, x m )), we have 

{~x t . . . .  ,xro>lx ~ w ^ ~<~.~>~[xl}  

= X i-!  (w, Fi~; i - l (F4(w  m - i ,  C fl  w 2 ) ) ) .  
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(b). If ~i(x) (i = 1 . . . .  , p)  are such that  t,i E @, and ff is any sententiai 
combinat ion o f  the ~oi's, then t ,  ~ ~. .  

It suffices to  note that  @ contains 

x \y ,  x u y = 13 {x, y},  x o ), = x\  ( x \ y ) .  

(c). Consider ~ y ,  x). If  t~ ~ ~ ,  then ray ¢, t v r  ¢ ~ ~ .  

This follows from 

tvy~(U) = dom(t~(u)) ;  tAy¢( t t )  = x m \ d o m ( x  'n \ t¢ (u ) ) .  

(d). t ,  e ~ ,  where ~o(x) ~ x i = .x). 

By (a), (b); t x ~ ~ ,  where 

Butthen 

Hence 

X(Y, x )  ~ ( y  ~ x ,  ~ y ~ x / ) ,  

I% ~o[xl ~ ^ y e U u t=, ,~{, ,}x[y,  x l  . 

t , ( u )  = u "  n t ^ y x ( U  u O u ) .  

(e). t~, ~ 6 ,  where ~o(x) ~ x i ~ x / ( ]  <- i ) .  

Let 

~ V ( . v , z , x ) ~ - *  ( y  ~ z ^ y = x i ^ z = x  i) 

then t ,  ~ ~ by (a), (b), (d). But ¢(x)  ,--+ V y z  ~)(y, z, x),  hence 
t , E ~  by(c) .  

By (a), (e), (b), t ,  ~ ~ for every quantif ier  free ~o. Now let 
9 ( x )  ~ Q l Y l  . -  Q n Y n X ( Y ,  x ) ,  where X is quantifier  tree. t~ E ~ fallows 
by iterated use o f  (c), which proves Lemma i .8. i. 
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Now set ~ *  = the set o f  rud func t ions f (x)  such that F ~ ~.,  where 
F(u)  = f " u  m (i.e. {z lVx E u f ( x )  = z}). 

Lemma 1.8.2. l f  f ~ ~. *, then rite f o l lowing  func t ions  are in ~. : 

l " ( u ) = f t u " '  ( i , e  { < z , x ) t x E  u A Z = f ( x ~ } ) ,  

G(u~ = {<z, x>lx  ~ u ^ z ~ f ( x ) } ,  

H ( u ) = { ( z , ) ' , x ) l y ,  x E t ~  A M p l y  z E  f ( v , x ) } .  

Proof.  Set C, ,(u) = u t.~ U u u ... to U '~ u (n < ¢o). It is a well known 
tact that i f ¢  is a Zo fommla and n = n(,p) is the number of quantifiers 
in ¢, tt~en 

A x  ~ u ( ~ v  ~olxl ~ ~q,c,,~ ~olxl ) .  

We use this to show F E ~ .  Let ~oO,, x)  be a £o formula meaning: 

3' = f ( x ~ .  

Let n = n(¢). Then 

F(u) = ((f". ,g") x u "  ) n t ~ C , , ( F ' u "  u u ) .  

The proof that G. H ~ ~. is entirely analogous. 

Lemma 1.8.3. Every m d  func t io , t  is in ~ * .  

Proof. We show that.i 'E ~.* by induction on the defining schemata of f :  
(a). f ( x )  = x i. Then.t" 'u '~ = u = u \ ( u \ u ) .  

(b). f ( x )  = x~\x/. Then f "  u "~ {x \  y l x ,  y E u}. Let 9(z ,  x ,  y )  ~ z ~ x \  y 

Set 

F ( u ) = t ¢ ( u u O u ) n ( U u x  u 2) 

= { ( ~ , x , y ) l x , y  ~ u A z E x k y }  • 

Then f " u  m = Fs(Y(u),  u 21. 
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(c). f ( x )  = {x i, xi}. Then f " u  m = {{x, y} Ix, y ~ u} = U u ~. 

(d). f ( x )  = h (g (x ) ) .  Let 

wt m Gi(u )  = gi u , H ( u )  = h " u  m 

G(u) = U Gt(u) ,  H(u) = H(CT(u)), 
i=1 

K'(u) = u m v G-(u) v H ( u ) .  

By hypothesis, G, H, K ~  ~ .  Using Lemma 1.2, let ~0(y, x )  be an E- 
formula equivalent to the formula 

V z I ... V zn(z  I = g l ( x )  ^ . . .  ^ z n = g , , ( x )A  y 

h (  - ) )  = Z l  ' """ " n  " 

It is easily seen that 

f " u  m = Fs(([ t~( /£(u))  ] n [H(u) X u m ] ), u m ) .  

(e). f ( y ,  x )  = U: ~y g(z,  x )  Let 

G(u) = {<z, y ,  x>l V ~' ~- y ^ z ~ g(,,, x)  ^ x ~ u ^ y ~ u} .  

T h e n f " u  m+l = Fs(G(u) ,  u m÷l ), which proves Lemma 1.8.3, 

It remains only to show 

Lemma 1.8.4. Every rud J}tnction is in ~. . 

Proof. Let f ( x )  be rud. Define f b y  f ( (z))  = f (z )  and f ( y )  = 0 otherwise. 
Then f i s  rud; hence f ~  ~ * 

Let F(u)  = f " u .  Hence F ~ ~ .  Set P(x)  = {<x)}. Then P ~ ~. since P 
is gotten by iterating F 0. Then 

U F(P(x) )  = U f "  (<x>} = U {f((x))} - ' f ( x ) .  
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Con~bining Lemma 1.8 wffia Lemma i.3 we get: 

~emma 1.9. Eveo' .fimcaon which is ntd in A c V is a composition o f  
% ,  ..., F~ and F A , where F 4 (x, y )  = A n x. 

These basic lemmas have a number  of interesting consequences: 

Corollary 1,10. There is a rud f imction s(u) such that u c s(u) and 

Ons" (u) is the m d  closure o f  u. 

• . 8  z : : , , . . 2  Proof. Set s(u) = u u oi_ 0 r i , ,  , which proves the corollary. 

Definition. S(u) = ,~(u u { u } ) .  

Then u u {u} c S(u) and !or transitive u we have: UnS n (u) = rud(u).  

Corollary ! .1 I. There is a rud function W such that i f  r is a well ordering 

o f  u, then W~r, u) is an end extension o f  r which well orders S(u). 

The proof is left to the reader. 
We can make good use o f  Lemma 1.9 in proving 

Lemma 1.12. ~M is uniformly ~ l (M) over transitive rud closed 
M=(IMI ,  A). 

ProoL Consider a term language containing just  variables and the func- 
tion symbolsl)  (i = 0 . . . . .  9). l i  is interpreted by Fi (where F 9 (x, y )  =df 
A C~ x). Let Q be the set of  functions each of  which maps a finite set o f  
variables into IMI. Then Q is rudimentary (given a reasonable arithmeti- 
~ t ion) .  For any term t, let C(t) be the set of  its component  terms (in- 
cluding variables). We may suppose the function C to be A r . For  terms 
t and !, ~ Q we define 

where 

y = tIvl ~ Vg(~o(C(t), g, v) ^ g(t)  = y ) ,  

q~(u, g, v) ~-~ fun(g) ^ dom(g)  = u 
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^A x ~ u(x is variable (x ~ dora(v) ^ g(x) = v(x))) ^ 

9 

A 
i=0 

( A t 0 t  t ~ u (x =/~(t0t  I ) ~ g(x) = Fi(g(to), g (q  )))). 

Thus ~o is rudimentary. Hence t[vl is Z t .  We note now that there is a 
recursive function o mapping each Z 0 formula ~o(x) onto  a t(x) such 
that ~o ~ t = 1. Hence 

~ o  ¢[vl  ~ o(¢)[vl  = 1. 

Thus ~ i s ~  1. 

Corollary 1.13. ~ n  is t tniformly Z,~ (M) ol,er transitive n td  closed 
M=(IMI,  A>O~ > - 1). 

§2. The hierarchy J~ 

Definition. Jo = O; J a + l  = "ud(Ja); Jx = U,<xJ: for limit ;~. 

Lemma 2.1. 
(a). J~ is transitive. 
( ~ ) ' a < - f l ~ J a c  J~. 
(c i. rn(J~) = On n J,~ = to. ~. 

The proofs are straightforward. 
Now define an auxiliary hierarchy S~ by 

So=0 ,  S~+l =S(S,,), S~,= U S,. 
t<X 

It is easily seen that the S,, hierarchy is cumulative and that 

J~ = U S~ = S ~ .  
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Lemma 2.2. < S,, I r, < 6~a ~ is uniformly Z l (J~). 

Proof, 

y =  S~, , ~  V f l y  =/ '(t,) ,', ~(,fY), 

where 

d f ' t  ~ ( f i s  a function ^ dora(f)  ~ On ^ f (0)  = 0 

^ A O~ + 1 ) E dora(f )  ( f (v  + 1 ) = S(f(v))) 

A A ~, ~ dora( f )  (Lira(X) ~ .fO,) = O f ( v ) ) .  
v<;k 
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is rudimentaD,, hence _v 0. Thus it suffices to show that the existence 
quantifier can be restricted to Jr" That is, we must show: 

(*) s r ~ J , ~  for r < t o e ,  

where J'r = ( Sr I v < r). We prove (*) by induction o21 a. For a = 0 it is 
trivial, For Lira(a) the i:aduction step is trivial. Now let ~ = 9 + 1. Then 
~,~ is X I (J~) since (*) holds for j3; hence s~a ~ J~" But S~a÷n = S" (Ja) 

n~ coqclusion follows easily. 

Corollary 2.3. (Jvl v < , )  is un~forndy V 1 (Ja). 

Proof. It is easily sho~a  that the map <v. n) -* wt, + n (v < a, n < 6.,) is 
uniformly ~ l ( J  a ). But Jv = S~v. 

Definition. We define weU orderings <z, of  Sv by 

<o =0 ,  <,.+t = I¢ (< , , ,S  v) ,  <x = U <~ for l imi tX.  
v < h  

Then <~ well orders S,, and < r  is an end extension o f < ~  for v <- r. 

By repeating the proof  of  Lemma 2.2, we get 
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l .emma 2.4. (<~ I v < ¢oa) is uniformly Z l (J,~). 

Set <Ja = <""~ and < j  = Oa~_o n < : j .  Then <j  well orders J and < j ,  
well orders J~. 

Corollary 2,5. < j ,  ( < j  I# < o,) and u~ are uni/brmlv Z i (Jo), where 
u ~ : )  = {y ly  < ~  X}. ~ 

2.1. The condensation lemma 

Lemma 2.6. Let X-<~i J ~. Then V pX ~ Ja. 

Proof. X satisfies extensionality, since X <  z l J~. Hence there are unique 
~r, M such that n" : X ~ M, where M is transitive. ~ We claim that M = Ja, 
where ~ = n " a .  We prove this by induciion on o, 

Let it hold for r < ~. Since (J,, I v < a ) is Z l ,  we have l~ ~ X n a 
Jv E X. But i f J  v E X, then X n J , ,< xl Iv; hence n(J,,) = rr"(X c~ J,,) = 
Jr,(~) by the induction hypothesi ~. (since 7r0~; = ~r"(X n v). By definition 
Ja = Uv<a rud(Jv). Set r l . ldx(Jv)  = file rud closure o f X  n (J~, u {J,,}). 
We claim X = UvExn ~ rudx(Jv).  To see this. we note that if) '  E X. then 
there is a rud f s u c h  that  in J~ 

V v V x  E J,,y ;~fOv, x) ,  

Hence y = f ( J ~ , x )  for some J,, ~ X a n d x  ~ Xc~ Jr, since X-<,:l J~. 
X is rud closed and each rud f h a s  a Z 0 definition: hence ~f(x) = 

f0r(x))  for r ud f .  Hence lr ' rudx(Jv')  = rud(ff(Jv)) for v E X ¢) e(. Hence 

M = 7r"X = U rud(J .o ,~ )  = lJ rud(Jv) = J,,"a 

Now le tX-Kzl  Ja and ~ X ~ - - ~ J ~ .  Since < ,  < j  are un3"ormly Z1(J~),  
we have: 

v < z ~ - ~ ( v )  < ~(r) and 

x <s Y ~ ~r(x~ <s 7r(y). 
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By this we can conc lade  

To  see this, suppose ~r(v) > v. Let v 0 ~ X be such that  7r(v o) = v. Then  

v o < v since ~r(v o) < n(v). But then  rr(v o ) > v o and v o < v, so there is 

v I E X such that  v I < v o, rr(v I ) > v I ,.. etc. In this way we generate a 
decreasing sequence v > v o > ... > v n > .  Contradic t ion!  The same p roo f  
works for  < j ,  

2.2. Z,~ un(formisation 

Definit ion.  A funct ion r uniformises a r e l a t i o n  R i f f  dom(r)  = dom(R)  

and 

A x ( V  y R y x  ,-* Rr(xX, c),  

Definit ion,  Let  M = ( tMt, A ) be amenable.  M is Z ,  uniybrmisable i f f  

every Z ,  relation is uniformisable by Z n (M) funct ion.  

Lemma 2.7. (J,~, A ) is uni]brmly X l uniformisable for  amenable 

(JR, A). (More (~reciselv." Given any X ! [brmula ~. there is a E 1 formula 
~. , , I )  " . i " . ( J  A )  

gd such the! $ ¢~ " is a ,niformis~,,zg f imctton for 9 ~" whenever 

(Ja ,  ,4 ) is amenable.) 

Proof.  We first show tha t  Z 0 relations can be uniformised.  

Let R y x  be Z o. Define r(x) by: 

r(x) "- the least y (in < j  ) such tha t  R y x .  

The n: 

y =r(x)  ~ R y x  ^ A -" < j  y q R z x .  

Thus  r has a (un i fo rmly)  E l def in i t ion  since the func t ion  u(x) = 

{y t 3' < j  x} is un i fo rmly  E 1- 
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Now let R y x  be Z t ; let 

R y x  ~ V z Pzvx  

where P is Z 0. Let p(x)  uniformise the --Y'0 relation {((z,y). x)t Pzyx}.  
Set: r(x) "" (p(x))2t. Then r uniformises R. 

Definition. Let M = (IMI, A) be amenable and let co c M. By a X, 
Skolem funct ion for M, we mean a ~,~ (M) function h such tha~ ' 
dom(h) c ~o X M and, wheneverA c M is Zn(M) in the parameterx ,  
then 

V y  Ay  ~ V i A h ( i , x ) .  

Definition. Let  M be as above. We call h a nice S ,  Skoh,m .functio,~ iff 

h is a Zn(M) function such that dora(h) c w X M and, for some p E M. 
h is Z n in the parameterp  and whenever A c M is X, in the paran,eters 
p, x, then 

V y A y  -~ V i A h ( i , x ) .  

The following are easily established: 

(1). If h is a X n Skolem Ikmction which is Z,~ in no parameters, ther, 

h is nice (take p = 0). 

(2). If  h is a Z,, Skolem function which is Z .  in p, then h is a nice 
2;,, Skolem ffmction, where J~(i, x)  ~ h(!, (x. p)). Hence the existence 

of  a Skolem ft, nction guarantees the existence of  a nice Skolera func- 

tion. 

(3). If  h is a nice Z .  Skolem function, then A x ~ M h"(m X {x}) 

"<~n M. 

Proof. Set X = h"(oo x {x}). Le tA  be X n in parameters Yt . . . . .  Ym ~ X. 
Then Yi = h(]~, x), where h is Xo in p. Hence A is v in p, x. Hence 
V y A y - ~  V y  ~ X A y .  
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(4). I fk  is a nice ~n Skolem function and X c  M is closed under  or- 
dered pairs, then h" ( to  × X)  -<,- M. 

t 

Pr, ,of  Set Y = i~"(to × X). Let ,4 be Z ,  i n y  1 .... v,, ~ Y, Then Yi = 
it(ii, x ikwherel ' i sV,~t~ in p, HenceA isZ u inp ,  (x I . . . . .  x,t ) .Hence 

V y A y  ~ V i A h ( i ,  ( x ) ) -~  V y  ~ Y A y ,  

Lemma 2.8. There is a nice Z l S k o l e m  f imc t iou  h = ha, A which  is 

tmi form(v  Z 1 ( J . ,  A )  f o r  amenable  (J~. A ). 

Proof, ~0~,,4~ i~ uniformly Z l ( J  a ,4) by Corollary 1,13. Let <~0i<~) be 
a recursive enu neration of  the lonnulae. By Lemma 2.7, there is an h 
which uniformly uniformises (y, i, .x')l ~<J~,n> ~i[Y, x] 

We shaU rel~r to h~, A as the canonical  Z ! Skolem function for 
(Ja '  :1 ). 

A similar proof  yields 

Lemma 2.9. If (J~, A ) is Z n uniJbrmisable, then there is a Z n S k o l e m  

.t~tnction .for (Ja. A ) (n >- 1 ). 

Lemma 2.10. There is a Z l ( J ~ )  map o f  coa on to  J~. 

We first prove a sublemma. 

bemma 2.10.1. There is a Z l (J~) map o.f o~e on to  (~o~) 2 . 

l~'oofl Let <*  be Gbdel's well ordering of  On 2 - i.e. <*  is obtained by 
ordering the triples ~max (v, r),  v, r)  lexicographically, Let p :On -~ On 2 
b,~ the monotone  enumeration o f  <*.  By induction on a we get 

( I )  (p t wa)  is E l (Ja.) • 

Set Q = {al p(~) = <0, ot)}. Then Q is closed, unbounded in On and is 
the set o f  a such that  (p la)  : ,~ ~-* a 2  

We prove the lemma by induction on 6. Let it hold for fl<a. 
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Case 1. Q(wa).  Then p t' co~ is Z 1 and maps ,~a onto  ( ~ ) z .  
Case 2. a = 13 + 1 ; "1 Q(co0~). 
Then 3 >  O, since otherswise Q(coe). Hence there is a Zt  (J~) mapi :  

u ~ 3. But there is a ~;t (Ja) map o f  co/~ onto (~/~)~ by the induction 
hypothesis. Hence by Lemma 2,7 there is a Z~ (Ja) function g which 
maps ((,o3) 2 1 -- 1 into 00/3. Hence g e~ J~,. Set: l l (v ,  r)~ = ~(j~v), i(r)>). 
T h e n f i s  a X i (J~) funcCon which maps ( ~ ) 2  1 .- i into to~. Clearly 
rag(f)  ~ J~, since rng(f)  = rng(g). Define h : we  ~. (t,~)-' by 

) '~l(v) i f v ~  rn~. f )  
h(v) = { 

(0, 0> if n o t .  

Then h has the desired properties. 
Case 3. Lim(~); 7, Q(wc~). 
Let p(coa)= (v, r). T h e n p  I'o~a is ZI (J~) and maps coc~ 1 I onto  

v = {zl z <*  (v, r)} ~ J~. Let "l' < ~ sucll tllat v. r < to% "*'hen p t 
maps into (w?)  2. As above, there is a g ~ J ,  which maps (w'r) 2 1 -- 1 
into 6o% Set f(( t ,  K)) = g((gp(t), gp(~))) lor t, ~ < wa.  Then f is Z 1 (Jc,) 
and maps (cou) 2 I - 1 onto it = g " ( g " r )  2 E J~. Define h by 

I "/'-! (~') if v ~ u 
h(v) 

(0 ,  0> ~i" ;lot 

Then h has the desired propertie:. 

Proof of Lemma 2.10. Let f "  a.~ ontq_~ (¢0o~) 2 be X I (Jc)  in the para- 

meter  p. Let p be the least I' ;in < j  ) for which such an ./" exists. Define 
f 0 ,  f l  by: f (v)  = (.fO(v), f l  (v)). We can define niaps/~F : co~ sEt° ,  (¢oa) n 

by: j~) = id I' wa']~,+ 1 (v) = Ct°(v). f~,fl (v)). Then 1~, is 'Z t (J,~) in p. Let 
h be tile cannonical ~1 Skolem function for J~,. Set 

X = h " ( o :  x x 

We claim that X-<zl  Ja. For  this it suffices to show that X is closed 

under ordered pairs. Let Yl . . . . .  Y~ ~ X;),~ = hq~, (v i, p>). Let. t~(r) -- 
(v I , .... vn). Then {(Yl, .... Yn } is ~2~ in r, p. Hence (Yl ,  .... 3'~> E X. 
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We now claim ~llat X = J,,, To see this, let 7r : X ~ :  J~. Then rr(v) = v 
Ik)rv < ¢0~; h e n c t / 3 =  o~, Hence r r ( ] )=  t, s i n c e r e  (w~)2 X wa .  But  

then 7r(p) = p,  since p wa:~ the least p in which ,t" is Z l (and 7r(,f) is Y~ 1 
in ,rt[ o), where ~(:~) ~ p). Hence 

7rh(i, (~,, t~)) ~ t'~(i, (v, I>>) for v < w~ , 

t lencc ~r t X -- id "A': X = J~, 

It remains only  to show tha t  X is the image o f  a Z 1 funct ion def ined 
on ¢o~. Let 

Y = h d ,  .v) ~ .  V z l l : ( v , \ " ,  

where i l  is X o . Define/~ ' (w~ , )  -~ ,1~ l~y 

" l t ( v , r , K ) = [ l i l i f V ' ~ S r l t ( a ' v ' Y ' ( ~ ' P ) ) ( h e n c e v < w )  

it" n o t .  

Then h " ( w ~ )  3 = h" ( to  X (w~ x {p})) = X; hence h . J  3 "6oa-- - - - ,  a~. 

2 3 .  Admiss ib le  o r d i t d s  

Although tile coilcept o f  admissible ordinal will rarely appear  expli- 

citly in the next  sections, many o f  the methods  and results are mot ivated 

by admissibility theory.  Thus,  to  aid the r eade r s  or ienta t ion,  we give a 

brief account  o f  this theory.  

Definit ion,  Let M = (IMI, A ) be amenable,  m is admissible i f f M  is a 

model  for the following axioms: 

(l), O.{x,y}, U x ~  V. 
(2). A x  V y ~o(x, y )  ~ A u V v A x ~ u V y ~ ~' ~o(x, y) ,  where ~o is Zo" 

(3). : n {yl ¢O,')} ~ V where ¢ is Z 0. 
It is easily seen tha t  (2) holds w h e n  ~o is replaced by a Z l formula.  
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Moreover, we have the A l Aussonderungs principle: If  B c M is A t 
and x E M, then x n B E M. By these two principles, the image of  any 
x ~ M under any X 1 function which is defined on all o f x  is an element 
of  M. Using this, we see that M is closed under rud imen ta~  functions and 

that, in fact, the ~1 functions are closed under the schemat,; for  rud 

functions (translating the last two schemata as 

f (x )  h # x )  , 

f ( y , x ) ' ~  U g ( z , x ) ) .  
Z E .I' 

We also have: I f R z x  is Z t , then so is A z ~ )' Rzx  (let Rzx  ~ Vw/5vz.v: 
then A z ~ y V w  Pwzx ~ V u A z E y V w E u tSvzx). 11~e Z I lktnctions 
twe also closed under the following recursion pr#wode: 

Let R be well founded such that {yl y R x }  ~ M for all x ~ M and the 
function r(x) = 0,1 y R x }  is X l , LetgO' ,  x+ It) be a Z t function, Then 
there is a unique X l function f such that f ( y ,  x )  ~- g(y ,  x ,  <]'(z, x)t : R y  )), 

Proof. f has the following Z l definition: 

u = f O ' ,  x)  ~ VsO' ~ dora(s) ^ s(.v) = u ^ ¢ ( s , x ) ) .  

where 

~o(s, x)  ~ s is a function ^ R"dom(s )  c dora(s) 

^ A z ~ d o m ( s ) ( s ( z ) = g ( z , x , s  t R " { z } ) ) .  
y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ ,  

%+, 

The adequacy o f  this definition :,s showr~ in the usual way, using the Z t 

replacement axiom. 

Definition. w e  i:,~ an admissible ordi~ml fiT Ja is adtnissible. 



§ 2 I'he hierarchy J~ 253 

Note. An  easy application o f  the recursion theorem shows that ,  if ~ is 
admissible, then  ei ther  ~ = to or a = ~ .  a .  

Lemma 2 , 1 1 .  toe is admissible (t~l" there is no v I ( J . )  map o f  a 7 < w e  

onto  an unbounded  subset o f  coc~. 

P r o o f .  (~ )  is trivial. 

(*-). Assume tha t  ~ is no t  admissible. "~)e show that  some 3' < toa 
is mapped on to  an u n b o u n d e d  subset o f  wa .  For  u = t3 + 1, this is triv- 

ial, for  to maps cofinal ly in to  to~ + to by the map n -~ to,5 + n. Let a be 

a limit ordinal.  Let  R be a Z o relat ion and let tt ~ J~ be such tha t  
A x  E ++ V vRxv,  but  not  IX x E u V v E z R x v  tk~r z E ,I~. Let  t t c  Jy, 

• " o i m ~  " 

y < ~. Let. t 'E J ,  such that f :  toy .......... u (this exists by Lemma 2.10). 
Define g : toy --" to~ by 

g ( t }  = v r  V 3 '  E S ;  R , / ' iOv  . 

Then g is V t and range of  g is u n b o u n d e d  in ~ .  

Definit ion,  M = (IMI, A ) is strongly a~bnissibte i f f M  is admissible and 
(M, B) is amenable  for all ZI (M) relations B. It is easily seen tha t  M is 

s t rongly admissible i f f  it satisfies the axioms ( 13, (3) and 
(2 ')  A u  V v A x ~ u (V y ¢(xy} -, V y ~ v ¢(x,  y) )  for X0so. 

hn i ta t ing  the p roof  o f  Lemma 2.11, we get 

Lemma 2.12. wa is strongly admissible i f f  there is no X 1 (J~),t~m: tion 

which maps some subsets o f  a ~/ < toa onto an unbounded subset o f  
¢.aOtX. 

The fol lowing Lemma (due to Kripke and Platek} is somewha t  deeper  

than the previous t w o  

L e m m a  2,13, The .following conditions are equivalent: 

(i). to~ is strongly admissible. 

OiL (J~,, A )  is att~enable for every A E ~'! (J~). 

UiiLThere is no Z i ~J~) .hmction which maps a subset o f  a 2: < wa  
Onto J ~, 
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Proof.  (i) ~ (ii) is trivial. 
(ii) ~ (iii) follows by supposing (iii) false and using a diagonal  argu- 

ment  to produce  a U C 3" s u c h  t ha t  It E ~ 1 ( J ~ ) \  J~" 

(iii) -, (i). Suppose totx no t  to be s t r o n # y  admissible. We wish to con- 

struct  a Z l  map  from a subset o f  a '1, < to~ o n t o  wa ,  l f a  = ~3 + 1, this 

follows by the me*t, ods o f  Lemma 2.10, Now let Lira(a).  Let f b c  ZliJo~) 

such that  f :  u ~ to¢~, where ~. < t,, u c to"t, and range f is unbounded  in 
we.  Let f be I ; l  in the parameter  p. Suppose p E Jv ~we can insure this 

by choosing 3" suff ic ient ly  large). Let  h = h a be the canonical  v I Skolem 
funci ton  for Ja"  Consider X = h"(to × J-r )" Then X <'-:l J~" Let  
rr : X ~-~ Ja" Then  rr t J'r = id t J , .  But ~hen rr = id I' X, since ~rh(i, x)  
h(Tr(i), ~r(x)) = h(i, x) .  Hence X = J~. But X is closed underfs ince .¢"  is Z l 

in p ~ X. Since range(f )  is unbounded  in toot and X is transitive, wc 
conclude:  we  c X. Hence/3 = t~, X = Je" By L e m m a  10 there is a g ~ J ,  
such that ,  g " to3' onto__, to X J,t" Set: f i r )  ~ hg{v) .  Then f i s  Z~ a~v'l 

onto 
f : It ~ X ---- Jo~, w h e r e  u c toT, 

Note. Strongly admissible ~ are also called non proNctibh'  since there is 

no 2; 1 project ion o f  a subset o f  a 3' < toe o n t o  toa. 
A fairly slight modif ica t ion  o f  the p r o o f  o f  L e m m a  2. ! 3 gives 

Lemma 2.14. The .!bllowing comtit ions are equivalent: 
(i). toc~ is admissible. 
(ii). <J~, A ) is amenable for  a / /A  ~ A l (Jo)- 

(iii). There is no Z I (J~) "':'!~ o f  a 3" < ooc~ onto toc~. 

Proof. (i) - (ii) foliows by tile &l Aussonderungs principle, 

(ii) -~ (iii) fol lows as before.  
(iii) ~ (i). Assume that  toa is no t  admissible. We wish to cons t ruc t  a 

X l f :  3' ~ ~o~(7 < ~oa). As before,  we may  assunle Limict). By Lemm~ 

11 let f :  r -~ to~ be Z I wi th  range unbounded  in tot~, Let r < to3~, 
3' < ~. As before,  we tbrm X = h" ( to  × J~)  and show: X = J~. Define a 
map h : to X r x J~ -~ J~ as follows: Let  y = h(i, x)  ~ V z  H(z. y ,  i, x).  

where H is Z o. Set 

[ y if V z  E S[~,~tt(z,  .v, i, x )  ^ y C SFt~ , 

7,u, X) 
t 0 if  n o t ,  
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Then h (¢o X r x {.v}~ = h (w x {x}) since range/ ' is  unbounded in w~. 
"~ OhIO 

Hence h" (w  X r x _J~.) = X = J,~. Let g ~ J~., g • wT ~ w X r x Jr .  
Set: Jr= h .  g. Then f "  ~ . . . .  Ja'  

Some o f  tile rest~lts in § 3 can be regarded as a generalization of  

Lemmas 2.13 and 2.14. tNote that Lcmma 14 is also duc to Kripke and 
Platek). 

2.4. The relationship between J a and L~ 

Set def(X) = ~ (X'~ n rud(X) for transitive X. As we have seen def(X) 
is the set o f  all Y (: X which are (X, ~)-definable from parameters in X. 
In its usual version, the constructible hierarchy La. is defined by 

L~ = 0 .  L,+ I =del ' lk, , .) .  k,~ = U L,, f o r l i m i t X .  
v <  X 

We set L = U~,~ o ,  L~. it is obvious that there are many a for which 
L a = J .  For our purposes it will suffice to prove 

Lemma 2,15. l y ' ~  i5 admissibh,, then J ~ = L~a. 

Proof. For a = 1 we have: J l = L,.~ = the hereditarily finite sets. Now 
let t~ > I (hence a = ~ a k  Let M be admissible such t h a t a  c M. Since 

the function SL\') is rud, (S,,i z~ < a)  is Z I (M) by the recursion theorem. 

Hence J,~ = O,<.~ S,, c M, Since w E M, rud(x)=  U,< w S " ( x )  is Z! (M); 
hence so is def(x) and (L~,I v < a). Hence L~ = O~,<,~ k~, c M. Since J~ is 
admissible, it follows immediately that L~ c J,~. To show J~ c L~, we 

must prove that La is admissible. Let x E L~ and let R be E0(Lc,) such 
that A y c  x V z  Rvz .  We must find u E L,~ such that A y  ~ x Vz  

u Rv--. Since ~L,,I ~ : a) is Z l (J~), then so is: R.vv ~ (3' ~ x ^ Vz  
k,, Ryz).  By the admissibility o f  J~, there is r < a such that 

A y  E x V v <  r/~v~, ttence L T ~: L~ and A y  ~ x V z  ~ L, Ryz. 

Note. If we wished, we could prove tile following equations, which estab- 
lish the precise level-byqevel correspondence of  L a and Ja : 

(1). L ~  = V,.~oo~ n Jbm" (Hence L,~ = J,~ for ~ = a.) 

(2k ~ . ( L , ~ )  = ~.~(L,~ ) n Z.,(Jl+ n) f o rn  >- 1. 
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§ 3. The ~;n uniformisation theorem and the ~,, projectum 

In this section we shall prove 

Theorem 3.1. J~ is Y.,. un(tbrmisabh. (c~ ~ O. n > ! ). 

Some of  the concepts and lemmas used in proving the theorem turn 
out to be o f  independent interest. One concept which is o f  central im- 
portance in the theory of the fine structure is that of  the ~,: prt~ectum: 

Definition. The X,~ projectum of  ~ is the largest p ~ a such that <.I~, A > 
is amenable for a l i a  E X,(Ja)U* ->- 0. ~ -> 0). We denote the S,, propjet- 
turn by p~. 

Note that p0 = a and p~ ->- t for ~. n >-- 1. We give some cxampk, s ~l" 

( 1 ). Let J~ be a ZF-  model. Then p~ = a IOr n < ¢,~. 
(2). Let J~ be a Z F -  model, all o f  whose elements are definable in 

the parameter t~. Then all elements o f  Ja+l are v i;1 tile parameter a. 
Let h = "~a+l be the canonical Z ! Skolem function for J,÷l.  Then 
h"(w X {a}) = Jc~+l" Set "g(i) -~ h(i, t~). T!Zell g is a Z 1 function which 
maps a subset of  w onto Ja.+l • Set a = {i E dom(g)l  i ~ g(i)}. The~l 
a c co and a ~ ,v I (J,~-+l)\J~÷l- ~t follows that P~+t = 1. 

(3). Let J~ be a Z F -  model. It follows fairly easily that J~, is Z ,  uni- 
fonnisable for n < w. Hence th,: ~. is a . . ,  nice Skolem function h. Let 
X = h"(¢o x {0}). Let 7r : X *~ J~. Then p~ =/3 for k < n. However 
p~'~ = l by the above aruument.~ since h'  = rrhTr -1 is a nice ~ ,  Skolem 

function for J~ and h' "¢o × {0} = J~. 
co-n is always strongly admissible by Lemma 2.13. Let us note that p~ 

The reason for introducing the En projectun is this: J~ may be "'soft" 
with respect to predicates in ~ ,  (J~). That  is, we may find v subsets 
of  elements of  Ja which are not  themselves elements o f  J,~, or even >2, 
functions which project a subset of  an element onto the whole of  J . .  
Thus, we try to isolate the part o f  J,~ which ~mains  "'hard" with respect 
to ~;,~ (J~). Jpn is one explication o f  this notion. There are at least two 

others which seem reasonable, however: If we set: 7~ = the least 7 <- a 
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"+~ j such that t h e ~  is a new ' -n( ,+)  subset el" tom (i.e. the leas: 3' +-<- 0~ such 
that ~ (to?) n 2.(J,~) ~ J,~.) ~i~ = the least 6 <- a such that there is a ' 
Z . ( J ~ )  function which maps a subset of  ca6 onto 2',.. Then either of  
J~n, J~n might feasibly be considered the "hard core"  of  J~+ It is ap- 

~ .~ 3,,I < & parent that O" ~.~ 3 ,~ < 3" tk~r u +:+ 1. (To see . . . . . .  use the diagonal 
argument of  ~ ~unple (2)). It turns out th~n. in f:tct, equality holds. 
This is the content  of  tac following theorem. 

Theorem 3.2. there  is a Zn(J~'t f unc t ion  which maps a subset  of 
to" O~ onto J~ (n >- I). 

We shall prove Theorems 3.1 and " " +~.. simultaneously (it seems, in 
t'ac~, hardly possible to prove one without the other). However, if one 
:~ssumes S,~ uniformisability, one can give a direct p r o o f o f  ?n = U~. 

Lemma 3.1. Let  it ~ 1. Let  J .  he S .  un(l'ormisable. Le t  ? be the least 

~ ¢x such that ~ (w3') n _ . ( J~  ) ¢ J~ 77w~ there is a . . ( Jc , ) . l tmc t~on  

which maps a subset o f  tom e l i te  J . ,  

Proof. Since J,~ is Z .  unitbrnlisable, there is a ~ .  Skolem function. Let 
p be the least p (in <j~)  such that ~ome Z .  Skolem function is E .  in 
the parameter p. Let h be a Z .  Skolem function which is Z n in p. Let 
a C ~3' be a new ~,~ subset of  ~'y. Let q = the least q (in < j ~ s u c h  that 
a is S n in the parameter q. Set h(i, x )  ~ h(i, (x, p, q>). -I'b-n h is a nice 
X,, Skolem function. Set X = h " ( w  x l~). Since there is a X~ (]~) map 

O1~ t +3 
g : w ?  . . . .  w X J-r" then h" g is a ~tz (J~) function wluch maps a sub- 
set of  w ?  onto X. Thus, it suffices to prove X = ]a.  

Clearly, X-<.. J,~. Let rr : X ~ .I~. Then ~r t ]v = id I' Lr, since Jv 
is transitive and Iv c .~, But then a = ~r a is Z . ( ]~ )  in ~r(q), since a is 
~,+(.l,~/in q, Hence " -  r - o~, since otherwise a E Jg+l C "Ja" T]~u~ a is 
Zn(J,, ) in lr(q); but q is the least such and rr(q) <_jg q; hence q --= zr(q). 
h' = 7rlnr +t is a Z,~ Skolem function for ],~ which is E n in rr(p), But p 
is the least such and ~r(p) <_~ p:  hence p = 7r(p) and h' = h LHence 
7thor -~ = h, since h is *n(J~)  m (p, q>+ But then ~h(i, x )  --- h(i, x )  for 
i < w. x ~ J~+. l tence rr I" X -- id 1" X a n d  X = J,~. 8 

We now introduce a more general notion of  Z n projectum by 
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Definition: Let (J~, A) be amenable. By the Z .  p r o j e c t m n  o] ' (Ja ,  ,4 ) we 
mean the largest p <_ a such that (Jo' B) is amenable fo~" all B c Jp such 
that B ~ Zn(Jt~, A ) (n > 0). We denote  this projectum !W P~.A. 

Note .  In our  proofs we shall actually only make use ofp~,  A . 

Note.  As before, n .... ¢opa,A is strongly admissible for n > I. 

Lemma 3.2. L e t  (J~, A ) be amenable ,  L e t  p = P~,;4 , I f  B c J p is 

2;1 (J,~,A), then  Z l ( J o , B }  c Zz(J,~,A ). 

Proof. We consider two cases. 
Case 1. There is a 2; l (J¢,, A ) map of  some 3' < ~ P  cofinally into wa.  
Le tg  be the map. Let B x  ~- ,  V z  B r x ,  v~here B is Z0(J~, ,4 }. Set: 

B'< v, x )  ~ V z ~ S~,,~., 9 z x  . 

Then B' is A 1 (J~, A) and B is rudimentary in B' and the parameter  % 
since B x  ~ V v < 3" B'<v, x ) .  Hence ~l  (Jp, B) c Z i (Jp, B') and it suf- 
fices to show that  Z l (Jp, B) c Z ~ (J,~, A ), where B is A 1 (Ja, A ). 

For  this it is enough to show that  Z0(Jo,  B) c Z 2 (J~, A ). But if R is 
Z0(J~,, B), then R is rudimentary in B (and some parameter  p ~ Jo )" 
Hence by § 1, Lemma 3, it is enough to show that the funct ion b(u)  = 
B t3 u is ~2(Ja,  A ). But this fm:ct ion is in fact II~ (J,~, ,,1), since 

y = b ( u ) ~  A . , : ( x E  y ~ x E u  ^ Bx). 
t 

AI 

Hi 

Case 2. Case 1 fails. 
By tile method  of  Lemma 2.1 I, we have 

(*) If H i s  Zo(J ~ , A )  and u ~ Jp, then 

A x  ~ u V y H~vv ~ V v A x E  u V y ~ v H x v ,  
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B~ (*) it follows that, if Rzx  is "~ ,, ~ (J,~, A ), then so is R yx ,  where 
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R ' y x  ~ (3' ~ lo ^ & z ~ y R z x ) .  

We want to show fllat E l (Jo' B) c E~ (l,~,, A). As before, it suffices to 
show that Eo(J  o , B) c E2(J ~, A ). Precisely as before, this reduces to 
showing that the function b (u )=  B c~ u is Z2(J,~, A). But this function 
is in fact Z l ^ I1 i , since 

y = b ( u ) ~ A x E  y ( x ~ u  ^ B x ) ^ A x E m B x  ~ x ~  y ) .  

- E I II~ 

As an easy corollary o f  Lemma 3,2, we get 

Corollary 3.3. Let (J~, A > be amenable, p = P~.,4. Suppose that there is 
a E I (J~, A) f imct ion  which maps a subset o f  ¢o0 onto J~. Then there is 
a B ~ ~ I (J,~, A ) sltch that B c Jo aud 

]~n (Jo' B) = ~ (Jo) o ]~n+l (Ja' A) 

Jbr  n >- l, 

o n t o  
Proof. Let f" : u -----~ J~ be Z 1 (J~, A ) in the parameter p, where 
u c cop. Let (~0i< ~o ) be a recursive enumerat ion of  the formulae. Set 

B= { < i , x ) l i < c o ^ x E J p  ^ I=< .4> ~i[x' P]} 

-ns" (jp, B)C E,+! (J a, A)  follows by Lemma 3.2. To see the opposite 
direction, we note that every x E J~ is Z 1 (J~, A) definable in p and 
some ~, < cop. Hence i f R x  is E 1 (J~, A), then the relation {<x)l x 
Jp ^ Rx}  is rudimentary ill B and some parameter  v < cop. Now le~ 
R x  be Zn+ 1 (Je,  A) (n >_ I). Suppose, for the sake o f  argument,  that n 
is even (for n odd the proof  is entirely similar). We then have 

R x  ~-~ V y  I A y  2 ... A Y n P y X ,  



260 R.B, Je:.~n, Structure o f  comtmctible hierarchy 

where P is Z; 1 (J~, A ). Let P be del3ned :~  

Pz, x ~--~" ( z ,  x E Jo '~' P f ( z ) x )  . 

Then P is rudimentary in B and some v < wp. Hence P is ,A i (Jo'  B), 
Similarly, D = dom()") is ,A t (Jo'  B). But i fx  E J~,, then 

R x  ~ Vz I E D A  z 2 E D ... V z n _ . ,  E D A  z n r=D P z x  . 

X,,(J o . B)  

The following concept will be useful in proving Theorems 3, ! and 3.2 
and will also play a large role in §4. 

Definition. By a Z ,  m a s t e r  c o d e  for J~. we mean a set .4 E X,(J,~) such 
that, setting p = p~, A C Jo and 

v (Jp,A) = ~ ( J ~ )  ~'~ X,,+,,,(J a)  

for m _> 1 (n, ~ >- 0) .  

The following lemma establishes Theorem .~." ! and .~.., " 3 among other  

things. 

la.~mma 3.4. L e t  ~, n ~ O. L e t  O = O~. T h e n  

(i). Ja is Z,,+l un i lbrn l i sabh ' .  

(ii). T h e r e  is a X n ( J~) func t ion  w h i c h  m a p s  a s u b s e t  o f  wO o n t o  ~ a .  

(iii).  / j A  C Jo is X.(J~) ,  thes~ v 1 (Jo" A )  C ~" 
(iv). a has a Z,~ m a s t e r  code .  

(Theorem 2 follows from (ii) since by Lemma 2.10 there is a X l(J~) 
¢ 

map of  coa onto Ja.)  

Proof. Suppose not. Let a be tile least a for which the theorem fails. 
Then a > 0, Let n be the least n for which the theorem fails at a. Then 

n > O, since OiL "'; (n.) and (iv) are trivial l b r n  - 0 and (i) holds b~ Lem- 
t 
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- _m and let A be a .Z m master code. We ma 2.7. Let n = m + 1. Let o - p,~ 
first prove (it). Let 5 be the least ~i <_ a such that some Vr,(J~) function 
f m a p s  a subset of  <~5 onto J,~. We claim that 

l f S <  n 0~, there would be, by the usual diagonal argmnent, a ~ .  ( J . )  
set B c J~ such that (Jo~¢' B) is not amenable. So suppose 5 > P~- Then 

5 > 1. ~ince a > 0. It follows that 5 is a limit ordinal, since if 5 = 3' ~ 1. 
there is a E 1 m a p g  o f u ~  onto wS: but . f -g  would then be a Z . ( J . )  
map of a subset of  co-y onto J~. Since 5 > O~ there is a Z , , ( J . )  set 
B c J ,  such that (J~, B~ is not amenable. Hence there is some r < 8 
such tllat B n Jr ~ J6. But then (B n Jr) E J~\J~,  since r < 6 and by 
Lemma 3, 1.8 is the least ordinal such that V,, (J,~) n ~ (J6) ¢ J~. 

But this means that B n Jr is J~ definable for some/3 such that 
5 <_/3 < ¢~. Let ~3 be the "east such and let r be the least r such that 
B n Jr is ~r(J¢), Then t,'~ ~ ~" < 6 N ~ <  .~. Hence, by the induction 
hypothesis, there is a ~r(J~ ) function g Milch maps a subset o f  ¢or onto 
J~. But then ]'. g is a E,~ ~J~) function which maps a subset of  cot onto 
Ja. Contradiction! 

We now prove (iii) and (iv): 
i~21. ~-I (J~. B) C E,~+liJ~) if B C J~. B ~ ~ , , (J~) .  
Since p = O~ ~ and A is a .~v,. master code and B =~ ~ (J~) n Z n (J~), 

we have B 6 Z ~ (J o , :t ). 
Moreover. 6 = 0 ~ This follows ;rom d~e fact that 5 = O~ < P and by 
tiv). for ~ ~ p. B C Jr '  we have 

B ~  Z l ( J o . A )  iff B ~  ~2,,(J~). 

By Lemma " ~ ~._ it follows that 

E i ( j ~ ,  B) c Z2(J p , A ) c  Z , ~ , I ( J , ) .  

(3). J~ has a master code. 
Since .f is a Z n (J,~) map of  subset of  ~ 8  onto J~ then f '  = f l" .f l , , j p  

is a Z l (Jp. ,4) map of  subset of  0~8 onto Jp. Moreover 5 = p l Hence p,A" 
the conditions o f  Corol la~ 3.3 are fulfilled and we can conclude that 
there is a ~ l ( J ¢ , A )  set B c J~ such that Er(J 6 ,B)  ~ ( J ~ ) n  E~.+j(Jp.A) 



26 2 R.B. Jensen. Structure o f  construe tible hierarchy 

for r >- 1. But then B ~ Z n (J~) and 2;r(J~, B) = $(J~ ) n Z , . r ( J ~ )  for 
r >- 1. Hence B is a Yn master  code. 

We now prove (i). Let B be a Z n master  code. <J6. B) is Z ~ unifor- 
misable by Lemma 2.7. We use this to prove the Sn+t uniformisabili ty 
of Ja .  Let R.vx be Zn+ I (J~). Set 

R y x  ~-~ (y,  x E J~ ^ R f ( v ) f ( x ) ) .  

~£hen R is ~1 (Ja, B). Let r be a ~;l uniformisat ion of  R.  Since f i s  Z ,  
and J~ is Z n unifonnisable,  there is a 2;n (J~) funct ion 7 w h i c h  unifor- 
m i s e s f  -l . Then r = fTfun i fo rmises  R and is ~n,!  (Ja). 

Our earlier p roof  of  the Zn uniformisat ion lemma was based on what  
might be called the "weak projectum'" rather than the projectum and 
was therefore more complicated.  However, the earlier proof  also yielded 
more information,  which we shall now prove separately. 

Definition. The weak 2;n pro]ectum o f e  is tile greatest rt ~ a such that  
(Jn'  A ) is amenable for every  An(J  ~ ) set A c J,~. (n, a >- 0). We denote  
the weak Z n projectum by r/~. 

Note.  As an example of a case in which the weak projectum does not  
equal the projectum, consi,aer the first admissible a > w. Then ~ = a: 
pl  a =cO. 

We staall prove 

Theorem 3.3. There is a 2;~ (J~) f imction which maps rn~ onto Je (n ~ 1 ). 

We begin by proving tile following analogue of  Lemma 3.1. 

l .emma 3.5. Let  n >- 1. Let  ~1 be t'w least ~l <- ~ such that ~(J . r )  n 
A n (J~) ~ J~. Then there is a 2;n (J~) function which maps co7 onto J~. 

Proof. Let n = m + 1. Clearly p" .<- -/<~ pra  Since a Err funct ion maps 
a subset o f  cop 'n on to  J,~, then a 2;, funct ion maps top'" on to  J,~. Hence 
it suffices to show that  a 2;. functions maps ~ on to  cop m . We first show 
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(*). There is a ~ . ( J a )  function g which maps o~, onto an unbounded 
subset o f  t O O  m . 

LetA be a ~m master cocle for~.  Let b c J~ such that 
b E A,(J~ )\Jc,. Then b E A 1 (Jdn,  A ). Since a ~2 ! (J~) function maps 
to3, onto  J r ,  we may assume b c ~3'. Let b be defined by 

v E b ~ V y B o Y V  , 

v ~ b , - - ~  V y B & ' v ,  

where B 0 , B ~ are E0 (J m, A ). Then A ~ < ~. V Y(BoYv v B 1 )w); however, 
there is no r < to0 'n st~ch that A v <  ~/V), ¢~ Sr(B0yv VBlyV) ,  since 
otherwise b E Jd" by the rudimentary closure of  (Jam, A ). Define g by 

g0~) =/a~" V y ~ S,(B0vv v Bt) ,v) .  

Then g has the desired properties. This proves (*). 
Since p" .<- "r, there is a E ,  (J~) function f which maps a subset o f  

~3' onto  ~ p m .  But then f is E 1 (J m, A ). Let f be defined by 
o 

r = f(~,)~--. V y F v r v ,  

where F is a.0(Jom A). Define a map f :  (co7) z -.- cop m by 

[ h: if V), E Sg~)Fy~r ,  
T) 

{ 0 if n o t ,  

Then f is 21 (J m, A ) and f maps (to3,) 2 onto wp m . Let h be a Z l (J~) 
map of  w3, onto  (~,t,) 2 . Then f = flz is a Z h (J~) map of  w3' onto co'), m . 

Theorem 3,3 now follows by 

Lemma 3.6. Let  2t be as #~ Lemma 3.5. Then "r = ~ .  

Proof. Suppo~  not. Then there is an A ~ An(J e)  such that <J-t, A > is not  
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amenable. Hence 3' > I. But 3' * /~ + 1, since otherwise there is a X t ( J r )  
map of  oJfl on to  or)', hence by Lemma 3.5 there would be a , v ( j ,~ )  map  
of oJ/~ onto  Ja. Hence 3" is a limit ordinal. But then there is some r < ~/ 
such that A n Jr ¢ J-r" However, A c~ Jr E J,~, since r < 3'. Then A n Jr 
is J~ definaSle for some ~ such that  ~ ~ / i  < ¢~. By Theorem 3.-" there is 
a J6 definable map f :  to," 2 P t ~  J~. H e n c e f E  J~. But, since 5 ~ 3', 
Lemma 3.5 wotdd give us a X n (Ja) map of  cot on to  Ja. Contradict ion!  

Note. Theorems 3.2 and 3,3 may be viewed as generalisations of  Lemmas  
2.13 and 2.14, which are due to Kripke and Platek, They may also be 
regarded as sharper versions o f  a still earlier theorem of  Putnam,  ~o wit: 

If ~ ( p )  n Le+~ ~ L . ,  then Le+ I contains a well ordering of  p of  type 
(p>_ ~o). 

Putnam proved the theorem for the case p = to, but his proof  carries 
over mutatis  mutandis .  

§4. Standard codes 

In §3,  we proved that  each a has a Zn master code; i.e. a set A 7_ Jpn 

such tha tA  e ~;,,(J~) and ~h(J , , , A t  = ~ ( J  n) n ~r+h(J~)  forh >- 1. 
. . . .  ~ tO t " • 

In tlus section we p~ck canoc~cal master  codes ,,t~, wl~lch we call stan- 
dard codes. We show that  the standard codes, in a reasonable s en~ ,  are 
preserved under  condensat ion arguments.  Tiffs will en:~ble us to do things 
in a more uni foml  way than if we had only the results o f  §3 at  cu r  dis- 
posal. For  instance the X,  un i fo rmi~ t ion  lemma proved in § 3 suffers 
from a serious deficiency vis-a-vis the Z i uniformisation lemma proved 
in § 2 (Lemma 2.77: Ja is not  uni/ormly ~ ,  uniformisable t~r n > 1. 
However, the results of  this section wilt enable us, in many contexts ,  to 
replace Zn uniformisat ion over Ja by ~ l  uniformisat ion over <J~,  A~ > 

- and we know that  amenable (Jp' A ) are ~ 1 uniformisable in a uni form 
way. 

Definition. We define staudard codes An a and standard parameters pna as 
follows (n, ct >_ 0) : 
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(1). n = 0 :A n = p n  = 0: 
(2). n = m + 1 " pn a = the least p E Jam (in < j d  n ) such that every 

x ~ Jdn is X t (Join, A~ ) definable from paramete~ in {p} u Jo, ~, 

Jo" ~ i [ x , l G ] ;  , 
p 

where ~Pi(i < CO) is a recursive enumeration of  the formulae. 

it is easily established that A~ is a Z ,  master code for J~. 
We now state our main theorem. 

Theorem 4,1. Let  n, m ~ O, ~ ~ 1. Le t  (J_., A-) be amenable and let 
p 

<jp ~ n rr : (J_ .4-) ~,,  . t ~ ) .  

T / W H  

(a). 77wre is a unique ~ >- 0 such that ~fi = ptj. and .,~-= A'_ ~ . 
(b). There h" a unique "~ z ~r d<tmed on J_ s ] l ch  that fo~al l  i <_ n, 

Ot 

?r ~ t~!. , = ~J 

and 

( ~ 1 J ~ ) :  (J~,Ai)-*~, , ,+~n_) ( J 0 / , A ~ ) .  
Ot 

Definition, I f ~ , ~  are as in (a), (b), we call J_ Y-, JR the canonical ex- 
, t I  0t 

tension of  (J .  ,4-) ~ (J , ,  A ). Before startivg the proof  of  our theo- 
o 

rein, we note some facts al~ " - out  the relatmn (J~, A) ---* z0 (J~, A ). 

t ~" i* ;  • ° 1). Le ( X , A )  - -- ":,o ( X , A ) ,  where X , X a r e  transitive and (X ,A)  is 
md  closed. L e t f b e  m d  in ,4 and let f b e  rud in A by the same rud deft- 
nition. Then KF(x) =/ '0r(x)) .  
Proof. Clearly, ~r(x n A)  = ~r(x) n A. Moreover, i fg  is any rud function, 
then ~g(x) = g ( ~ x ) ) ,  since the relation y = gtx )  is Z 0 . The conclusion 
follows by Lemma 1 3 .  
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(2). If J_ ~ ~ J,~, then ~r(S,,) = S,r(~ ) f o r v <  ~ .  
Proof Le t~  < ~ a .  Then y = S~ ~ V f ( y  = f(~) ^ ¢(f ) ) ,  where ~ is a 
certain ~o formula (see Lemma 2.2). l f y  = S,, then there i s f ~  J~. such 
that  

J_ ~ y = f (v)  .,x so(f).  
O/ 

Eut the above formula is Zo : so 

J~ ¢ ~r(y) = (r(.f))Or(v)) ^ ,pOt(f3). 

so there i s f ~  J~ such that  

J~ ~ rr(y) =f(~r(v)) A ¢ ( f ) .  i.e. rr(S~) = S,,o. ) . 

(3). I f ( J _ ,  LT) ~ ,. (J,~, A )cot'inallv (i.e. sup i t " w e =  wa) ,  lllen 
- -  r r  O r "  ~ 0  " "' 

( J ~ , A ) - - ~  Zl (J~,,A)- 

Proof. Let V y ~o(y, n(x)) holds in (.;,~, A ~. where ¢ is ~0.  Then for some 

V3, ~ S,(,,) ~(y,  ~r(x)) 

holds in ( J , ,  A ). But  this s ta tement  is Z o . hence Vy  ~ S~,~y, x) holds 
in (J_,  .~). 

(4). If  ( J_ ,  ./T) is amenable and J_ .YS+ a :o  Ja cofinally, then there is a 
unique A c J~ such that (J_ ,4) ~-~ able. a " '"o (':~* ' ,4 >, (J~, ,4 > is then amen- 

Proof Set A = U~<,~  rr(.4 n S~). Then A is tile unique A c J~ such 
that  rr(A n S , )  = A n S,,t~ ) for v < to~-. 'ro see that (JR, A ) is amenable,  
let x ~ J~, x C S~ro, ) (1) <~ ~,.)~). Then x n A = x n A n S,,(¢) E J:~. By tile 
same argument,  i f x  ~ J~, then ~'(x n / T )  = 7r(x) n A. Now let ¢ be Zt: 
and let ~<j_.~> ~o[x]. Let u ~ J_, be transitive such t h a t x  ~ u. Then 

~<,,~fnu> ~o[x], hence ~(~u),A n.(,))  ~017(X)I where rr(u) is transitive 

and 7r(x) ~_ rr(u)). Hence ~ j a ,  A> ~[n(x)] .  
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Before beginning the proof  o f  our  theorem,  we generalise the defini- 
t i o n s - f - n  ..n n 

Definition. Let (Ja'  B) be amenable. Suppose that some O <-/3 satisfies 
the conditions: 

(aL There is a Z ~ (Ja'  B) map of  a subset of Jp onto  J~. 
(b). If A E ~]I (Jo) n E 1 (J~, B), then ( Jp, A ) is amenable. 
Then p is uniquely, determined and we set ~'a.B~! = p .  P~,B = the least 

p (in < j  ) such that  every .v E J;~ is E 1 definable in parameters f rom 

J o u {p~. 

"•II~.B = { ( i , x ) l i <  co ^ x E  Jp ^ ~ ,1 .l~ V~i[x,p]} 

T h u s  ~n  n n  n ~-~, e~, A~ are definable by 

oo = #  po = 40 0 

p n + l  = p l  n , p n ÷ l  = 
On  .~1 ]) n ,An 

A n+l = A ! 
O n . 4  n " 

We prove the theorem by induct ion on n. For n = 0 it is trivial. Now 
let n > O and suppose it to hold for n - l. Se t ( J~ ,B)  (Jpn-I n-I  = , A ~  }. 

Set p = -~"°~ 1 Clearly it is enough to prove f'ox " 
1 and A l (i). There is a unique (J_,~ B-) such that  O = 0/3./~ = A~/~. 

(ii), There is a unique lr ~ 7r such that  ~r(pl/~ ) = p and 
( j_ ~) .U, (J~, B). 

# ' ~ m + l  

We begin by proving the existence part of  (i) and (ii). Set p = On 
A = ,.4 ha. Define O <_ p by ~ = sup~<~-  u(v). Set A = A n J~., Then 

( J - ,  A ) --~ :c- (J~ ,  A)  cofinally. Set X = the set of  all x E Ja which are 
0 P~ 

E l (J~, B) in parameters f rom rng(x) u {p}. 

I.emma 4.1, X n J~ = rng(~'). 
P 
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Proof. Let y ~ X n J~. Then for some x ~ rng0r) and some Z t formula 

~oi, y is the ,n ique  y such that ~o n~ ¢i [< v. x ), p I. Hence y ~s the um- 
q u e y  ~ J~ such that A'(i, 0 ' ,  x )~ .~u t  (J~/. f f ) ~  ,:~ <J3, ,4~: hence 
y ~ rng(~'~. '~ 

Now let J_ be the transitivisation o f  X and set ~r • 0 _ .  B) 
( X ' X n B ) ' a T h e n ( J - ' B ) ~  -"  ~:1 ( J , . B ) . S i r l c e ( ~ l  J ~  J_ ~-~ 
X n J.~ = rng0r), we ~aave lr t J_ = 7r. o 

o P 

Lemma 4.2. (J_, B) I1 ~m+l ( J ~ '  B) ,  

Proof. For m = 0 the assertion is proven. Assume m > 0. We must s!:ow: 

(*). If) ,  ~ Ja is Zm+ ! (Ja, B) in parameters from rng(rO u {p}. then 

y E X .  
Let y be defined by the condRion 

(1) 

where ¢ is Zm+ l . Let h be the canonical Skolem function for <Jz. B) 
and set h((Lx~)  ~ h(L <x.pD. Then h Jo = J¢ and h rng(rr p = X. 
Hence it suffices to show that t~le condition 

(2) 

is sar.isfied by some z 6 X n Jo" Let ¢ = V : t  A :2 ..- V :,n ~.  where ~. 
is ZI i f m  is even and II 1 i f m  is odd, Then we must show that tile con- 

dition 

(3) V:~ A z 2 ...~:,, l=<jo,8, ~[~(z),~(-),x,p] 
= .lp E Jp ~ Jp 

is satisfied by some z ~ J~ n X. But (3) is cle:'~ly x-,. ,, (J~,, .4 ) in the 
parameters x. Since x E X n Ja < '=m <Ja" ,,i ), we conclude that  (3) is 

satisfied by some z ~ X (~ J~. 
Obviously p E X. Set p" = ~ - i  (p). 
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Lemma 4.3..4 = { ( i , x } t  i < w ^ x ~ J_ ^ ~ j !  
- 0 .,~> ~i ~}}. I.Y,___ 

Proo£ We have 

(1) 

and 

(2) 
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Since the right-hand sides of (1) and (2) are equivalent, so are the left. 

I kemma 4.4. ~ = p ~ .  

Proof. (~ ) .  By tile construction of J_, every x ~ J_ is Zl ( J - ,  ~ )  in 
paramet, rs from J_ u {p},  Hence if h is the canonical X t ~kolem 
function for (J_, P~>, we have 

(~}, Let C~: ~}}(J_ ) n x I (J~,/~). We must show that (J_, C) is 
anaenable. Ever3' x ~e j_ is Z l f~- ,  B ) m parameters from J_ u {p } 
hense so ~s C. By Lemma 4.3 it ~tollows that ( is rud in A, Hence 
<J_, C) is amenable. 

p 

Lemma4.5,iS=t~,~,,I .~1-= ,t~ n 

Proof. By Lemma 4,3 it suffices to show p" = j l Now p satisfies the ~ "  
condition: 

(*) Each x ~ J_ is X t (J~, B) in parameters frora J_ u {p}. 

We must show t h a t p  is the least such in < j .  Suppose not. Let p' < j  p- 
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salisfy (*). Then p = h(i, (x, p')) for some x E J - .  But then 
p = h(i, (~r(x), "~(P'D, where lr(x) ~ Ja and ~(p,)a<j P. But then every 
x ~ J~ would be ~1 (J~, B) in parameters from J~ u {t,(p )} and we 
would have p >j  ~r(p') >_j p~,a. Contradiction! 

This establishes the existence part of  (i) and riD, It remains only to 
prove uniqueness, 

Lemma 4.6. There is at most  o~te (Jg,  B) such that -p = p~t .t~ and 
A = A I,t 7 • 

Proof. Let (Jai, B i) have the property (i = 0, ! L Set Pi = P~B i" Then 

(1) ~<Ja0,a0 ~ 9[X, po]  ~-~ ~oal.al~ ¢[x.  pt i 

for 2; l formulae ¢ and x ~ L ,  since 

Let h i be the canonical Skolem function for <Jai' Bi) and set 
hi(Q, x))  ~ hi(/, (x,. piD. Then "~i = hi J~" By (1) we have 

(2) ho(x) ~ ho(Y) ~ ~ ex~ ~ ~ (y). 

ho(x) = ho(Y) ~ hl (x) = hl (Y~, 

ao~o(X) ~ B17 q (x) . 

for x, y ~ J - .  Thus we, may define an isomorphism o: (Ja0' B0 > 
(JaI '  BI ) bff: Otto(X) = h 1 (x). But o is an ~-isomocphism; hence 
o = id 1" J~0" 

Lemma 4.7. There is at most  one ,r D ~r such that ( i~, B) ~ (Ja' B) 
a n d S ( p ) =  p. 
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Proof. Let ~r i have the property (i = 0, 1 ). Let i7 be the canonical ~ 1 
Skolem function ."or (Jg ,  BL Then 

rro h q , x ,  i ;  ) = 7r t h q , x ,  -fi ) = h ( i  , rt ( x ) , p )  

lk~r x E L. .  Hence rt o = ~1" 
o 
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§ 5. Combinatoriai principles in L 

In this section we use the results o f  §4 to derive some combinatorial  
principles from the assumption V = L. These principles enables us to 
cart3' out  inductions which would otherwise break down. In § 6 and 7 
we shall make use of  them to settle some classical problems of  set theo- 
D' and model theory on the assumption V = L. 

Definition. Let ~ be a limit ordir.al. A C c~ is Mahlo (stationary) in a iff 
A c~ C ~ 0 for every C c a which is closed and unbounded in a.  

Theorem 5.1. Assume V = L. Then there is a clcLgs E o f  limit ordinals 

and a sequem'e C x def ined on s#lgular limit ordinals X such that  

(i) E n t¢ is Mahlo in s: lbr  all regular ~ > w;  

(ii) C x is closed, unbounded  in ~.; 

(iii) (t'7 < ~ is a limit p o i m  o f  C x, then 3' is singular, 7 f~ E and 
c, ---rn 

(Hence, in particular, there is a class E such that E n s: is Mahlo in all 

regular tc I:ut no singular re.) 
We begin the p roof  of  Theorem 5. l by defirdng the set E. 

Definition. E is the set o f  limit ordinals a such that for some/3 > a 

(i) Ja is a Z F -  model, 

(ii) ~ is the largest cardinal in Ja, 
(iii) tr is regular in J~, 
(iv) for some p ~ J~, Ja is the smallest X-< Ja such that p E X and 

a n X is transitive. 
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Note:  Z F -  = Z F  wi thou t  the power  set axiom.  

Lemma 5.1. I f  ~ is regular, then E n u is" Maido hi ~. 

Proof. Let C ~2 t~ be closed and unbounded  in t~, We claim that  

C n E # 0. Let U = the smallest U < J~. such that  C ~ U and a: ca U is 

transitive, Let ,r - l "  U .Z. j~.  Then J~ ~ ..:,., J~.. Let et = K ca U. It is 

clear that  ,r r J,~ = id I" J,~, since J,~ c U. Moreover. if X ~ U and X ~ J~. 
then ~ - l  (X) = X n J,~, since J~ = U ca J,,. In particular,  rr - l  (s:) = a :  
zr -1 (C) = C n t z .  Since E n s: is JK÷-definable. we have 

E n K ~ U  and r t - l ( E n x ) = E n a .  

By the def in i t ion o f  U, Ja is the smallest U -< J~ such that  C ca a ~ U' 
and o~ n U' is transitive. Hence t~ ~ E. But C n a is unbounded  in ~, 

since 7r(C n a)  = C is unbounded  in s:. Hence t~ E C, since C is closed, 

We now define the sequence C~. We consider several cases, all but  one 
o f  which are trivial. 

Case 1. a < co I . Le t  C,, be any  unbounded  subset o f  order  type  ~ .  
Let  s : On 2 ~ On be G0dei ' s  pairing f imct ion and let Q = {vl(s I' r 2 ) : 
/)2 *"* b' }.  

Case 2a. a > col and s"~  2 fLa.  Let  3' be the maximal  3" < ~ such f i a t  

s"3' 2 c 3'. Then E ca (~\3') = 3, since fl ~ E -~ s"fl ~" c ft. Set ('~ = a\3' .  
Case 2b. ~ > 601 and s " a  2 % e, and Q ca ~ is bounded  in a. Let  3' be 

the maximal  3, < a such tha t  s"~ ,2 c 3'. Then there is a X l (J~) map f o f  

co o n t o  an u n b o u n d e d  subset o f u  (E.g. define f b y f ( 0 )  = 7 , f ( n  + l)  = 
sup s " f ( n )  2 . Since s is un i fo rmly  definable in terms o f  < j ,  f is easily 

seen to be Z ! (J~) in the parameter ' ) , . )  Set C~ = rng(f) .  

Note.  I f  cases (1) and (2) fail. then  coa = a. 

Befere considering the nex t  case, we have the defini t ions:  

Definit ion.  ~ is regular in (3 iff/~ >- a and  there is no  ~to (J~) mapping  o f  

a 3' < u cofinally in to  ~ (i.e, o n t o  an u n b o u n d e d  subset  o f ~ . )  
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Defini t ion.  ~ is ~,7 regtdar in (J iff~3 >_ a and there is no X,t(J a) func t ion  
mapping  a subse t  o f  some ~t < tx cofinal ly into a.  

We set ( for  singular t~) t3 =/3(¢~) =/a,~3 >_ c~ such that  a is no t  regular in 
~, n = n (a )  = m~ ~ I such that a is no t  E,~ regular in #(ix). 

Case 3. n = I anti fl is a successor  ordinal. Then a. is w-cof inal  and we 
qi 

again take C, as being o f  o rder  type  w. We show that  a is ¢o-cofinal as 

follows: 
Let  f : u -~ a be  Z l (Ja)  where  "r < a ,  u c ~, and f"~,  is u n b o u n d e d  in 

t~. Let  

r = f(v~ ,-~ V : t . - r v ,  

where  F is Z o . Let  3 = 8 + 1. Define ,t). (i < ¢0) by 

Then  ,li is J~ def inable ,  since .t~. E Ja and .t~. c J~. Set ai  = sup j ) " 7 .  Then  
t~ i < ~, since e. is regular in 6, bu t  stjp % = sup f "3 '  = ct, 

I 

Before  proceeding  to  the last case, we note  that  each a ~ E falls 
under  case 3. This fol lows from 

Lemma 5.2. i r a  ~ E and ~ is as in the deIhzition orE.  Then ~ is no t  Z l 

regular m t3 + 1 

Proof.  Let  p ~ J;~ be such that  J~ is the smallest  X < J~ such that  p E S 
and tx n X is transitive. Let h be rite canonical  E l Sko lem func t ion  for  

Ja+l" Let 

y = h ( i , x )  ~ V z  Hzy ix  where  H is X; 0. 

Define h~ (j < ~ )  by  

.V = h~ (i, x )  ~ y ,  x ~ Stot~+/ ,\ V z E S~o+/ Hzy i x  . 
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Then h~ ~ J/~+l ; moreover  (h/l.] < o~) is E; I (Ja+l)" Define a i, X i (i < co) by  

r~ 0 = CO, X i = h i " ( c o  X (Jai X {p})) ,  

a m  = ax~ (ax  =dr sup(~ n X ) ) .  

By induct ion  on i, we  get a i < or, using the facts: hi n Ja is Ja def inable;  
a is regular in  J# ; there is a func t ion  in Ja which  maps  a i o n t o J , , .  
Clearly, (nil i < co) is Z l (Ja+l). Thus  it suffices to  show that  cz = 

where  cz = suPi~ i. 
N o w  ~ = a x ,  where  X =  UiX  i. But X = h"(co x (J_ ;< {p})) ;  hence 

X ' < z  1 Ja+l. Set  Y = X n  Ja. Then_ Y < J a . p E  Y a n d ~  =czra Y is tran- 
sitive. Hence  Y = Ja. Hence  ~ = a.  

We turn now to  the most  diff icul t  case. 

Case 4. Cases 1 - 3  fail. Let  ~ .~--/3(a), n = n(a) .  Set  p = p(t~) = p~ - t 

A = A 0 x ) = A ~  - l .  
Then p~ <_ t~ <_ p, since a is X n ~. I regular bu t  not  .v n regular in/3. 
Set 

p = p(~x) = the least p (in <jp ) such that every x ~ Jp is 
~ l  (Jp ,  .4 } in parameters  f rom a u { p } .  

(Note  that  p < j  p~ bu t  n o t  necessari ly l)~ <- P-) 
Let  h be the canonical  ~ l Skolem func t ion  for  (J~,  A ). Se t  

h(i, x )  ~- h(i,  ( x ,  p ) )  . 

Then h is a nice X 1 Skolem func t ion  for  ( Jo ,  A ) and h"(co  x a ) = Jp.  

Lemma 5.3. There is a "r < ~ such that  ~ n h"(co  × 7)  is u n b o u n d e d  in ~. 

Proof .  There  is a r < a and a ~ t (Jp,  A ) funct ion  f s u c h  t h a t . f " r  is un- 

b o u n d e d  in a.  We m a y  assume that  r <- p~. (since t h e ~  is a Z 1 (Jp,  A ) 
funct ion  mapping  a subse t  o f  O~ o n t o  a L  Let  f b e  ~ i in the paramete r  

q. Then q = h( i  0, v 0 ) for  some i 0 < co, v 0 < a.  Let  s : On ~ On"  be 
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G6dels  pair enumera t ion .  Let  

(~ = {z, l  ( s  t v )  : v , - ~  v 2 }  . 

Since c:~ses i and 2 fail, we have a > w I and Q n ~ is unbounded  in a.  

Pick 3' ~ Q such tha t  3'0 < % r <- 7, ' / <  a.  It suffices to show tha t  
f " r  c h (co X 7)- Let  X = h"(~o  X 3'). Since q ~ X and r c X, it  suffices 

to show X-<::  l (Jp,  A >. Since h " ( ~  × X) c X, it suffices to show tha t  
X is closed under  ordered pairs. This fol lows by 7 ~ Q • Let  x 0 , x I ~ X, 

Xi = h(Ji,  ~i)  (i = O, I ;Ji < 6o, r/i < ~/). L e t  s n = (77 0 , r/1 ;. S i n c e  s ~ O is 

Z; l (Jo '  A ) in no parameters ,  r/0, r/! are Z l in 7/and x 0 , x ! are Y. 1 in p, 
~. Hence (x o , x I > = h ( j ,  r/) for some i < co. 

Now let h have the (uni form)  def ini t ion 

y = h ( i ,  x )  ~ V z ltzyLx" , 

where H is ~o .  For  r < 0, set 

y = h r ( i , x )  ~ y , x  E J r  ^ Vz E J r  Hz.vix . 

Then h r is the canonical ~ t  Skolem func t ion  for  amenable  ( J , ,  A n J r ) .  

We define a map g " tt ~ o~ where tt Cot  by 

h(i, v) if h(i,  ~') < o~, / 
g(oo)' + i) = / 

undef ined  o the rwi se .  

Then  g is Z 1 (Jo,  A ) in p,  ~ (if  ~ < O) and 

r = gO') ~ V z ( ; ( z ,  r ,  ~), 

where 

G ( z ,  r ,  ~) ~ v < ~ ^ r < ~oa ^ H ( z ,  r(v/o~), ( [v/o~], p ) ) .  

G is un i fo rmly  £1 (J, . ,A c~ j r )  in p and ~ ( i f  a < 9) for r < 9 such tha t  

( J r , A  n J,O is amenable  and p ~  Jr ,  a < r ( i f ~  < O). 
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Note that  g " ~ r  = a n h"(¢o x r )  for  r <- p. Set  3' = the least 3" such 

that  sup g"3" = a. Then  q¢ < a by L e m m a  5.3. Obviously 3' is a limit 
ordinal. Since sup g " r  > ~r for 3" <_ r < a ,  there is a maximal  ~: < a such 

that  sup g"K <- x. But then x < 3'~ This ~: is f ixed for  the rest o f  the 
proof.  We have x < 3" < a and 

(*) s u p g " r > r  for  ~ : < r < o ~ .  

l .emma 5.4. I f  X-< zl ( la, A >, ~ ~ X,  p E X and a n X is transitive, then 
~ A X = ~ .  

Proof.  Since ~ A X is transitive we have a x =of sup(a  n X) = ~ n X. 

g c o~ 2 is ~1 (Jp , A ) .  S o g " ~  X c ~ n X and s u p g " a  x <_ a x -  Suppose 
n X ¢ o~. Then a n X ~: t~ and since a c~ X is transitive, a x  < a.  

~ 0~ n X; so ~ < a x .  Then by  (*), sup g"~  x > a x ,  Cont rad ic t ion!  
We turn now to the def ini t ion o f  C~. We shall first define three func- 

tions k, 1, m from a limit ordinal  0 ~ 3' in to  % e~, p, respectively, such 
that  

sup k(v)=3", sup l(v)=a, sup m ( v ) = p .  
v< 0 v< 0 v<  # 

k will be m o n o t o n e  and 1, m wil: be normal,  k maps in to  dom(g} in such 

a way tha t  gk is m o n o t o n e  and gP(v} > k(vL / will be def ined in such a 

way that  l{v) < gk(v)  < l(v + 1 ). C~ will then be def ined as a closed co- 
final subset o f  {l(v)l v < 0} . 

We define k, 1, m by the fol lowing s imul taneous  recursion: 
(a). k(v) = the I~ast r ~ dom(g) \~  sucll that  

(i) r > k(t) Ibr t < v ,  
(ii) g(r) > l(v), 
(iii) re(v) ~ h"(w x g(r) ) .  

Using (*) it is easily seen tha t  g(k(v))  > k(v). 

(b). re(O) = max(~: + 1, tar p ~ J r ) ;  ln{V + 1 ) = tile least r / <  p such that  
(i) re(v), k(v) ,gk(v} < n ,  

(ii) Vz E Jn G(z, gk(v}, k(v}}, 

(iii) re(v) e h~'(w X gk(v)  X { p } ) ,  

(iv) A o J m  (v) E Jr~ " 
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re(h)  = sup re(r)  if sup re(t,) < p ior  limit X. 

(c). 1(~,) = ax ,  ' if  ax, ' < a, where  

277 

= ' " ( ¢ O  ,¥~, d m (,,) X J,~ X {!;~} ) , 

T/= max(K + 1, sup gk ( t ) ) .  
t< l~  

Thus  k, l, m are all def ined on  the ordinal  0 <- 3', where  0 = dt~rn(~:) n 
d o m ( l )  n dora(m) ,  It is clear that  l(v) < gk(v) < 1(~ + 1) and th, t re(t) 
X~ for  t < v. It is also easily seen that  l is normal.  To  see that  0 is a limit 
ordinal,  we must  show that  I(~, + 1 ) is def ined,  where I(~,) is. But  

/(Y + l )  = s l ip  (Or N hm(~,+! ) "(( .o X Jao,+l) X { p } )  , 

where  r/(v + !) = g(k(v)), hmo,+l ) ~ Jp and there is a n . f ~  Jp which  maps  
r/(~, + !) on to  to x J,~,.l) X {p}. Hence there is a n f ~  Jp mapping  
~/(t~ + 1 ) u n b o u n d e d l y  i n t o / ( v  + 1 ). But  ~(~, + 1) < a and a is regular 
in all r < p. Hence l(v + 1) < ~, 

Lemma 5.5. 

(i). sup k(v) =7. 
v < 0 

(ii). sup re(v) = p, 
t,<O 

(iii). sup I(v) = ~. 
:~< 0 

Proof .  It suffices to  prove Off). (i) t h e ,  fo l lows since sup g"r = a,  where  

r = sup,,< 0 k(t,), hence r = 7. (ii) fo l lows since otherwise ,  let t ing 

r = sups,< 6 re(v), where  r < p, a n h r " (w  x J r )  is u n b o u n d e d  in a ;  bu t  
h e ~ Jp and there is an f c  Jo mapping 3' o n t o  J-r ; hence ~ wou ld  fail to 
be regular in some r / <  p, 

P roo f  o f  (iii): Suppose  not,  Let a = sup,,< 0 l(v) < ~. Then 
sup,,<~ re(l,) < p, since e therwise  ~ =  U~tL¢ ~ = (~ n U~A~), and let t ing 
X = U~X~ w e  have 

X=h"(~x (J~ x {p}))=~(~x J~). 
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Then by Lemma 5.4, we have ~- = a,  since ff = a n X, ~: < ~, p e X and 
X-< ~ (Jp, A). Contradiction! 

But then sups< 0 k(v) >- "~ since otherwise k(O), re(O), i(0) would be 
defined. Let r = the least r ~ dom(g)\~: such that g(r) > ft. Then there is 

a least v < 0 such that  k(v) > ¢. But k(v) -- t t e  least r '  q dom(g)\~: such 

that 

(**) r '  > k(t) for t < v and g(r') > l(v), and re(v) E ~ " ( w  x g(r ' ) ) .  

But then r >- k(v), since r satisfies (**). Contladiction! 

As a corollary of  the proof  o f  Lemma 5.5 we obtain 

l.emma 5.6. Let ~ < 0 be a limit ordinal Let r = sup,,< x k(v). Thor 
r > ~ and lO,) = sup g"r (hence l(X) > r >~ X). 

Proof. Suppose not. Let 7/< r such that  g(rl) > l(k). Let v be the least 

v < r such that k(v) > 77. As before we get k(v) <- T1. Contradiction! 

For  v < 0 let go be related te  hmto~ as g is related to h; i.e. 

r = g,At) ~ r, t < ;(v) ^ Vz  ~ Jmtv)G(z, T, t ) .  

Then g~ is uniformly Z1 (J,r~(v), 4 n Jm(v~) in p, l(v) (if l(v) < re(u)). 
Let rv be defined from gu as k: is defined from g; i.e. 

g~ = max {lcl ~: < l(v) ^ . ,  vgvg  < ~} 

Preparatory to defining C a, we prove 

l.emma 5.7. rv = ~ for sufficient.ly large v. 

Proof. u < r ~ gv c gr ~ Uv< ogv = g- Then sup g~"v <- sup g"• ~ ~. 

So g <_ g,,. Similarly v < r ~ ~: "£ ~, <- e~. Let ~: < ~ < ~. Then 

Uv< 0 sup gv"~ = sup g"~ > / j .  So there is ~ < 0 such that for all u > u~, 

sup g~'~ > ~; i.e. e L, < / i .  Since there is no infinite desending sequel~,ce o f  

ordinals, it follows that ~:,, = ~ for all ~, > ~ m e  v o. 
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We are now ready to define C~. We define a normal function t :0 ~ 0 
< 0) such that sup t"O = 0 and then set C a = l"t'"6, t(t) is defined 

recursively as follows: 
Case 1. t = 0. t(0) = the least v such theft 
(i~ h:, = x for r ~ ~.,. 
(ii) a ~ X .  i f~<p ,  
(iii) l(v) > ~ l  " 
For  t > 0 we consider two cases. 
Case 2. n = 1. Let s : On 2 ~ On be Gt~del's pairing function. Set 

t(t + I) = the least v > t(t) such that s"(lt(t)) 2 c l ( v ) ,  

t(X) = sup t(t) if sup t(t) < 0 for limit X. 

t(t + 1) is always defined, since s"a 2 c a. 
Case3.  n >  ~ . S e t o , = O ~ - ' . , A , = ~ n  2 , , ~  ,p*='n-l~,# . Let h* be the 

canonical ~£~ Skolem function for (Jo *, A *). Set 

t(t + 1) = the least v > t(t) such that 

s"(It(t)) 2 C t(v) ^ J a n  tz*"(to × Xt( 0 X {p*}) c X v , 

t(X) = sup t(t) if sup t(t) < 0 for limit ;~. 
t <  h t <  h 

We must show that t(t  + 1) is defined. Let v = t(t). Let 
Y = J~ • h*"( to  x X~ x {p*}). We must show that Y c Y~ for some 

< O, Since Y c .la it suffices to show that Y c Jr for some r < a, for 

if 1~'~) >_ r., we then have X C Jr C X~+ t . 

,~, - hm(v) (co × Jn × {P }) for some rl < 0~. hm(v) E Jt~ and J~ contains 
a function mapping 7/onto  (co x Jn X {p}). Hence Ja contains a func- 
tion mapping 7? onto  w x X~ × {p*}. Hence there is a Zn- l  (J~) func- 
t i o n f  mapping a subset o f  7? on to  Y. Since ~ is Xn--l regular, the func- 
t i o n p ( ~ )  - tarf(v)  E J, is bounded in a. Hence Y c Jr for some r < a. 
Set: C~, = {lt(v)l  v < 0} .  C= is obviously closed ~.nd unbounded  in a. As 

an immediate corollary o f  the definition of  ( ~  we have 
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Lemma 5.8. L e t - d <  ~ be a limit po in t  o f  Ca. Then ~" > ¢o I and 
s"~ 2 "2_ ~, where s is GSdels pairing function. Moreover. suppose that 

n > 1 and a = 100. Le t  f b e  a funct ion  Z t (Jo. ,  A *} in parameters f r o m  
X x U {p*} which maps a bounded  subset o1"~ into ~. Ttmn f i s  bounded 

i r i S .  

For the rest o f  the proof  let ~ < a be a fixed limit point of  Ca. We 
must show ~ 6 E ^ C- = ~ c~ Co. Let ~- = i(k). Set 

Ot 

rr - l  : ( X  x,A n X  x ) ~ ( J _ , A ) .  
o 

- ,r ~ be the canonical extension T h e n < J - , A )  ~ ,._ ( Jp ,A) .  Let J -  ---~ J.. 
o-- rr -u - = = ~ _  . ,~_~A~_land~r(p~i_l)=p;,_ " of<J~,  A ) - - - , ( J o , A ) . T h e n  u .~ , 

Let 77 be the canonical Skolem function on {J~, A). Then tt = ~r ! hm<x)~ 
and has the cano ileal Zl  definition: 

y = ~ ( i , x ) ~ ' ~  Vz E .I°. i i ( y , i , x ) ,  
ta 

where F/= 7r - l  (H). Set i;  = rr-I tP). 

Lemma 5.9. ~ =/3(~-), n -- n(~). p = p(S); moreover. ( fg ,  ~ are def ined 

f rom -d as g, K were define:i f rom  a. then g = gx , -~ = ~. 

Proof. Se tp '  = the least p' (in < j )  such that every x E J.-p is S 1 (J~, ,,1) 
in parameters from ~ u {p'}. 

(a).  p'  = 

(-~). }~"(oJ X J.- X {p}) = J - .  B~t ~ is closed under Gbdels pairing 

function, whence it easily folious that J-  = h (w x a × {p}) (cf. llae 
proof  o f  Lemma 5.3). Thus each x f~ J-  ~s Z i in parameters from 

(~'~). Since p-~ J - ,  there is a v < if' and i < 60 such that 
p = it(i, <v, p')). Hence p = h(i, (v, 7r(p'))). Hence each x ~ Jo is 
ZI ('To, A) in parameters from a o {Tr(p')}. Hence ~r(p') -> p and p '  ~ p.  

Define g' in ,erms of  h, ~, p as g was dellned from h, a,  p. It is imme- 
diate that 

(~). g' = gx. 

Defining x' from g' as ~ was defi~ed from g we then get 
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(C}. K' = I¢ h = K. 
Thas  it remains only to shcw that  ~ =/~(~). n = tt(~-), for we then Ixave 

(~).  Set ~ = sups,< x k(vL Then ~ < ~ since ~-- supv < ~ gk(v) = 
sup g"r~ and r />  ~:. Hence g' maps a subset of  r / unbounded ly  into ~. 
But g' is 2; ~ (J-_, A-), hence X,~ (J~). 

(<_). If  not,~i.e., i f ~ > / 3 ~ ) ,  t~en ~ >  ~ a n d  there is a n f ~  J-  which 
maps some r < ff unbounded ly  into ~. ~ t" ~ = id t ~ and dome(f)  i," 
bounded  in ~. So ~r(f) =f.  But the s ta tement  "')"is a funct ion,  dora (3') = 
r < ~" and range f is unbounded  in d,'" is ~0 -  But then the same state- 
ment  must  hold with only ~ replaced by rr(a). Contradict ion since 
~(~) ~ a > ~-. (Actually ~r(a) = aL 

{e),  n = ~ ( d ) .  

(.>_). The proof  of  the (>-1 part of  (d) showed that there is a £,~(Jg ) 
function mapping a bounded  subset of d unboundedly  into a. 

(_<_). F o r n  = 1 this is trivial. Let n > 1. We must  show that d is £n-~ 
regular in ,_~" Let .l" be a ~,,~_ x~ 1 (J~.) function, mapping a bounded  subset 
of ~ into ~. Set 

p *  = 0~':--', .~* = A~"-2, ~ *  = l,~ - t  , ,r* = ~r t J~.  . 

- -  / t *  
Then <J~,, A *) ----, "-:1 <JP" A*)  and zr*(p*) = p*.  f is ~1 ( J - . ,  4 * )  in 
p* and some x E J_.  Let f '  have the same ~ kdef in i t ion  over~Jp. ,  A*)  p 
in the parameters p* ,  lr(::). Since f c  J- and ~r t J-- = id 1' J_ ,  we have: 

C¢ Or._ 

f c  f ' .  Let u = dom(J) .  Since u is ~,~-! (J~) and bounded  in p we have: 
u ~ J - .  Since u is bounded  in ~, we have ,rOt) = u. The s ta tements  ") ' is 

P 
a function" and "dom(. t )  c u"  are 1I ! ( J ~ , , ) i * )  in p* ,  x,  u. Hence f '  is 
a funct ion and d o m ( f )  ,7_ u Hence f = f ' .  Thus  f is ~1 (Jp*, A *) in 
p*,  7r(x). Since ~'(x~ ~ X~, and the domain of  f is bounded  in ~, we con- 
clude by Lemma 5.8 that  f is bou~ided in ~. This proves Lemma 5.9. 

Lemma 5. !0. ~ falls under case 4 in the definition o f  C- .  
Ot 

Proof. We must  show that  cases 1 - 3  fail. Cases 1 and 2 fail by Lemma 
5.8 and the fact that  ~ (~  n Q) = c~ n Q. In case 3, n = 1 and ~ is a suc- 
cessor ordinal. But if n = I, then ~ = p. p = sup,< ~ ,r - t  (m(t)) is a limit 
ordinal. 
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Since each  a ~ E falls unde r  case 3,  we conc lude  

Corollary 5.11. ~ ~ E. 

It remains  on ly  to prove 

Lemma 5.12.  C_ = ~ n C~. 
t~ 

Proof .  Def ine  k , / ,  tn f rom ~ as k,  1, m are def ined  f rom a.  Using Lem,na  

5.9, we prove by  induc t ion  on  z, < 3  ̀tha t  k--O,) = k(t,), ~-(v) = I(~), 

7rm(~,) = m(v) .  The  induc t ion  is s t ra ight forward .  F o r  l imit  r < 3`. we mus t  

use m ( r )  6 X~ to show that  

~'n-'i(r) = I t ( s u p / ~ i ( v ) )  

= the least r / ~  X x such that  7 />  re(v)  for  z~ < r 

= r e ( r ) .  

Now define ~ f rom ~ as t was def ined  f rom a .  Let  X = ;(X). By induc t ion  

on  v < X- we prove  tha t  7(~q = t(v).  F o r  v = O, this fol lows by  the  fact 

tha t  K = ~: and 7r(~:) = a .  F o r  n = 1 the rest o f  the induc t ion  is trivial. 

- ~ ~-1 ( J o * ' A * )  and F o r  n > l we use the facts ( J ~ , ,  A*> ~'* 

7r*(p*) = p *  to  show that  ~(~, + 1) = t(t, + 1) i f  iz(v) = t(v).  Thus  

T= l ~ 3  ̀and ~ = t t X. Hence  

C -  = l i " 2  = t t " 2  = ~ n ( ~  . 
O~ 

5.1. The pr#wip le  c~ 
K 

Let  K be any  infini te  cardinal.  Cons ider  the s t a t emen t :  

(t~ K ) The re  is a sequence  C x def ined  on limit ordinals  < K ~ such  tha t  

(i) C a is closed,  u n b o u n d e d  in 3.: 

(ii) if  cf(3`) < ~:, t h en  C~, < ~:; 

(iii) i f  ~ is a l imit  po in t  o f  C a , then  C~ = ~, c~ C h . 
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Note.  It follows that if Cf(~) = ~, then C a has order type ~. 

m is not  provable in ZF + GCH, for Solovay has shown that 
ZF + GCI-I + "q m,~ l is consistent relative to ZF + "there is a Mahlo car- 
dinal", 

A somewhat weaker version o f  ~ is: 
(c:~) There is a sequence C a del 'led on limit ordina!~ < ~:÷ such that 

(i) Ca is closed, unbounded in ~; 
(ii) C a has order type cf(~); 
(iii) if r < ~* then {C a n r I ;k < ~:'} has cardinafity < ~:~. 

If 2 u = re*, then c~ is equivalent to the proposition: There is a special 
Aronszajn tree on ~*. Hence t:]* follows from ZF + GCH for regular K. 
For singular ~¢ the problem is still open. 

Theorem 5.2, Assume V = k. Let ~ be any infinite cardinal, Then m 
K 

hoMs. In fact, there is a set E c g" and a seque.~tce C x (Lira(X), ~ < g÷] 
such that 

(i) E is Mahi~.~ in g* ; 

(ii) C x is closed, unbounded in ~: 

(iii) 0"cf(3,) < ~, then ~x < g: 

(iv) i f  3' i~ a limit point  o f  Cx then 7 @ E and Cv = 7 c~ C a . 

Proof. Let S = the set of  all limit ordinals a such that 
(a)  ~¢ < ~ < K*; 

(bl e is closed under Gbdel's pairing function; 
(c) each u < e has cardinality <_ ~: in .1~ (i.e. some f ~  J,~ maps s: onto 

Then S is closed, unbounded in ~'.  

Lemma $, 13. There is a set E c S and a sequence/_'Ta(k ~ S)  such that 

(i) E is Mahlo in ~* ; 

(ii~ ~x is closed, unbounded  in ~; 

(iii) ~x has order type <- ~; 

(iv) i f 7  is a limit ~ ) i n t  o f  C x, then 7 E S, "r q~ E,  C 7 = y n Ca. 

Proof, Set E" = E n S, where E is the class defined in the proof  of  Theo- 
em 5,1, Since E n ~:" is Mahlo in ~:~, E is also Mahlo in xL Now let 
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a ~ S and let C,~ be defined as in the proof  o f  Theorem 5.1. If  cases I, 
2b or 3 in the definition o f  C a apply, set C"a = Ca- ('Case 2a does not  
apply since t~ ~ S.) It remains to consider case 4. Let/3 =/t(a)  and 
n = n(a). Then p~ = t¢ for since a is not  Zn regular in # and each z, < a 
has cardinality < t¢ in Ja, there must be a Z ,  (Ja) subset o f  t¢ not  m Ja" 
Now the C a constructed in Theorem 5.1 has order type 3¢ for some 
~, < a ,  whereas in the present situation we wish to have the order  type 
-ff C a < r .  We construct  C~ by modifying the construction o f  C%in 
Theorem 5.1. Proceed as in Theorem 5.1, case 4, but redefine p, h,  g, 
k, / ,  m as follows (but  first replace the "'free variable" ,¢ occurring in the 
proof  of  Theorem 5.1 by some other  symbol, say/~, to avoid confusion): 

Let p = p(~) = the< j - l eas t  p E Jp such that h"(¢o x (to x {p})) = Jp. 
Then p = p~. Define h by h(i, x)  = h(i, (x, p)). Define g from a subset o f  
t¢ onto a by 

/ ~(i '  v) if h(i, v) E a , 

g( wv + i) I 
undeL;ned o the rwi~  

Define k, l, m on 0 <__ s: as follows: 

k(v) = the least r ~ dom(g) suzh that g(r)  > I(v) and l(v) has caxdinality 
<_ s: in Jg(r); 

m(0) = max(to + 1, gr(p  ~ Jr));  
m(v + 1) = the least r / <  0 such that 

(i) m(v), g(k(v)) < 71, 
(ii) Vz ~ JnG(z,g(k(v)) ,  k(v)), 
(iii) l(v), re(v) ~ hr~¢~ X (K X {p})), 
(iv) A n J,n<v) E Jn; 

m(~) = sups< ~m(v) if sups< vm(v) < p for lira(M: 
l(v) = ~xz ' = sup (a n X~) where 

= x x {p})). 

The rest of  the proof  o f  Theorem 5. I may be followed almost verbatim, 
although some o f  the apparatus developed there is not  needed in the 
present situation, and the remaining lemmas are somewhat  more easily 

proved. 
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Lemma 5,14.  Le t  "[,~ be as in L e m m a  5. 13. There is a sequence 

Cx(~, E S)  such that 

(i) C x / s  closed, unboanded  in X; 

(ii) ~'~, < ~: i f  cf(;k) < ~:; 

(iii) ( f  ~, < ,'k is a l imit  po in t  o f  C x, then 7 ~ E ,  7 ~ S, C~ = T c~ C x . 

Proof.  If  u is regular, we may set: C x = C x, Now let ~: 13e singular and 
let cf(~:) -- 6. Let  (6~1 v < 5) be a normal  funct ion  such that  sups< ~ ~5~ = 
~. Let  <%, ! ~ < 0)  be the m o n o t o n e  enumera t ion  o f  C~. Define C~ as 
follows. 

Case 1,6,, < 0 <_. 6~,+~ for  some v. Set C,~ = {3,,1 t >  6,,} 

Case 2 . 0  = sup {6vl 6,, < 0}. Set (\~ - {7~,,t 6,, < 0}. 
The C~'s clearly have the desired propert ies .  

Now let ~ be the set oYhaif  open intervals I = [r o , r I ) such that  

r I ~ S and r 0 is the least r such that  [r, r I ) ,q S = 0. T | len (K*\S) = 
Llts,~ I. Note  that ,  since S is closed,  r 0 is never a limit ordinal.  

Lemma 5.1 5. L~,t i ~ ~ .  Then there is a sequence Clx(Lim (;k). ~. ~ I) 
~z~ch that 

(i) Clx is closed, tmbo tmded  i~ X; 
(ii) ( f  cf(X) < ~, then ('~ < g; 

(iii) i f 7  < ~ is a l imit  po in t  o f  C 1, then 7 ~ I and ( y = 7 ~'~ (Jx. 

Proof .  Let  ?~, (t ~ 6) enumera te  mono ton ica l ly  the limit ordinals o f  
I u {sup(/)}. Let  .... ~., be the set o f  funct ions  C = (Col v <- ~,,) sat isfying 
(i)-(iii). By induct ion  on  t we prove 

(*) ~ ,  #: 0 and for each r < t, i f C E  ,~,~, then there is C' 6 @, such 
that C c C .  

For  t = 0 the assertion is trivial. Let  it hold for  t. We car  then e x t e n d  

C ~  ~ ,  to C' ~ "~,+l oy set t ing C~+ l = ~.~+l ', ;k,. N o w  assume Lim(rl), 
t <  7~ _<. 6, C ~  ~ , .  Let  p = cf(r/) and let (r~,t v <- p)  be a normal  func- 

t ion such that  rl0 = t and rip = sups< prt~ = 77. Define a sequence  
C" ~ ¢~ such that  ( o  c rq  c ... c C ~ ... as fol lows:  
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C o = C;  C v÷l ~ ~_ such that C ~÷i 3 C ~. 
' r t ,+ l  * 

For limit r let C* = Uv<rC v and extend C to ~77 by setting 

C ~% = {X,I ~,< r} 

Then C p E ~'n and C p 3 C, This proves (*], 
By (*) there is a C E  ~,~. Bul lhen (,! - CI ~,,s has the desired proper- 

ties. This proves Lemma 5.1 5. 

The theorem follows by Lemma 5.14, Lemma 5.15 and the thct that 
c: S. Let (C x I ?~ ~ S) be the sequence given by Lemma 5.1 4, We can 

extend this to a sequence defined on all limit ordinals < ~" by setting 

C~=C~ for X E I ~  

This sequence has the desired properties. This completes the proof  of  
Theorem 5.2. 

Remarks. (1). By combining the proof  o f  Theorem 5, I with the methods 
of  Theorem 6.1, we could prove: There is a cla~s E and a sequence ('x 
defi~,ed on accessible X such that 

(i) E is Mahlo in inacce,,sible •: 
(ii) C a is closed, unh~, ,aded in 9~; 
(iii) if 3, < ?t is a limit point o f  C x , then 3' ~ E and C~ = "r n C x, 

Similarly for "'inaccessible limit o f  inaccessibles", "'Mahlo", "'hyper 
Mahlo" etc. However, there is a limit of  this process: there is no E such 
that E o • is Mahlo in ~: i f f  x is weakly compact.  

(2). We can prove a version o f  Theorem 5.1 under the assumption 
V = L[A 1, A c On, In this version C a would be defined on all >, such 
that h is singular in L[A n ;k] and whenever ~: is regular in LIA n tel, 
E n x would be Mahlo in ~¢ in the model L[A n t¢]. The proof is virtual- 
ly the same, but some reworking o f  § 3 and § 4 is required. 

(3). Similarly, ,,re can weaken the premiss o f  Theorem 5.2 to: 
V = L[A ] for an A fi ~* such that a < ~:* has cardinality <- ~: in L [ A n a  t. 
In particular, i f  ~:* not  Mahlo in L, then a~ holds, Hence Solovay's rela- 
tive consistency result is the best possible, 
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:~6, Weakly compact cardinals in L 

Each of  the following conditions is known to characterize weakly 
compact  cardinals ~:: 

(a) ~: is EI~ indescribable: 
(b) ~: is strongly inaccessible and there is no ~:-Aronszajn tree; 

In this section1 we show that,  if V = L, then apparently weaker forms 
o f  each of  these condit ions suffice to character,~e weak compactness.  

We start with (a). A consequence of  I-l] indescribability is: 

(*) If E c ~: is Mahlo in ~:, then E c~ ~ is Mahlo in iS for some/3 < ~:. 

The assertion t*) characterises weak compactness for regular ~ in L. In 
fact we shall prove 

Theorem 6.1, A,~sume V = L, Let  r: > co he regular b u t  n o t  w e a k l y  

compact .  17wre is an E c ~ and  a sequence  Ca (Lim(k),  k < ~) such that  

(i) E is Mahlo  #1 ~, 

(ii) C x is closed, u n b o u n d e d  in k,  

(iii) 0"7 < ~, is a l imi t  p o h l t  oJ 'C  x , then  T q~ E and  C~ = T n C x . 

Proof, We may assume that ~ is inaccessible since the theorem has been 

proved for successor cardnmls (Theorem 5.2). Since ~: is not  weakly 
compact ,  it is H I describable. Hence there is a set B c ~ and a first or- 
der formula ~0 (with predicates ~ ,  B,  D) such that 

^ D c ; ¢ ~ j ~ ¢ I D ,  Bi , 

but  

V D c (J ~ j -q ~o [ D , B n fJ l for~3<~: .  

We make use o f  B,  ~o in defining a Mahlo set E c r .  

Definition. E = the set o f  limit cardinMs ~ < ~ such that for some 
~>~: 
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(i) a is regular in/3; 
(ii) a is the largest cardinal in Ja; 
(iii) Ja is a model  o f  Z F -  ; 
(iv) For some p E J0' Ja = the smallest X < J~ such that  p ~ X an¢i 

a n X is transitive; 
(v) B n a ~ J c ~ a n d A D ~ 3 ( ~ ) n J ~  ~j~,¢lD,  B n a l  , 

Note that  E c E, where E is the class defined in Theorem 5. I. 

Lemma 6.1. E" is Mahh~ in re. 

Proof. Exactly like Lemma 5.1. 

We wish to define C x (LimO,),) t  < x) such that  F~. (x  satisfy (i)-(iii) 
of  Theorem 6.1. Since each a E/Y is a limit cardipat, we can dispose 
quickly of  the case that  ), is not  a limit cardinal. There i~ ther, a maxi 
real r < ?, such that  r = 0 or r is a limit cardinal. Set (~  -- ;C~r. 

We now define a set Q o f  limit cardinals < t¢ (containing all regular 
ones) on which C'h can be defined in a fairly simple fashion. We will 
have Q n E =  0. The defini t ion will give us: l f h  ~ Q and ~, is a limit 
point  o f  Cx, then 3' E Q and C~ = "r n C x . Afterwards we shall make 
use of  § 5 in defining C'x on the remaining limit cardinals ), ~ Q. We 
begin with 

Definition. Q' is the set o f  limit cardinals a such that  for some/3 > a:  
(i) ~ is regular in/3; 
(ii) B n ~ ~ J~; 
Off) there is a D E ~ (a) n J~ such that  ~j~ "1 ¢[D, B n ot]. 

Lemma 6.2. Q' n E = 0. 

Proof. Let a ~ E" and let/3 > a be as i,, the definit ion of  E. Then no 
/3' <_/3 satisfies Off). But a is not  regular in/3 + 1 by Lemma 5.2. Hence 
no/3' >/~ satisfies (i). 

We define Q as a subset o f  Q : 
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Definition. Q is the set o f a  ~ Q' ,~uch that, letting/3 be the least/3 > 

to satisfy (i)~iiiL we have 
(iv) i f p  ~ J a, there is an X -< J~ such that p ~ X, ~ n X is transitive 

and t, n X < a.  

' \  We note that, if ~ ~ Q Q, ti,:n there is precisely one/3 > a satisfying 

(i)-~iii). This follows from 

l.emma 6.3. L e t  ~ E Q ' \ Q  and  let/3 > t~ be the least [3 to satisfy (i)-(iii) 
f , #t the de f in i t ion  oj Q .  Then ~ is , o t  Y, 1"regular in ~ + 1. 

Proof. Let p be the least counterexample to (iv) such that B n c~, t~ are 
Ja-definable in the parameter p. Let X be the smallest X -< J~ such that 
p ~ X and c~ n X is transitive, then c~ c X. it suffices to show X = J.a, 
for we may then repeat the proof  of  Lemma 5.2. Let rr : X ,Z, j _ ,  then 

- -  

rt t a' = id ~ r~ r,(~) = e;  hence rr(B n t~) = (B n t~). Hence/3 satisfies (i)- 
0ii). Hence ~- = ~3. But then rr(p) = p by the minimality o f p .  Since 
every .v ~ X is Ja-definable in parameters from t~ u {p}, we conclude: 

r t t  X - - i d r  X. 

We now define ~'x for k ~ Q. 

Definition. Let a ~- Q. Let [3 be the least [3 to satisfy (i)-(iii) in the defi- 

nition of  Q. Define a sequence X~ -< Ja by 
-¥5 = the smallest X ~ Ja such that a n X is transitive and ~, B n a 

X; 
X~,+l = the smallest X -< Ja such that c~ n X is transitive and av, a,  

B n t~ ~ X where av = sup(t~ n X~), 

X x = LIj,< ~ Xv i f a  n LIv< xX v < a for limit ~. 

Then X v is defined for v < r /= r/a , where ~ is a limit ordinal, and 

X~ -< X r "< Jg whe 'e  v < r < r/. Set a v = a x and C~ = {a~ I v < n~}. 
Clearly ( ~  is closed and unbounded in t~. ~¢ee must prove 

Lemma 6.4. L e t  a ~ Q. L e t ' i f <  c~ be a l imi t  p o in t  o f  C~. Then ~ ~ Q 

and  C- -" ~ n C,~. 
Ot 
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Proof. We first prove ~ Q. Let i f=  ax" Let rr - t  : X x ~ J~. Then 

~ r : J ~ - ~ , J a ,  ~r(~)=t~, n ( B n ~ ' ) = B n ~ .  

Hence e,/~ satisfy (i)-(iii) and ~ is the least one to do so. We must show 
that ~. satisfies (iv). Let p ~ J~.  Then rt(p) ~ X~ |or  some v < X. Set 

= ,r -~ (X~). Then p ~ AT, .~-< J~, ~ n fit" = a,, < t~. 
We now prove (7.- = a A C a . Define Xv. av (v < ~) from ~, ~- as Xv 

% were defined from a, /L It is easily seen that ~ = X and X~ = ~r(A7 v) 
for v < X. Hence txv = t~Xv = axu = ,%. 

We turn now to the definition o f  ~'~. for X $ Q. Let t~ ~ r \  Q be a 
limit cardinal. Then a is singular. ( I f  a were regular, (iF(iv) in the defi- 
nition of  Q would be satisfied with t~ = ~*). Let C~ be as in Theorem 5.1  
Let C a be the set o f  limit cardinals r / <  tx such that t / is  a limit point o f  
C a . Then C~ is closed, but  may be bounded in a. 
We consider four  cases. 

Case 1. C a is bounded in ~. Then ~ is ¢o-cofinai and we let C~, be an 
unbounded set of  order type o~. 

a cannot satisfy cases 1,2 in the definition o f  C,, since ~ is a limit 
cardinal. If  case 3 in the definition o f  (~  applies, then t~ falls under case 
1 above, since C~ has no lircAt points. Thus, in particular, case 1 takes 
care of~t E E" (by Lemma 5.2) and ~ ~ Q'\Q (by Lemma 6.3). 

Now l e t C  a be unbounded in t~. We shall define ~ as a closed cofinal 
subset of  C~. We note that ~ satisfies case 4 in the definition o f  C a. 
Hence each n ~ Ca satisfies case 4 and we have: C'~ n E = ~_~ n E = 0. 

Let ~ = ~(t0, n = n(t~) be as in §5. Let (a v I v < 0) be the monotone  
enumeration o f  Ca. Se t /~  =/3(a v) (the ~ o f  §5 for ~ = t~,,). By §5 we 
have n(ev) = n. Moreover, there are maps ~,~('~ o f  §5)  such that 

j~, ~v Jt~ and 
: ~  X n _ l  

7r v I'a v = i d l ' a ~ .  

I f~  = l~, then o~ = l~v; i f a  < fl, then ~v < ~v and ~'~,(a v ) = a. Set 
*rv, = *r~ 1 "~'v 9 for v <- r. Then 
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and J ~ ,  ;r~r (v <- r < 0) is a d i rec ted  sys tem whose direct  limit is J#, 
rt~(v < O ). Ja . ,  rq,~.(v < 3.) is the direct  limit o f  Ja  , 7rvr(v <- 7" < X) for  
limit ),. Since a ~ Q ,  we have three more  cases to consider.  

( 2 ) e  = 3 ;  
(3) a < ~ and B n a ~ Je for some 6 </3,  but  i'or all 6 < 3, if 

D ~ ~ (~) n J~, t~n  I=~ ~o[D, B n ~] : 
( 4 ~ <  13 and B n . a  q~ J~L for  ~5_< 3. 
Case 2. r~ = 3- Set  C,, = C a . I f ~  = ~× is a limit point ,  then a x = 3x 

and case 2 applies. Hence C~ = ~'- ~ = ~ n C a . 
Case3 .  a < 3 ; B N a ~ J ~  f o r s o m e 6 < 3 ; i f D ~  ~ 3 ( a ) n  J~ for 

/i </3 ,  then 1=~ ~0lD, B n ~ l ,  
a 

Let 5 be the least 6 such that  B n a ~ J~. Let  v 0 be the least v such 
that  ~i, B t'~ ~ ~ G,"J~, .  ~o Set  (?~ = {~%1 v~ -<- v < 0}. I f ~  = t~ x is a 

limit point  o f ( ' , ,  then 

n~  1 (6 

where  r~-t (8) < ~ We use J ,  , . . J,~ to  conc lude  tha t  case 3 

apphes to a.  Hence  C~ = {a u I v 0 <- ~, < ,~ } = a n C~. 
Case 4. t ~ < 3 ; B c ~ a ~ J ~  f o r S < t 3 . 1 f f < 3 ~ a n d B n ~ J s , t h e n  

7rt, r (B N¢t u } q: B nct÷ f o r  some r > v; since otherwise  we should have 
B n ~ = Lit> dr~r(B n u~) = 7rv(B n uo)~_ J,'v~) where  rr~(5) < 13. Define 
a normal  func t ion  (v,I t < 0-) by 

V o = 0 ;  
v,. I = the  least v >  v, such that  if V8  < 13, B n a r e  J~ , 

then  %,,(B n t%) 4: B n a~,, 

u x = s u p v ~  if s u p r a < 0  for l imi t ;~ .  
t<  ;k t<  h 

Set Ca = { % I t  < O }. L ~  ~" = ~X be a limit point  o f  Ca. Then  case 4 
holds for  ~,  since otherwise  B n ~ ~ J6 for  some ~ < 3~x. But then  
B ~ ~ = ~r~,,. (B n % ) for  some t < ~,. Hence n~,~, . (B n ~,, ) = B n a ~ . , .  
Contradicti,:~n ! , , ,+l , :.-, 

R follows readily that  C~, = {aql t < ~. } = ~ n Ca. 



292 

6.1. Sotlsl#t ~ hypothesis #~ L 

R.B, Jensen, Structure of consm~ctible hierarchy 

The usual characterisation o f  weakly compact  cardina s in terms of  
trees can be sharpened considerably if we assume V = L. 

First the relevant definitions. By a tree we mean a partially ordered 
set T = (T, < ) such that for any point  x ~ T, the set o f  predecessors 
{yl y < x} is well ordered by < .  Thus every x E T has a rank txl defined 
as the order type  o f { y l  y < x},  The h'ngth IXI of  a set X c T is defined 
by IXI = lub {Ixl Ix E X } .  By a bram:h we mean a b c Twhich  is closed 
under < and well ordered by < .  By an antichain we mean a set o f  mutual- 
ly incomparable points in T. 

Definition. Let K be a regular cardinal. We call a tree T ~z-normal iff  
(i) T h a s j u s t  one initial point; 
(ii) every non-maximal point has ~ 2 immediate successors: 
(iii) each x ~ T has successors at arbitrarily high levels a < ~ Tt: 
(iv) a branch of  limit length has at most on~ immediate successor: 
(v) for all ~,{3,1 lyl = a} has cardinality < ~:, 

It follows easily that, if T is ~-normal. then ~ Ti ~ ~. 

By a x-Aronsza]n tree we mean a normal tree o f  length ~: which has 
no branch of  length ~:. By the "'~:-Aronszajn hypothesis" (AH~) let us 
mean the statement:  There is no ~:-Aronszajn tree. It is provable in ZFC 
that ~: is weakly compact  ~ff ~ is strongly inacce~ible and AH~. If we 

assume GCH, this can be improved to: ~: is regular and AI[I~. 
By a Sousl#l tree we mean a h:-normal tree o f  length ~: which has no 

antichain o f  cardinality ~. 
The ~-Souslin hypothesis (SH~) says that there is no ~:-Souslin tree, 

(Note. $H~: is equivalent to: Every linear ordering whose intervals ~ t i s fy  

the h:-antichain condition has a dense subset o f  cardinality < k:). 
Clearly, every Souslin tree is Aronszajn and hence AH~ ~ SH~. The 

converse is known not to be provable for ~ = ~ t ,  even with GCH. How- 
ever, if V = L, we get: AH~ ~-~ SH~ ~-~ ~: is weakly compact  for  regular 
~:, as the following theorem shows: 

Theorem 6.2. Assume V = L, Le t  ~ > ¢~ be regular but  not  weakb~ com- 

pact. Then there is a K~Souslin tree, 
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In the p roof  o f  Theorem 6.2 we will make use of  a fur ther  combina-  

torial proper ty  o f  L: 
Let  A c ~:. Consider the fol!owing principle. 

(¢~ (.4)) There is a sequence Sa(c~ ~ A ) such lhat  S~ c ~ and for each 

X c K the set {~t X c~ a = S~ } is Mahto ir K. 

,5~ (A) clearly implies that  A is Mahlo in K, 

Lemma 6.5, Assume V = L. Le t  K be regular. Then ¢~ (A)  holds for  

eveo" Mahlo set A c ~. 

Proof,  Assume (wJ,o,g.~ tha t  A contains  only limit ordinals. Define a 
sequence <Sa, C~) ~ ~ A ) by induc t ion  on a as follows, 

(S~, ( ' ~  = the least pair (S, ('.~ Un < j  ) such that  S c ~, C is closed, un- 

bounded  i n a  and A r ~ C S ~'~ r ~ Sr, 

If  no such pair exists, set 

We claim that  the sequence (S~ I ¢x E A ) fulfills ©~ (A). Suppose not .  

Then there is an S c ~¢ and a closed, unbounded  C c ~¢ such tha t  

A ~  E C S n ~ ~: S , ,  Let (S. C) be the least such pair (in < j ) .  

Define a sequence o f  e lementary  submodels  X v -< J~. (v < ~¢) as follows. 

X 0 = the smallest X < J~. such that  .4 E X and ~¢ n X is 
transitive; 

.¥,,+~ - the smallest X -< J~, such tha t  X v u {X~} c X and 
~: ,'~ X is transitive: 

X x -- U~< xXv for  limit ?~. 

Set % = ~: n X v. Then  (a~ I v < ~) is a normal  funct ion.  Since A is 

Mahlo, there is an t~ = a~ such tha t  e ~ A. Now let rt : X= ~-~ J~. Then 

~t t Ja = id I' J~, and ~:(rt) = t~. Now 
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<<S., C,,> I ~. < u>. <S. C> ~ X , . ,  

since these are J~, definable f rom A. i t  is easily seen that  

~r((S, C)) = (S n e ,  C n a> .  

Since tr -!  • Ja ---~: J ~ . ,  we conclude that  (S n a ,  C n o~) = the least pair 
(S', C') (in Ja) suc)~ that  S'  c a ,  C is closed and unbounded  in a and 
A ~" ~ C'  S' n r :~ S~. Hcnce (S n ~, C n ~) = (S~, C~>, But ~ ~ C, since 

C n ~ is unbounded  in ~. Hence a E C and S n ¢~ = S,~. Cont radic t ion!  

This completes  the p roof  o f  L e m m a  6.5~ 

We are now ready to prove Theorem 6.2. Let  E, Cx(LimO,),  k < •) 
be as in Theorem 6.1. Let Sa (t~ ~ E) be the seqqence given by ~)~ (E). 

We wish to construct  a Souslin tree T. Tile points  o f  T will be ordinals 

< x. We shall cons t ruc t  Ti l l  s:ages T~(1 <- ~ < ~:). Ta is to be the res- 
triction of  T to points o f  ran[ ~ < ~. Hence Ta will be a normal  tree o f  

length a and Tts will be an end extension o f  T,~ for/3 > a.  We define T o 

by induct ion on a as follows. 

Case 1. ~ = 1. T 1 = {0}. 

Case 2. Ta+ l is defined.  Define T,~÷2 by appoint ing two immedia te  

successors for each maximal  point  o f  Ta.  l . 

Case 3. Lira(a) and T~ is def ined for v <  a.  Set 1"4 = IJ~<a T,,. 

The remaining case is the crucial one:  
Case 4. Lim(t~) and T,~ is defined.  We must  del iae  T,~+~. For  each 

x E Tc, we first select a branch b x of  length t~ through Ta. b x is def ined 

as follows: 
Let 3,~(v < k) be the m o n o t o n e  enumera t ion  o f  C a.  Let  ~, = v x~ be the 

least v such tha t  l r l  <_ % ,  We define a sequence p~ = p X ( ~ <  v < k) o f  

points in T~ as follows. 

p~ = tile least ordinal  y such that  tyt = ~ and y ~ x in T~ • 

Pv+l = the least ordinal y such that  lyi = 3'~..! and v ~ p~ in 
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for  limit r/: 

p,) = the unique y such that  lyl = Yn and y > p~(v < ~) i~1 T~ 
if such y exists; otherwise undef ined.  

If  any  P~I is undef ined ,  then T,~+~ is undef ined.  Otherwise we set 
b x = { y l V v y  <- pX in T~}. 

lft~ ~ E, we form Ta÷ ! by appoin t ing  an immediate  successor to 

each b x . lft~ ~ E but  S a is no t  a maximal  antichain in T a , we do the 
same. l f e  ~ E and S¢, is a maximal  ant ichain in T,~, we appoin t  an im- 
mcdiate  successor on ly  to b x such that  V z ~ S a x <- z in T~. 

It is clear that  Tc,+l is a normal  tree o f  length a .  We must  prove that  

T~ is def ined for a < ~. In cases 1 --3 this is trivial. In case 4 we must  

show that  pa, = p~ is def ined for v ~ v < ~,. The nontrivial  case is Pn 
(Lim(rD). Since "-/,~ is a limit point  o f  Cc~, then 3% q~ E and C~ = 

3')) n C a = {Tv I v < rt}. It follows" that  if" we define" i~: ~'" (v < r/)'~ f rom "/n 
as ,,,~x was def ined f rom a, then P'~'~ -- Pv,X But b x' = {vl. V v <  rTy <- Pv' in 

T.r, ~ } tias a successor in T a by case 4, since ~/n $~ E. Hence p,~ is defined.  

Set T = Ua< ~ Ta. T is clearly a normal  tree o f  length ~:. We must  

prove that  T is Souslin. Let X c T be a maximal  ant ichain in T. Le t  A 

be the set o f  limit t~ < ~: such that  a n X is a maximal  ant ichain in T~. 

A is easily seen to be closed and unbounded  in x. Hence there is 

a ~ A n E such that  S ,  = X n a by ~,~ (E). By the cons t ruc t ion  o f  T,~+I, 
we then have: 

Every x ~ T of  level e lies above an e lement  o f  X n a .  Hence X n o~ is a 

maximal  ant ichain in T. Hence X = X n a has cardinal i ty  < ~:. This 
proves Theorem 6.2. 

6.2. Partit ion propert ies  in L 

Defini t ion.  Let  IX] n deno te  the coUection o f  all n e lement  subsets o f  
X(n < w). Let a part i t ion A = (&,l t ~  I> o f  [X] n be given. Let  r be a 

cardinal.  We call Y c X ~-homogeneous  with  respect to  A iff  [ Y] n c 
O~e ~ A for  some s such that  ~ -<- r .  
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Definition. Let ~, 8, 3", r be cardinals such that r < 3" < ~c. We write 

+ (6 )n  

to mean that every partition of  [~1, 3' parts has a r homogeneous set o f  
cardinality & Clearly ~ ~ (~5)~ implies ~:' --, (6~ ')~y "" for n' <. n, ~ <_ ~:', 
~' < 5, 3" <_ 3', r <_ r ' .  It is known that. for ~ > ~ .  K ~ (~:)]l implies 

r/ weak compactness and weak compactness implies ~ ~ (~:),l for  n < w,  
3' < x. If  we assume V = L we can sharpen lhis result by showing that, 
for regular ~:, each o f  the principles ~ -~ (t<)~, (r  < 3' < ~:) implies weak 
compactness. 

Theorem 6.3. Assume V = L. Le t  g be regular but  not  weatdy compact, 
~ 2  Then g 7~ ( )yr lb r  r < 7 < ~. 

Theorem 6.3 is an immediate corollary of  Theorem 6.2 and the fol- 
lowing lemma. 

Lemma 6.6. Assume ZFC. Let  SH~ fa i l  Then ~ # (K)~ .for r < 7 < K. 

Proof. Let T be a Souslin tre~. We may suppose ~without loss o f  general- 
ity) that each point o f  T i~as >- 3' many immediatc successors. Let S(x)  
be the set of  immediate successors of  x. For  each x E T partition 
[S(x)] 2 into disjoint nonempty  sets A~:( 1 <- i < 7). W~: now define a 

partition Ai(i  < 7) o f  T. 

If Y0, Yl ~ T are compar~ble, put {Y0, Yl} ~ A0. Otherwise let x be 
the g:'eatest common prede..essor o f y  0, Yl.  Then there ate unique 

x i E S ( x )  such t h a t x i < ~ y  i in T~ Put {Yo-Yt} ~ Ai i f { x o .  Xl}  ~- A~. If  
-* (tc)~r held. there would be a set X c T o f  cardina;ity ~ a~d an 

s c 3' of  cardinality r such that [X] ~ c Ui~sA i. We derive a contradic- 
tion as follows. 

Case I. 0 q; s. Then X is an antichain of  cardinality ~:. 

Case 2. 0 E s. Set Y = {yl Vx ~ X y  -<- x in T}. Then IY] ' c Ui~sA t, 
But for each x ~ Y, some immediate succes.sor o f x  is not  in Y. Let Z be 
the set o f z  q~ Y such that z immediately succeeds an element o f  Y. Then 
Z is an antichain of  cardinalizy K. 
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Note,  Lemm;~ 6.6 was first proved by Tony Martin for the case 7 = 3, 
r = 2, The geaeral case is due to Soare. 

Remark:~. ( ! ~, Theorem 6. ! can be proved under the following weaker 
assumption, V = LIA l for an A c ~ such that for some II] s tatement so 

A D c  ~: k L j A l s o [ D ,  A I , 

but for/3 < ~: 

VD E ~3(,~) c~.L~IA n fil kL~IA ntq--I so[D, A ~ ~t • 

(2), I, emma (~.5 c;m be proved ~mder the assumption 

V A t s :  V = L I A I  • 

(3), A weaker form of,Theorem 6. I can be used in the proof  of  Theo- 
rem 6,2: (iii) can be replaced by (iii)': { ~ n Ca l;k < ~ } has cardinality 
< ~ t'or t3 <K, 

This form of  Theorem 1 holds trivially for successors of  regular car- 
dinals 3' such that 2 "r = 3'*, It also holds trivially for e.g. the first Mahlo 
cardinal, 

(4). With a slight modification of tl~e proof c f  Lemma 6.6 one can 
sharpen the conclusion to: There is a partition Ao(v < ~) o f  [~]'~ such 
that if X c ~: has cardinality ~, then A v[ X] z n A v 4: 0. This is the 
version proved by Soare. 

§ 7. The one~jap two-cardinal conjecture holds in L 
by Jack SILVER 

Let ~ be this combinatorial proposition: There is a sequence (C~ : 
is a limit ordinal < ~:*) such that each C~ is a closed, cofinal subset of  a: 
if cffa) < K, then C~, has cardinality less than ~:; and finally, if ~3 is a 
limit lx)int o f  Co,, then C~ = ~ n C~, 

In §5,  Jensen has established that ~K holds in L for all cardinals 
(and indeed holds under somewhat  weaker hypotheses). It is the burden 
of  this note to show that: 
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(~) I f  (V~ < t~) (2 x = ~÷) and 
14 

(~+, ~). ~ 
holds, ~ singular, then ( w l ,  w01 -- 

The expression O, +, ~,) + (K +, jc) means that any countable first-order 
theory having a model of  type ( , ),), ~.e, a niodel whose universe has 
cardinality ~,* and in which tile unat;+ predicate U denotes a set of  car- 
dinality ~,, also has a model o f  type (m +, ~:). Vaught 171 has shown that, 
for any infinite cardi,~al ;~, (A +, ~) + 1~1, ~o  ), and Chang i21, assum- 
ing the GCH, has shown that whenever r is a regular cardinal. 
(601 , tOO) -~ (r' ,  r). The GCH being a consequence o f  the axiom of  con- 
structibility, rl~e above considerations reveal that (#) together with 
Jensen's proof  o f  the combinatorial principles from the axion of  con- 
structibility fill in what is needed to see that the full one-gap conjecture,  
(V infinite t~, A) ((X ÷, ~,) ~ (~*, ~)), is indeed a consequence of  lhe 
axiom of  constructibility, only the singular case having been problema- 
tical. It is still not  known whether  the full one-gap conjecture may fail 
in a model where the GCH holds, the solution ve%, l~gssibly awaiting 
fi~rther progress on the singular cardinals problem o f  set theory. On the 

dissertation, Univ. of  Calif,, Berkeley, 1~)70) other  hand, Mitchell (Ph,D. "s ~ • " 
has found a non-GCH model in which the one-gap conjecture t~ails for 
very low regular cardinals. It should also be noted that, by a more diffi- 
cult argument, Jensen has shown that {V), < m)(2 x = X +) can be weake- 
ned to (VX < x)(2 ~' ~ i¢) in ( ~ )  

Before getting down to bu., iness it is instructive and perhaps even 
useful to see that ~,, can be r,~formulated in the followiag manner: 
There is a sequence <S~ : ~ is a limit ordinal < ~:') such that (i~ each S ,  
is a closed subset of¢~, and if cf(~) exceeds w, a closed cofinal subset o f  
~x; (ii) if  cffoO < K, then the cardinality o f  S,x is less than ~:; (iii) if~3E S~. 
then/~ n S~ = S 0. To derive this new formulation from the original one. 
simply take S o to consist o f  all limit points of  C,, otller than a itself. As 
for the other  direction, define C,~ by induction tm o~, taking C,~ to be 
the union o f  .li C~ as .6 ranges over S~ together with, if .~tip Sa <¢t,  the 
greatest element of  So and an ¢o-sequence above it converging to ~. 

S "is a partial ordering, we can obtain a still more re- Noting that '/3 ~ ,~ • 
fined formulation. 

The model-theoretic arguments here are modelled on those o f  
C.C. Chang which appear in his well-known paper on the two cardina! 
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problem 1 2], Let us digress for a laoment  to summarize that work 
briefly, Assume the GCH, or at least enough of  it to make the follow- 
ing arguments work, ke~ L be a countable firs't-order language with 
equality having a unary predicate symbol U. If 91 is an L-structure, the 
type o f  ~1 is defined to be that or Jered pair of  cardinals whose first 

component  is the cardinality of  t:~e universe of Pl and whose second com- 
pollent is the cardinality of  the set denoted by U in ~I, Suppose that ~ is 
an L-structure having type (o~ 1 , ,oot, and that ~ is a regular infinite car- 
dinal. There is no loss of  generality in supposing that L has a binary pre- 
dicate symbol E which denotes in '~ an extensional relation such that, 
whenever H is a finite subset of  U "~ , there is an element of  U ~" whose 
"E-members' are precisely the elements of  H. (Let T O be the first-order 
theoD' involving U, E, and equality which expresses the properties in 
the last sentence,) To incorporate the finite set structure into the origi- 
nal structure is one of  the key devices due to Chang, A key lemraa of  
Chang states that, if <')l,~ :a  </3) is an elementary tower of  U-saturated 
structures, each a model of  T 0 and each having cardinality ~¢, and 

_<_ ~:, and U ?~ is the same for all c~, then the t |nicn of  the structures is 
itself U-saturated (the uotion of  U-saturadness is to be defined later}. 

We seek a structure of  type (~¢*, ~¢} elementarily equivalent to '~. This 
is to be obtained by forming a,~ elementary tower of  height to* of  satu- 
rated structures, each having power ~¢, each elementarily equivalent to 
~., and all having the same U. (~,t being understood that inclusion in the 
tower is proper, the union mus~ have cardinality to+,} To form this tow- 
er inductively, one need only show that any U-saturated structure ele- 
mentarily equivalent to '~ has a proper U-saturated elementary extension 
with the same U. (Chang's lemma mentioned at the end of  the last para- 
graph takes care of  the limit stage in the construction.) Let ~ be such a 
str,acture. If "21 is not itself (fully) saturated, then ~l can be extended 
(properly} to a saturated eleme~tary extension without  changing U. On 
the other  hand, if '21 is itself saturated, then, as had been known for some 
time,')l,  being elementarily equivalent to a 'two-cardinal' model ~ ,  has 
a proper saturated elementary extension with the same U. This will be 
seen below for special models, using the same proof. 

Where, then, does the above proof  break down if ~¢ is assumed to be 
singular instead of  regular? There will not in general be a saturated mod- 
el o f  power K elementarily equivalent to ~ (the number  of  subsets of  
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cardinality cff~) being greater than ~:), in view of  which the above con- 
struction cannot  be started. Suppose we replace ' ,~turated'  eve~'where 
by 'special' (a special model being the union o f  a certain kind of  elemen. 
tary tower o f  saturated models, to be defined below). All of  Ihe above 
steps go through except the needed analogue o f  Chang's lemma concer- 
ning unions of [;-saturated structures. To remedy this difficulty, we 
r~eed to associate to each special model in our tower a ranking o f  its 
elements (which simply tells us how to write the model as a union o f  
saturated elementary submodels) as we go along, the choice o f  the rank- 
ing being critical, and to make use o f  Jensen's combinaiorial principles 
~K in assigning the ranking at limit stages. Thus it is not known whether. 
in the absence of  that combinatorial principles, an argument of  this 
kind (or indeed any other proof  of  the desired two-cardinal result) can 
be carried out. 

We commence the proof  of  (#). Suppose ~ is singular, the GCH holds 
~eneath g, and o holds. Let r be the cofinality of x, and suppose that 
G(a), a < r, is a strictly increasing sequence o f  regular cardinals conver- 
ging from below to ~, G(O) = 0, G( 1 ) > 6o, As beibre, let L be a coun- 
table first-order language with equality having a unary predicate symbol 
U. 

Definition 7.1. Saturot:d and special models, Ran koNs. 

(7.1,1) If card A = ), and ~l = (A, U ~ .. . .  ) is an L structure, then ')l is 
said to be U-saturated if the following conditiol; holds: wheneverS  is a 
set of  unary formulas (i.e, having only the free variable x)  with paraw.e- 
ters from A such that card S < X and S is finitely satisfiable in U ~ (i.e, 
any finite subset of  S is sinmltaneously satisfied by some element of  
U ~ in the structure ~! ), then there is some element of  U ~ which simul- 
taneously satisfies all formulas of  S in ~1, 

(7,1.2) For the definition of  "~l is saturated" simply replace U ~ every- 
where in 7.1.1 by A. 

(7,1.3) An L-structure ')1 (of  cardinality K) is said to be U-special if 
it is the union o f  some ascending elementary tower (2~a : a < r> where 
each ~ta is a U-saturated structure of power G(~)I A mapping 
r : I '~11 --, r is said to be a U.ranking of  ,~l iff tl~ere exists such an elemen- 
tary tower tbr which ('¢x E I~lt)(~x~ = the least ~ such that x ~ t'~l,~.l t1. 

(7, t .4) 'Special' and "ranking are defined in an analogous ~vay (one 
simply omits all references to Cq, 
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l )ef init ion 7.2.  If  ~l = (A ,  ~/'?~ . . . .  ) is an L-structure, O'pe '~l is def ined to 
be (card A .  card U ~). ~' 

l .emma 7,3. Saturated and special models. 
(7,3, I ) I f ~  is a regular uncountuble cardil~,al less than K. then any L- 

structttre o f  cardinalio, ~ X has a saturated elementary extensio.,z o f  
cardinality X. 

(7.3.2) I f  T is a theoo'  in L havhtg infinite models, then T has a satu- 
rated model i,t each uncountable regular cardinaHo less than ~, attd has 
a special model  (o f  eardinality ~}. 

(7.3.3) I f  Pl and ~1' are special mo~&Is with rankings r and r' respec- 
t ivefi , ,  t h e n  there  ex i s t s  atl is tmlOrl~hism f o r  ~)1 o ~ t o  ~)l' w h i c h  set tds  r 

bato r', i,c, ('v'x C I',~1 t)(r'(f(x)) = r(x)). Also. i f  Pl' is special with ranking 
r' at~d Pl is U-special with U-runking r. then there exists an elementary 
monomorphism f oj ~ into ?1' such that the nmge ~J'J" includes U "a' and 
(Vx~(r'(J'tx~ = rCx)), 

Remarks on the pro~Lf of" Lemma 7.3. The first part of  (7.2.1), 'enabling 
us inductively to form a tower of  the required type.  directly gives (7.3.2). 
To do the first part of(7.3.3) ,  let "~1~ and ',)~e be the representat ions o f  
~1 and ',)1' respectively given by r and r'. Define inductively an ascending 
chain of  isomorphisnas,/~,.f,~ being an isomorphism between ~21,~ and ~ 
in each case. This is possible owing to a basic property of  ,~aturated mod- 
els, that an elementary map of  cardinality < "~ between su 9sets of  two 
elementarily equivalent saturated models of  cardinality ~ "an be ex- 
tended to an isomorphism between the models. Finally I c  f be the 
tmion of  all the y~. To do ttle second part of  (7.3.3), imitate the argu- 
ment  just completed,  making use instead of  ':he following principle: If 
?, is U-saturated, ~,' is fully saturated,  ~ and ~ '  are elementari ly equi- 
valent and have the same cardinality, and h is an elementary (i.e. satis- 
faction preserving) map of  a substructure of  ~ having cardinality less 
than that of  ~ on to  a substructure o f  ~, ', then h can be extended to an 
elementary m o n o m o r p h i s m  of  ~:~ into ~,' whose range includes U ~'' 
This principle can be established by mea,~s of  a Cantor  back-and-forth 
argument ,  using the U-saturatedness of  ~, to get a preimage for each 
member  of  U'~'. 
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l .emma 7.4. I f  '2~ is a U-special model  with U-ranking r and °,l is eh'men- 
tary equivalent to a model  ?8 o f  O'pe (¢o I , to o L then "1 has a prt~net 
elementary extension ')l' having a rank#rg r' whh'h extends r, and sttch 
that U ~ = U w. 

ProoL By a short argument from the second part of  (7 ,3 .3k we obt~fin 
a special extension having the same U and having a ranking extending 
the given ranking (by a replacement argument,  one can assume that f in 
(7.3.3) is the identity).  Call the special extension '21" and let r* be a 
ranking of  it extending r. We now claim that there is a special proper  
elementary extension ',)i' o f  'A* having a ranking r '  which extends  r*. 
This can be argued as follows: Let B' be the universe of  a countable ele- 
mentary substructure o f  93 which includes U ~ . Take (B I ...... B] ) to be 
a special structure (of  cardinality K) with ranking s which is e lementary 
equivalent to the structure ( ~ ,  B') obtained by adding in B' an addit ion- 
al unary relation. Clearly B~ is a proper  subset of  B I (tile corresponding 
assertion having been true for the B's) and the structure (B|  . . . . .  B] ) mJ- 
turally splits into two structure,  namely 93 1, obtained simply by remov- 
ing the unary relation B~, and 93~. the result of  cut t ing ~!l down to the 
universe B~. Since reducts and relativized reducts of  saturated structures 
are saturated, bo th  931 and 93] are special, with s and slB] as rankings. 
Moreover, each is elementari ly equivalent to 93. By Lemma 7.3.3, we 
may identify ~*  with '~.~] and r* with s lB] .  Then 931 and s give the 
desired proper  special t-:tension with extension ranking, it being clear 
from U ~ c B' that  931 and 93~ have the same U. 

Lemma 7.5. (Chang [ 1 ] .) Assume E is a binary predicate symbol  in L. 
Let  T O be that theory Or L whose models are preciseO" titose s tructme ?! 
in which E ~ is an extensional relation, and, for  each ]brite subset H o f  
U '~, there is an element x E U "~ whose E ~ ex'tension (Le. {y : E~yx}~ is 
precisely tt. Tlle~t, .tbr any regular cardinal ;k, (f(?l~ : t~ < ~) is an ele- 
mentary tower o f  U-saturated models o f  T o o f  power ;k, [3 <- ~, ~,~ #uh'- 
pendent o f  a, the ut~ion o f  this elementary tower is i tself  U-saturated. 

For the reader's convenience,  we outl ine the proof.  We are given a 
set S of  unary formulas, S being finitely satisfiable by elements  o f  U in 
the union and having power < ~, and having as parameters e~emcnts of  
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the union, For each a < ~, let S~ consist of  all formulas of  S whose para- 
meters arc in ~'1,~. Since ~1~ is U-saturated. there is an element z a in U ~ 
(hereafter called U since it is independent of  a) which s imultaneousb 
satisfies all formulas of  S , .  Again since ~|a is U-saturated, there is an 
element w~ ~ U whose E extension contains aIl z r lbr ~ <_ r ' ,  and all the 
elements of  whose E extension shv, ultaneously satisfy S~ and are in U, 

Clearly the extensions of  the various w,~ form a collection having the 
finite intersection property,  any finite number of  them having some z¢  

(chosen far enough out) in their intersection. Hence, since ,)10 is U- 
saturated, there is some element t in the extension of  every w~. Thi.~ 
element t shnultaneous~v satisfieg S. 

Definition 7.6, Suppose r and r' are U-rankings of U-special '~l, 91', res- 
pectively. 

(7.t~. ! ) We write (2t, ri c c  (',~!'. r') if ',~ is an elementary substructc, re 
of  ~1' and r' exlcnds r, and U ~ --- U ''~' . 

(7.6.2) We write (?h r) , : ,  (?1', r ') if, whenever x ~ I'~ll, r(x) < 7 ~ 
F i x )  < y. and 3' ~ r~x) -~ r'~,x) = r(x) and U '?~ = U '~'l' and rl U ~ = r'l U 'a. 
Finally. we write (?1, r) c :t ~f, r ')  if lhere exists 3' such that 

We propose now to complete the proof  of  the principal theorem. 
Recall that we are assuming that the GCH holds beneath ~, which is a 
singular cardinal of  cofinality z, G(cc) being a strictly increasing sequence 
o f  regular cardinals beginning with 0 and a cardinal greater than co which 
tends from below to ~ as ~ tends to r. Further we are assuming the com- 
binatorial principle ~:~ of Jensen which, in the formulation we in~end to 
use. a~er ts  that there is a sequence (S,., : a is a limit ordinal < g÷) such 
that each Sa is a closed subsei o f  a,  indeed closed cofinal if co < cf/a),  
that each S ,  has cardinality less than ~: (since t¢ is singular, the case ~: 
itself doesn' t  arise), and finally, such that a coherence condition holds: 
if/~ E S~,, then Sa = ~/'~ S~. Under these assumptions, we wish to esta- 
blish the two-cardinal proposition 
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L is a countable first-order language with equality, having a unary' 
predicate symbol U, We are given an L.structure ~ o f  type ( w i ,  t~o~ 
and we seek an elementarily equivalent structure of  type (~' ,  r l .  There 
is no loss o f  generality in assuming that L has a binary predicate symbol 
E and that ~ is a model of  the theoD, T o defined in the statement o f  
Lemma 7.5 (since any structure can be augmented to be a model o f  T0~. 

It is our plan to form a sequence ~(~1,~. ra t  : a < h:') such tl~at lhe ~l's 
form a strictly increasing eleme~ltary tower of  models elementarily equi- 
valent to ~ and have the same U (i.e. U ~[~ is independent o f  a),  such 
that each ~a  has cardinality K, that each ~|a is U-special and ra is a U- 
ranking of  Pla, and finally, such that the following three conditions arc 
fulfilled: 

(i) if,~ < / L  then (~i~, r a ) c :  (?1~, r~), 
(ii) i f a  ~ S~, then (~l,,  r a ) c c  ('~l~. r a ) : 
(iii) if or is the G(a') th element ofS~ (i.e. ~ E ~ and a n S~ has order 

type G(et')), then for all x ~ IPI~I ~o P1~ t, r~(.v) is at least ~'. 
One must remember  that, for any ~'  < r .  there are exactly G(a') ele- 

ments of  rank < a '  in the structure. Condition ~,iii~ is designed to insure 
that, at c~rtain limit stages, we do not have too many elements o f  rank 
<~ O~'. 

We move to the inducti*~n step in the definition o f  the promised se- 
quence. (The case a = 0 obviously presents ~lo difficulties, since (7.3,2) 
gives us the existence c f a special model.) Suppose that the sequence 
(~l,~, ra)  :a  < e0 ) satisfies all o f  the above conditions, including (i)-{iii). 

for a,/3 < a 0 and for t~' < r. We wish to define ?l~ and r,~ o . Three cases 
arise. 

Case I. u o is a successor ordinal, say t~ o = a + 1. We use Lemma Z4  

to find Ply0 and r~0 such that rao is a U-ranking o f  91ao which is a proper 
elementary extension o f  2t~, and (')1~, r~) c c  (~1~o. r~o). It is quite easy 
to check that all the above conditions hold for a < at~ + 1 (no new cases 

o f  (ii) and (iii) arisi,,g, for example). 
Case 2. a o is a !imit ordinal and S~ o is cofinal in a o . We take "~1~, 0 to 

be the union o f  all the preceding '2,~,~ s,  which is the same as I J { ~  :a 
S~,,}, and r,~ o = U{r~ : a ~ S ~ J .  Note that the latter equation does de- 

a function by condition (ii) for o~ and ~ less than ao and by the co- 
herence of  the S a 's, which latter implies that if a < ~3 are in Sa0, then 
a ~ S a. What does require scrutiny is the claim that r~, o is a U-rankin,~ o f  
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~1,~ o. In the first place, we want to see that {x : r,~ (x) < a'} has cardi- 
0 

nality exactly G(a') for every a '  < r. This is a straight-forward conse- 
quence of  condition (iii) above, which guarantees that only the first 
G(~') terms in the sequence (',~t,~ : a ~ S~o) give us elements having rank 
less than ~'. Hence, it remains only to show that the set of  elements 

having rank less than ~' lbrms a saturated elementary submodel of  ~1~0. 
But this can be represented in the following way as an !ncreasing union 
of  length 5 = min (G(~'L order type S,~ o) of  saturated structures each of  
cardinality G(e ' ) ,  forming an elementary tower of  elementary substruc- 
tures of  ')1,, and having the same U throughout (all of  which means 

• 0 
that Lemma 7 £  is applicable): 

LI {xE  lPt~l:r~(x) < a'} . 
~<~ 

Case 3. ~o is a limit ordinal but Sao is not cotlinal in a 0 . Hence, as 
was specified in the form~lation of  ~ being used, ~0 has cofinality w. 
Let ~0 be the least upper hound of  Sad (which owing to the closure of  
the latter set, is a membel of  So, o) and let ~i be a strictly increasing w- 
sequence of ordinals beginning with t30 which converges from below to 
t~ o. t-~urther let a '  be the least ordinal such that G(a')  exceeds the order 
type of  Sao. We now adopt the 

Conventioit .  We write ',)1~ for (Pta, r~). 

it is possible to find a strictly increasing sequence of  ordinals ~o i less 
than r and (if  i > O) greater than a '  such that ~o 0 = 0 and, for each i, 
',~1" c- ' * ~ " " " f fo rming  such a sequence follows " ~ ~¢i+1 ~t a~l .The  posslbdlty o 
from the observation that if the relation',- c~  holds between two struc- 
tares and ¢' is an ordinal between ¢ and r, then the relation c ¢ ,  also 
l'olds. Of  course we are also using the inductive assumption that c : 
holds between any two structures - or rather structures with rankings 
thus t~r defined and recalling the definition of  c : given in Definitior~ 
7.6. 

• As before, we take ~I~0 to be the union of  all the preceding ~,~1,~ 's, 
which is the same as the countable union IJ plai. It remains to define the 

rank function re, 0 (which we also refer to as the %- rank  function). If 
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x E 19./,~0 I, define i(x) to be *he l e a s t / such  that x E I',~tait. We set 

rao ix) = max (~oi(x), ra,sx)(X)). 

We claim that  if~oi < ~p <- tp/+ 1 then {x ~ I~1 ~ I : ra~(x) < ¢} is tile same 
O~U U -~ 

as {x E I~la.I : ra.(x) < tp} anti hence is (or, more precise!v, determines) 
r-!  ! * 

a saturated model  of cardinatity G(9). Two considerations establish this 
euqality: (1) By definit ion, no new elements  of  %-rank  < ~ appear al- 
ter structure 91Oi; (2) Since the relation c , i  holds between any pair o f  
structures f rom the list ~1~0 . . . .  , ~1~i,* an element,  once haviog had rank 
< ~p in one of  the earlier structures,  retains rank < ~ in 9.1~i, though the 
exact rank may change. On the other  hand, if~o exceeds all of  the ~Pi. 
then we can apply Lemma 7.5 since the set of  elements having a 0-rank 
less than ~ is just the union over i of  the elements having #,-rank less 
than ~, an increasing union (since the proper ty  o f  having rank less than 

is preserved by all of  the relevant extensions) in which U remains the 
same throughout .  

That ')1~, c c  '~l* 0 (and more generally as a consequence of  the tran- 
sitivity of  c c  and induction assumptions that '!1" c c  .o1~* for all 

~ t 0 E Sa_ ) is immediate  f rom the definit ion of  r,~... T i m  condi t ion (ii) 
remains valid for all ordinals < a0 + !. Condi t ion (iii) :emains true be- 
cause it was true for the case ~ =/~0, because Sa0 = S~o u {130}, and by 
the stipulation that  ~o i for  i non-zero be greater than what we c'Mled 0~'. 
which is not  quite the sawe as any a '  figuring explicitly in the s ta tement  
of  (iii). To check that  condi t ion (i) remains valid, it will suffice to see 
that  ~ c : ~i* for all i ( c  : being a transitive relation) In fact, 
~ .  i . 0 ~R. C~. 91.^ as can beseen  from considering these two case~: (a) i f i (x)  = 
i, ~hen!by-~efinition the %- rank  o f  x is the same as the #/-rank: (b) if 
fix) = / < i but  the # f rank  o f x  is at least ~o i, then.  since 91~*. c...~1 *., the 
{lj-rank of  x is also at least ~o i and is in fact equal to the l~-rank of  x. 
Hence the a0-rank of  x equals its ai-rank equals its Bi-rank, as desired. 

Thus we are able to form a sequence ((~1~, r~) :0~ < K') mtisfying the 
condit ions (i)-(iii). Let 9t = U {~I~, :6  < K*}. I'~il has cardinality K" be- 
cause the structures ~I= form a strictly increasing tower  (and because 
each structure has power  ~c). Since the relation c :  obtains between an:, 
two (~c,, r~), U remains fixed throughout ,  whence U ~ has cardinality 
K ÷. ~l, being the union o f  an elemet~ tatay tower of  structures each elemen. 
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tarily equivalent to ,~t, is itself elementarily equivalent to ~ ,  ~t, then,  is 
• ~ model of  type (~:*, ~:} elementarily equivalent to ~t, complet ing the 
proof. 

Before concluding, let ,he ,.~ig~vss for a momen t  to answer this ques- 
t ion of  Vaught:  Does the iransfer result (~,*, ;k) -~ (~¢*, ~¢~ still hold, under  
the above hypotheses  on ~¢, if the language is allowed to have ~¢ many 
symbols? It does in virtue of  the following fact" If every structure of  
type (~' ,  ~,) having countable similarity type (i.e. appropriate for  a coun- 
table language) is elementarily equivalent to some structure of type 
0¢*, ~¢) having a universal e lementary substructure of cardinality ~¢, ~2 
then every structure o f  type (k*. X) appropriate for a language of cardi- 
nality f¢ is elementarily equivalent to some structure of type 0¢+, ~¢). The 
hypothesis  certainly holds under  our above assumptions on ~¢ ( that  the  
GCH hold beneath ~¢ and c~ hold) because the model  '~10, though  special 
and hence universal, is indeed an elementary submodel  of the final mod- 
el. 

We now sketch the proof  of  the above 'fact ' .  Suppose ~ is a structure 
of  type 0 , ' ,  ?~) whose language has power K. An easy argument shows 
that, for present purposes, we may replace ~ by a structure having 
countable many relations and ~¢ disti.nguished elements:  Let ua,  ~ < ~, 
be a one-to-one list of  elements f rom I '~ I. and let R,~, ,  c~ < ~, list all the 
relations in the structure ~ .  If R~ is . -ary ,  set 

R;~u~.-! .,, z n if R e ,  z I . . .  z n 

for every sequence of z's in I '~g I, For brevity, then,  we simply assur~le 
that  ~ itself has countably many relations alad ~: distinguished elements. 
Let '~' be the structure obtained by deleti~lg the distinguished elements 
from 'B, i.e, ~ '  is the reduct of  '~ to the similarity type corresponding 
to all of  the relations and none of  the distinguished elements in ~ .  By 
hypothesis,  there is a structure '~1' of  type (~:~, ~) elementarily equivalent 
to 'B' which has a univers,?l e lementary submodel  of cardinality ~:, say 
~l*, ~* being universal, if ~ "  is an elementary submodel  of  ~ '  of power 
~: which contains all the distinguished elements of  ~ ,  then there is an 
elementary embedding of  '.8" into ~,1", call the elementary embedding  
f We propose to expand '~i' to a structure '~1 which shall be elementari ly 
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equivalent to '23. We must sp :cify a denotation for each of  the individual 
constants. If the individual c3nstant c denotes u in 91, let c denote . f  (u) 
in ~.  Using the fact that f i s  an elementary embedding, it is easy to check 
that 9~ is indeed elementaril~ equivalent to '~. 

Notes  

I This has been independently worked out by Gandy in 14]. 
2 For another elegant treatment (of the case wto) see the final section of 121, 
3 There are analogous definitions for the case tMl = I:  When the context permits, we frt~uen- 

tly write Xn instead of ~n(M). etc. 
4 By Property 0,1 we can replace rio_ 1 by ~n i fM is closed under finite subset~ 
s So in particular, every simple function is X 0. 
6 So there are func t ions /such  that f i s  ~0" i.e. R, defined by R(y,  x) iff)" = fLx), ix ~0 rela- 

tion; hence R is rud, b u t / i s  not rud, and X R is rud. 
7 Also 7r(y) = {n(z)Iz ~ y n X} and ,r is the identity on transitive subsets of X, 
8 Robholz noted that the above proof can be shortened, since after ~owing  that fl = e,, note 

t h a t / =  n.  h ; g  is ~n(Ja)  in the parameters rt(p), rr(q) and maps a subset of  ~ ' r  onto JB = Jc~" 
(Also n is ~n(Ja) in the parameters e~p), n~q), p, q.) 

90r~-l. ,rv)(x ) = n~-l(%(x)). 
1 o Then vn = the least v such that # n ct,, G Ja . 
1 I . ' t  • - ~ V  * # was ftrst proved by Jensen, usmg a more difficult argument. 
12 Equivalently, the (K *, ~) model is ~-univcrsal, i,e. every elementarily equivalent structure of 
power ~ can he elementarily embeddtd into it. 
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