# Satisfiability and the Giant Component in Online Variants of the Classical Random Models

**David Kravitz** 

kravitz@cmu.edu

**Department of Mathematical Sciences** 

Carnegie Mellon University

• Vertex or variable set is  $[n] = \{1, 2, \dots, n\}$ .

- Vertex or variable set is  $[n] = \{1, 2, \dots, n\}$ .
- We look at what happens when  $n \to \infty$ .

- Vertex or variable set is  $[n] = \{1, 2, \dots, n\}$ .
- We look at what happens when  $n \to \infty$ .
- Something happens with high probability, or whp, if it happens with probability  $1 o_n(1)$ .

- Vertex or variable set is  $[n] = \{1, 2, \dots, n\}$ .
- We look at what happens when  $n \to \infty$ .
- Something happens with high probability, or whp, if it happens with probability  $1 o_n(1)$ .
- For any  $k \ge 1$ , a random k-set is chosen uniformly at random from  $\binom{[n]}{k}$ .

- Vertex or variable set is  $[n] = \{1, 2, \dots, n\}$ .
- We look at what happens when  $n \to \infty$ .
- Something happens with high probability, or whp, if it happens with probability  $1 o_n(1)$ .
- For any  $k \ge 1$ , a random k-set is chosen uniformly at random from  $\binom{[n]}{k}$ .
- Random edges in graphs are k-sets when k = 2.

- Vertex or variable set is  $[n] = \{1, 2, \dots, n\}$ .
- We look at what happens when  $n \to \infty$ .
- Something happens with high probability, or whp, if it happens with probability  $1 o_n(1)$ .
- For any k ≥ 1, a random k-set is chosen uniformly at random from (<sup>[n]</sup><sub>k</sub>).
- Random edges in graphs are k-sets when k = 2.
- Duplications within *k*-sets won't change any of our results so we ignore them.

Let  $G_{n,cn}$  be a random graph with *n* vertices and *cn* random edges for some constant *c*.

Let  $G_{n,cn}$  be a random graph with *n* vertices and *cn* random edges for some constant *c*.

Let  $G_{n,cn}$  be a random graph with *n* vertices and *cn* random edges for some constant *c*.

• If 
$$c < \frac{1}{2}$$
 then whp  $C_1 = O(\log n)$ .

Let  $G_{n,cn}$  be a random graph with *n* vertices and *cn* random edges for some constant *c*.

• If 
$$c < \frac{1}{2}$$
 then whp  $C_1 = O(\log n)$ .

• If 
$$c > \frac{1}{2}$$
 then whp  $C_1 = \Omega(n)$ .

Let  $G_{n,cn}$  be a random graph with *n* vertices and *cn* random edges for some constant *c*.

- If  $c < \frac{1}{2}$  then whp  $C_1 = O(\log n)$ .
- If  $c > \frac{1}{2}$  then whp  $C_1 = \Omega(n)$ .
- Furthermore, if  $c > \frac{1}{2}$  then whp  $C_2 = O(\log n)$ .

Let  $G_{n,cn}$  be a random graph with *n* vertices and *cn* random edges for some constant *c*.

Theorem: (Erdős, Rényi, 1960) Let  $C_1$  be the size of the largest component of  $G_{n,cn}$ .

- If  $c < \frac{1}{2}$  then whp  $C_1 = O(\log n)$ .
- If  $c > \frac{1}{2}$  then whp  $C_1 = \Omega(n)$ .
- Furthermore, if  $c > \frac{1}{2}$  then whp  $C_2 = O(\log n)$ .

The jump at  $c = \frac{1}{2}$  is called a phase transition .

Let  $G_{n,cn}$  be a random graph with *n* vertices and *cn* random edges for some constant *c*.

Theorem: (Erdős, Rényi, 1960) Let  $C_1$  be the size of the largest component of  $G_{n,cn}$ .

- If  $c < \frac{1}{2}$  then whp  $C_1 = O(\log n)$ .
- If  $c > \frac{1}{2}$  then whp  $C_1 = \Omega(n)$ .
- Furthermore, if  $c > \frac{1}{2}$  then whp  $C_2 = O(\log n)$ .

The jump at  $c = \frac{1}{2}$  is called a phase transition .

A component of size  $\Omega(n)$  is called a giant component .

Let G be a graph with connected components  $C_1, \ldots, C_r$ .

Let G be a graph with connected components  $C_1, \ldots, C_r$ . We define the susceptibility of G to be

$$X(G) = \frac{1}{n} \sum_{i=1}^{r} |C_i|^2.$$

Let G be a graph with connected components  $C_1, \ldots, C_r$ . We define the susceptibility of G to be

$$X(G) = \frac{1}{n} \sum_{i=1}^{r} |C_i|^2.$$

Note: X(G) is the expected component size of a vertex chosen uniformly at random.

Let G be a graph with connected components  $C_1, \ldots, C_r$ . We define the susceptibility of G to be

$$X(G) = \frac{1}{n} \sum_{i=1}^{r} |C_i|^2.$$

Note: X(G) is the expected component size of a vertex chosen uniformly at random.

Let e be a random edge in G.

Let G be a graph with connected components  $C_1, \ldots, C_r$ . We define the susceptibility of G to be

$$X(G) = \frac{1}{n} \sum_{i=1}^{r} |C_i|^2.$$

Note: X(G) is the expected component size of a vertex chosen uniformly at random.

Let e be a random edge in G.

The probability that e joins  $C_i$  and  $C_j$  is  $\frac{|C_i| |C_j|}{n^2}$ .

Let G be a graph with connected components  $C_1, \ldots, C_r$ . We define the susceptibility of G to be

$$X(G) = \frac{1}{n} \sum_{i=1}^{r} |C_i|^2.$$

Note: X(G) is the expected component size of a vertex chosen uniformly at random.

Let e be a random edge in G.

The probability that *e* joins  $C_i$  and  $C_j$  is  $\frac{|C_i| |C_j|}{n^2}$ .

If  $i \neq j$  then

$$X(G+e) - X(G) = \frac{1}{n} \left( |C_i| + |C_j| \right)^2 - \frac{1}{n} |C_i|^2 - \frac{1}{n} |C_j|^2$$

Let G be a graph with connected components  $C_1, \ldots, C_r$ . We define the susceptibility of G to be

$$X(G) = \frac{1}{n} \sum_{i=1}^{r} |C_i|^2.$$

Note: X(G) is the expected component size of a vertex chosen uniformly at random.

Let e be a random edge in G.

The probability that *e* joins  $C_i$  and  $C_j$  is  $\frac{|C_i| |C_j|}{n^2}$ .

If  $i \neq j$  then

$$X(G+e) - X(G) = \frac{1}{n} \left( |C_i| + |C_j| \right)^2 - \frac{1}{n} |C_i|^2 - \frac{1}{n} |C_j|^2 = \frac{2}{n} |C_i| |C_j|.$$

$$E[X(G+e) - X(G)] = \sum_{i \neq j} \frac{|C_i||C_j|}{n^2} \frac{2}{n} |C_i||C_j|$$

~ 11

$$E[X(G+e) - X(G)] = \sum_{i \neq j} \frac{|C_i||C_j|}{n^2} \frac{2}{n} |C_i||C_j|$$

$$E[X(G+e) - X(G)] = \frac{2}{n} \left( \sum_{i=1}^{r} \frac{|C_i|^2}{n} \right) - 2\sum_{i=1}^{r} \frac{|C_i|^4}{n^3}$$

$$E[X(G+e) - X(G)] = \sum_{i \neq j} \frac{|C_i||C_j|}{n^2} \frac{2}{n} |C_i||C_j|$$

$$E[X(G+e) - X(G)] = \frac{2}{n} \left( \sum_{i=1}^{r} \frac{|C_i|^2}{n} \right)^2 - 2\sum_{i=1}^{r} \frac{|C_i|^4}{n^3}$$

 $E[X(G+e) - X(G)] = \frac{2}{n}X^{2}(G) - o(1)$ 

റ

$$E[X(G+e) - X(G)] = \sum_{i \neq j} \frac{|C_i||C_j|}{n^2} \frac{2}{n} |C_i||C_j|$$

$$E[X(G+e) - X(G)] = \frac{2}{n} \left( \sum_{i=1}^{r} \frac{|C_i|^2}{n} \right)^2 - 2\sum_{i=1}^{r} \frac{|C_i|^4}{n^3}$$

 $E[X(G+e) - X(G)] = \frac{2}{n}X^2(G)$ 

0

$$E[X(G+e) - X(G)] = \sum_{i \neq j} \frac{|C_i||C_j|}{n^2} \frac{2}{n} |C_i||C_j|$$

$$E[X(G+e) - X(G)] = \frac{2}{n} \left( \sum_{i=1}^{r} \frac{|C_i|^2}{n} \right)^2 - 2\sum_{i=1}^{r} \frac{|C_i|^4}{n^3}$$

 $E[X(G+e) - X(G)] = \frac{2}{n}X^2(G) \Rightarrow f' = 2f^2$ 

റ

$$E[X(G+e) - X(G)] = \sum_{i \neq j} \frac{|C_i||C_j|}{n^2} \frac{2}{n} |C_i||C_j|$$

$$E[X(G+e) - X(G)] = \frac{2}{n} \left( \sum_{i=1}^{r} \frac{|C_i|^2}{n} \right)^2 - 2\sum_{i=1}^{r} \frac{|C_i|^4}{n^3}$$

$$E[X(G+e) - X(G)] = \frac{2}{n}X^2(G) \Rightarrow f' = 2f^2$$

Solving  $f' = 2f^2$  and f(0) = 1

Satisfiability and the Giant Component in Online Variants of the Classical Random Models - p. 5/3

0

$$E[X(G+e) - X(G)] = \sum_{i \neq j} \frac{|C_i||C_j|}{n^2} \frac{2}{n} |C_i||C_j|$$

$$E[X(G+e) - X(G)] = \frac{2}{n} \left( \sum_{i=1}^{r} \frac{|C_i|^2}{n} \right)^2 - 2\sum_{i=1}^{r} \frac{|C_i|^4}{n^3}$$

$$E[X(G+e) - X(G)] = \frac{2}{n}X^2(G) \Rightarrow f' = 2f^2$$

Solving  $f' = 2f^2$  and f(0) = 1 gives  $f(x) = \frac{1}{1-2x}$ ,

0

$$E[X(G+e) - X(G)] = \sum_{i \neq j} \frac{|C_i||C_j|}{n^2} \frac{2}{n} |C_i||C_j|$$

$$E[X(G+e) - X(G)] = \frac{2}{n} \left( \sum_{i=1}^{r} \frac{|C_i|^2}{n} \right)^2 - 2\sum_{i=1}^{r} \frac{|C_i|^4}{n^3}$$

$$E[X(G+e) - X(G)] = \frac{2}{n}X^2(G) \Rightarrow f' = 2f^2$$

Solving  $f' = 2f^2$  and f(0) = 1 gives  $f(x) = \frac{1}{1-2x}$ , which blows up at  $x = \frac{1}{2}$ .

A variation on the theme

A variation on the theme

Let *c* be a constant and let  $(e_1, f_1)$ ,  $(e_2, f_2)$ , ...,  $(e_{cn}, f_{cn})$  be a sequence of *cn* pairs of random edges on [n].

A variation on the theme

Let *c* be a constant and let  $(e_1, f_1)$ ,  $(e_2, f_2)$ , ...,  $(e_{cn}, f_{cn})$  be a sequence of *cn* pairs of random edges on [n].

We are going to examine two types of algorithms which choose one edge from each pair:
Let *c* be a constant and let  $(e_1, f_1)$ ,  $(e_2, f_2)$ , ...,  $(e_{cn}, f_{cn})$  be a sequence of *cn* pairs of random edges on [n].

We are going to examine two types of algorithms which choose one edge from each pair:

• Offline Algorithms - All *cn* pairs are presented and then the *cn* choices are made.

Let *c* be a constant and let  $(e_1, f_1)$ ,  $(e_2, f_2)$ , ...,  $(e_{cn}, f_{cn})$  be a sequence of *cn* pairs of random edges on [n].

We are going to examine two types of algorithms which choose one edge from each pair:

- Offline Algorithms All cn pairs are presented and then the cn choices are made.
- Online Algorithms Pairs appear sequentially.

Let *c* be a constant and let  $(e_1, f_1)$ ,  $(e_2, f_2)$ , ...,  $(e_{cn}, f_{cn})$  be a sequence of *cn* pairs of random edges on [n].

We are going to examine two types of algorithms which choose one edge from each pair:

- Offline Algorithms All cn pairs are presented and then the cn choices are made.
- Online Algorithms Pairs appear sequentially.
  - The choice between  $e_i$ ,  $f_i$  is made upon presentation, without knowledge of future edges.

Let *c* be a constant and let  $(e_1, f_1)$ ,  $(e_2, f_2)$ , ...,  $(e_{cn}, f_{cn})$  be a sequence of *cn* pairs of random edges on [n].

We are going to examine two types of algorithms which choose one edge from each pair:

- Offline Algorithms All *cn* pairs are presented and then the *cn* choices are made.
- Online Algorithms Pairs appear sequentially.
  - The choice between  $e_i$ ,  $f_i$  is made upon presentation, without knowledge of future edges.
  - This is called an Achlioptas Process, named after Dimitris Achlioptas who first posed the question of online avoidance of a giant component.

The interesting case for online avoidance is  $c > \frac{1}{2}$ .

• (2001) Bohman and Frieze gave an online algorithm which avoids a giant whp for c < 0.535.

- (2001) Bohman and Frieze gave an online algorithm which avoids a giant whp for c < 0.535.
- Spencer and Wormald claim they can achieve c < 0.89.

- (2001) Bohman and Frieze gave an online algorithm which avoids a giant whp for c < 0.535.
- Spencer and Wormald claim they can achieve c < 0.89.
- (2006) Bohman and Kim showed that the offline version has a threshold  $c_{off} \approx 0.976$ :

- (2001) Bohman and Frieze gave an online algorithm which avoids a giant whp for c < 0.535.
- Spencer and Wormald claim they can achieve c < 0.89.
- (2006) Bohman and Kim showed that the offline version has a threshold  $c_{off} \approx 0.976$ :
  - If  $c < c_{off}$  then whp one can avoid a giant.
  - If  $c > c_{off}$  then whp one can not avoid a giant.

- (2001) Bohman and Frieze gave an online algorithm which avoids a giant whp for c < 0.535.
- Spencer and Wormald claim they can achieve c < 0.89.
- (2006) Bohman and Kim showed that the offline version has a threshold  $c_{off} \approx 0.976$ :
  - If  $c < c_{off}$  then whp one can avoid a giant.
  - If  $c > c_{off}$  then whp one can not avoid a giant.
- (Bohman, Frieze, Wormald, 2004) A giant can not be avoided online for  $c < 0.9668 < c_{off}$ .

- (2001) Bohman and Frieze gave an online algorithm which avoids a giant whp for c < 0.535.
- Spencer and Wormald claim they can achieve c < 0.89.
- (2006) Bohman and Kim showed that the offline version has a threshold  $c_{off} \approx 0.976$ :
  - If  $c < c_{off}$  then whp one can avoid a giant.
  - If  $c > c_{off}$  then whp one can not avoid a giant.
- (Bohman, Frieze, Wormald, 2004) A giant can not be avoided online for  $c < 0.9668 < c_{off}$ . This separates online and offline.

• Let A be an online algorithm for the choice of one edge from each presented pair  $(e_i, f_i)$  without "future knowledge".

- Let A be an online algorithm for the choice of one edge from each presented pair  $(e_i, f_i)$  without "future knowledge".
- Let  $G_A(i)$  be the graph this algorithm creates after *i* choices.

- Let A be an online algorithm for the choice of one edge from each presented pair  $(e_i, f_i)$  without "future knowledge".
- Let  $G_A(i)$  be the graph this algorithm creates after *i* choices.
- This produces a random graph process  $G_A(1), G_A(2), \ldots, G_A(cn)$ .

- Let A be an online algorithm for the choice of one edge from each presented pair  $(e_i, f_i)$  without "future knowledge".
- Let  $G_A(i)$  be the graph this algorithm creates after *i* choices.
- This produces a random graph process  $G_A(1), G_A(2), \ldots, G_A(cn)$ .
- A size algorithm A makes the choices between edges  $e_{i+1}$ and  $f_{i+1}$  based on the sizes of the components in  $G_A(i)$ .

- Let A be an online algorithm for the choice of one edge from each presented pair  $(e_i, f_i)$  without "future knowledge".
- Let  $G_A(i)$  be the graph this algorithm creates after *i* choices.
- This produces a random graph process  $G_A(1), G_A(2), \ldots, G_A(cn)$ .
- A size algorithm A makes the choices between edges  $e_{i+1}$ and  $f_{i+1}$  based on the sizes of the components in  $G_A(i)$ .
- A bounded size algorithm is a size algorithm that makes no distinction between components larger than some fixed constant *m*.

- Let A be an online algorithm for the choice of one edge from each presented pair  $(e_i, f_i)$  without "future knowledge".
- Let  $G_A(i)$  be the graph this algorithm creates after *i* choices.
- This produces a random graph process  $G_A(1), G_A(2), \ldots, G_A(cn)$ .
- A size algorithm A makes the choices between edges  $e_{i+1}$ and  $f_{i+1}$  based on the sizes of the components in  $G_A(i)$ .
- A bounded size algorithm is a size algorithm that makes no distinction between components larger than some fixed constant *m*.
- A bounded first-edge algorithm is a bounded size algorithm that chooses between  $e_{i+1}$  and  $f_{i+1}$  only by looking at the sizes of the components in  $G_A(i)$  connected by  $e_i$ .

Conjecture 1:

Any size algorithm A has a critical value  $t_0$  such that :

#### Conjecture 1:

Any size algorithm A has a critical value  $t_0$  such that :

• If  $c = t_0 - \epsilon$  then whp the largest component of  $G_A(cn)$  has  $O(\log n)$  vertices.

# Conjecture 1:

Any size algorithm A has a critical value  $t_0$  such that :

- If  $c = t_0 \epsilon$  then whp the largest component of  $G_A(cn)$  has  $O(\log n)$  vertices.
- If  $c = t_0 + \epsilon$  then whp the largest component of  $G_A(cn)$  has  $\Omega(n)$  vertices, and all other components are of size  $O(\log n)$ .

We can model the susceptibility for any bounded size algorithm A using a differential equation, and it has a blow-up point  $c_A$ .

We can model the susceptibility for any bounded size algorithm A using a differential equation, and it has a blow-up point  $c_A$ . ( $c_A = \frac{1}{2}$  in the Erdős and Rényi model)

We can model the susceptibility for any bounded size algorithm A using a differential equation, and it has a blow-up point  $c_A$ . ( $c_A = \frac{1}{2}$  in the Erdős and Rényi model)

Conjecture 2: Let  $A_1$  be the bounded size algorithm that takes  $e_{i+1}$  if and only if it joins two isolated vertices in  $G_{A_1}(t)$ .

We can model the susceptibility for any bounded size algorithm A using a differential equation, and it has a blow-up point  $c_A$ . ( $c_A = \frac{1}{2}$  in the Erdős and Rényi model)

Conjecture 2: Let  $A_1$  be the bounded size algorithm that takes  $e_{i+1}$  if and only if it joins two isolated vertices in  $G_{A_1}(t)$ .

• If  $c > c_{A_1}$  then whp  $G_{A_1}(cn)$  has a component of size  $\Omega(n)$ .

We can model the susceptibility for any bounded size algorithm A using a differential equation, and it has a blow-up point  $c_A$ . ( $c_A = \frac{1}{2}$  in the Erdős and Rényi model)

Conjecture 2: Let  $A_1$  be the bounded size algorithm that takes  $e_{i+1}$  if and only if it joins two isolated vertices in  $G_{A_1}(t)$ .

- If  $c > c_{A_1}$  then whp  $G_{A_1}(cn)$  has a component of size  $\Omega(n)$ .
- If  $c < c_{A_1}$  then whp all components of  $G_{A_1}(cn)$  have size  $O(\log n)$ .

We can model the susceptibility for any bounded size algorithm A using a differential equation, and it has a blow-up point  $c_A$ . ( $c_A = \frac{1}{2}$  in the Erdős and Rényi model)

Conjecture 3:

We can model the susceptibility for any bounded size algorithm A using a differential equation, and it has a blow-up point  $c_A$ . ( $c_A = \frac{1}{2}$  in the Erdős and Rényi model)

Conjecture 3: Let A be the any bounded size algorithm.

We can model the susceptibility for any bounded size algorithm A using a differential equation, and it has a blow-up point  $c_A$ . ( $c_A = \frac{1}{2}$  in the Erdős and Rényi model)

Conjecture 3: Let A be the any bounded size algorithm.

- If  $c > c_A$  then whp  $G_A(cn)$  has a component of size  $\Omega(n)$ .
- If  $c < c_A$  then whp all components of  $G_A(cn)$  have size  $O(\log n)$ .

If A is a bounded first-edge algorithm,  $c_A$  exists such that

If A is a bounded first-edge algorithm,  $c_A$  exists such that

1. If  $c < c_A$  then whp the largest component in the graph  $G_A(cn)$  has  $O\left(n^{12/13}\log n\right)$  vertices.

If A is a bounded first-edge algorithm,  $c_A$  exists such that

- 1. If  $c < c_A$  then whp the largest component in the graph  $G_A(cn)$  has  $O\left(n^{12/13}\log n\right)$  vertices.
- 2. If  $c > c_A$  then whp  $G_A(cn)$  has a component of size  $\Omega(n)$ .

If A is a bounded first-edge algorithm,  $c_A$  exists such that

- 1. If  $c < c_A$  then whp the largest component in the graph  $G_A(cn)$  has  $O\left(n^{12/13}\log n\right)$  vertices.
- 2. If  $c > c_A$  then whp  $G_A(cn)$  has a component of size  $\Omega(n)$ .

Notes:
### Theorem 1

If A is a bounded first-edge algorithm,  $c_A$  exists such that

- 1. If  $c < c_A$  then whp the largest component in the graph  $G_A(cn)$  has  $O\left(n^{12/13}\log n\right)$  vertices.
- 2. If  $c > c_A$  then whp  $G_A(cn)$  has a component of size  $\Omega(n)$ .

Notes:

• Spencer and Wormald independently proved Theorem 1, allowing for *A* to be any *bounded size algorithm* and showed that the largest component in (1.) is  $O(\log n)$  whp.

### Theorem 1

If A is a bounded first-edge algorithm,  $c_A$  exists such that

- 1. If  $c < c_A$  then whp the largest component in the graph  $G_A(cn)$  has  $O\left(n^{12/13}\log n\right)$  vertices.
- 2. If  $c > c_A$  then whp  $G_A(cn)$  has a component of size  $\Omega(n)$ .

Notes:

- Spencer and Wormald independently proved Theorem 1, allowing for *A* to be any *bounded size algorithm* and showed that the largest component in (1.) is  $O(\log n)$  whp.
- The main tool in our proof is the differential equations method.

### Theorem 1

If A is a bounded first-edge algorithm,  $c_A$  exists such that

- 1. If  $c < c_A$  then whp the largest component in the graph  $G_A(cn)$  has  $O\left(n^{12/13}\log n\right)$  vertices.
- 2. If  $c > c_A$  then whp  $G_A(cn)$  has a component of size  $\Omega(n)$ .

Notes:

- Spencer and Wormald independently proved Theorem 1, allowing for *A* to be any *bounded size algorithm* and showed that the largest component in (1.) is  $O(\log n)$  whp.
- The main tool in our proof is the differential equations method.
- The critical value  $c_A$  is the given by the blow-up point in the differential equation for the susceptibility.

Note: If trying to *create* a giant as fast as possible, then the interesting case is  $c \in (\frac{1}{4}, \frac{1}{2})$ .

Note: If trying to *create* a giant as fast as possible, then the interesting case is  $c \in (\frac{1}{4}, \frac{1}{2})$ .

• If  $c < \frac{1}{4}$  then selecting all 2cn edges won't make a giant whp.

Note: If trying to *create* a giant as fast as possible, then the interesting case is  $c \in (\frac{1}{4}, \frac{1}{2})$ .

- If  $c < \frac{1}{4}$  then selecting all 2cn edges won't make a giant whp.
- If  $c > \frac{1}{2}$  then selecting  $e_i$  every time makes a giant whp.

Note: If trying to *create* a giant as fast as possible, then the interesting case is  $c \in (\frac{1}{4}, \frac{1}{2})$ .

- If  $c < \frac{1}{4}$  then selecting all 2cn edges won't make a giant whp.
- If  $c > \frac{1}{2}$  then selecting  $e_i$  every time makes a giant whp.

Given pair  $(e_i, f_i)$ , accept  $e_i = \{u_i, v_i\}$  if and only if neither  $u_i$  nor  $v_i$  is an isolated vertex.

Note: If trying to *create* a giant as fast as possible, then the interesting case is  $c \in (\frac{1}{4}, \frac{1}{2})$ .

- If  $c < \frac{1}{4}$  then selecting all 2cn edges won't make a giant whp.
- If  $c > \frac{1}{2}$  then selecting  $e_i$  every time makes a giant whp.

Given pair  $(e_i, f_i)$ , accept  $e_i = \{u_i, v_i\}$  if and only if neither  $u_i$  nor  $v_i$  is an isolated vertex.

This algorithm is designed to create a giant component relatively quickly, and indeed it does:

Note: If trying to *create* a giant as fast as possible, then the interesting case is  $c \in (\frac{1}{4}, \frac{1}{2})$ .

- If  $c < \frac{1}{4}$  then selecting all 2cn edges won't make a giant whp.
- If  $c > \frac{1}{2}$  then selecting  $e_i$  every time makes a giant whp.

Given pair  $(e_i, f_i)$ , accept  $e_i = \{u_i, v_i\}$  if and only if neither  $u_i$  nor  $v_i$  is an isolated vertex.

This algorithm is designed to create a giant component relatively quickly, and indeed it does:

**Theorem 2:** If c > 0.385 then whp this algorithm will create a graph with a component of size  $\Omega(n)$ .

**Theorem 3:** If c < 0.2544 then for any Achlioptas process, whp all of the components of the graph created in cn steps will be of size  $O(\log n)$ .

**Theorem 3:** If c < 0.2544 then for any Achlioptas process, whp all of the components of the graph created in cn steps will be of size  $O(\log n)$ .

**Theorem 4:** If c > 0.25 then whp there is a way to choose one edge from each pair and create a graph with a component of size  $\Omega(n)$ .

**Theorem 3:** If c < 0.2544 then for any Achlioptas process, whp all of the components of the graph created in cn steps will be of size  $O(\log n)$ .

**Theorem 4:** If c > 0.25 then whp there is a way to choose one edge from each pair and create a graph with a component of size  $\Omega(n)$ .

**Theorem 4:** If c > 0.25 then whp there is a way to choose one edge from each *pair* and create a graph with a component of size  $\Omega(n)$ .

**Theorem 3:** If c < 0.2544 then for any Achlioptas process, whp all of the components of the graph created in cn steps will be of size  $O(\log n)$ .

**Theorem 4:** If c > 0.25 then whp there is a way to choose one edge from each pair and create a graph with a component of size  $\Omega(n)$ .

**Theorem 4:** If  $c > \frac{1}{2*2}$  then whp there is a way to choose one edge from each 2 - tuple and create a graph with a component of size  $\Omega(n)$ .

**Theorem 3:** If c < 0.2544 then for any Achlioptas process, whp all of the components of the graph created in cn steps will be of size  $O(\log n)$ .

**Theorem 4:** If c > 0.25 then whp there is a way to choose one edge from each pair and create a graph with a component of size  $\Omega(n)$ .

**Theorem 4b:** If  $c > \frac{1}{2k}$  then whp there is a way to choose one edge from each k - tuple and create a graph with a component of size  $\Omega(n)$ .

For some fixed n, we take Boolean variables

 $\{x_1, x_2, \ldots, x_n\}.$ 

For some fixed n, we take Boolean variables

 $\{x_1, x_2, \ldots, x_n\}.$ 

Then, *k*-clauses are chosen from the literals

 $\{x_1, x_2, \ldots, x_n, \overline{x}_1, \overline{x}_2, \ldots, \overline{x}_n\}$ 

For some fixed n, we take Boolean variables

 $\{x_1, x_2, \ldots, x_n\}.$ 

Then, k-clauses are chosen from the literals

 $\{x_1, x_2, \ldots, x_n, \overline{x}_1, \overline{x}_2, \ldots, \overline{x}_n\}$ 

An assignment must exist to the Boolean variables which satisfies every clause.

n = 4, k = 2, our clauses are:

n = 4, k = 2, our clauses are:

n = 4, k = 2, our clauses are:

| $x_1$            | $x_2$            | $x_3$            | $x_4$            |
|------------------|------------------|------------------|------------------|
| $\overline{x}_1$ | $\overline{x}_2$ | $\overline{x}_3$ | $\overline{x}_4$ |

n = 4, k = 2, our clauses are:

| $x_1$            | $x_2$            | $x_3$            | $x_4$            |
|------------------|------------------|------------------|------------------|
| $\overline{x}_1$ | $\overline{x}_2$ | $\overline{x}_3$ | $\overline{x}_4$ |

n = 4, k = 2, our clauses are:

| $x_1$            | $x_2$            | $x_3$            | $x_4$            |
|------------------|------------------|------------------|------------------|
| $\overline{x}_1$ | $\overline{x}_2$ | $\overline{x}_3$ | $\overline{x}_4$ |

n = 4, k = 2, our clauses are:

| $x_1$            | $x_2$            | $x_3$            | $x_4$            |
|------------------|------------------|------------------|------------------|
| $\overline{x}_1$ | $\overline{x}_2$ | $\overline{x}_3$ | $\overline{x}_4$ |

n = 4, k = 2, our clauses are:

| $x_1$            | $x_2$            | $x_3$            | $x_4$            |
|------------------|------------------|------------------|------------------|
| $\overline{x}_1$ | $\overline{x}_2$ | $\overline{x}_3$ | $\overline{x}_4$ |

• A randomly generated k-clause is one whose k literals are chosen uniformly at random from all 2n possibilities.

- A randomly generated k-clause is one whose k literals are chosen uniformly at random from all 2n possibilities.
- For any constant c, let  $F_k(cn)$  be a family of cn randomly generated k-clauses.

- A randomly generated k-clause is one whose k literals are chosen uniformly at random from all 2n possibilities.
- For any constant *c*, let  $F_k(cn)$  be a family of *cn* randomly generated *k*-clauses.

Theorem: (Chvátal, Reed, 1992) As  $n \to \infty$ ,

- If c < 1 then  $\Pr[F_2(cn) \text{ is satisfiable }] \rightarrow 1$ .
- If c > 1 then  $\Pr[F_2(cn) \text{ is satisfiable }] \to 0$ .

- A randomly generated k-clause is one whose k literals are chosen uniformly at random from all 2n possibilities.
- For any constant *c*, let  $F_k(cn)$  be a family of *cn* randomly generated *k*-clauses.

Theorem: (Chvátal, Reed, 1992) As  $n \to \infty$ ,

- If c < 1 then  $\Pr[F_2(cn) \text{ is satisfiable }] \rightarrow 1$ .
- If c > 1 then  $\Pr[F_2(cn) \text{ is satisfiable }] \to 0$ .

c = 1 is called the threshold density for k = 2.

## **Threshold Density**

### **Threshold Density**

#### Satisfiability Threshold Conjecture

For each k > 2 there exists a threshold density  $c_k$  such that:

- If  $c < c_k$  then  $F_k(cn)$  is satisfiable with high probability.
- If  $c > c_k$  then  $F_k(cn)$  is not satisfiable with high probability.

### **Threshold Density**

## Satisfiability Threshold Conjecture

For each k > 2 there exists a threshold density  $c_k$  such that:

- If  $c < c_k$  then  $F_k(cn)$  is satisfiable with high probability.
- If  $c > c_k$  then  $F_k(cn)$  is not satisfiable with high probability.

Theorem: (Friedgut, 1999)

For each k and n there exists a threshold density function  $c_k(n)$ .
## Satisfiability Threshold Conjecture

For each k > 2 there exists a threshold density  $c_k$  such that:

- If  $c < c_k$  then  $F_k(cn)$  is satisfiable with high probability.
- If  $c > c_k$  then  $F_k(cn)$  is not satisfiable with high probability.

Theorem: (Friedgut, 1999)

For each k and n there exists a threshold density function  $c_k(n)$ .

• For a given k, each n may have its own threshold  $c_k(n)$ .

## Satisfiability Threshold Conjecture

For each k > 2 there exists a threshold density  $c_k$  such that:

- If  $c < c_k$  then  $F_k(cn)$  is satisfiable with high probability.
- If  $c > c_k$  then  $F_k(cn)$  is not satisfiable with high probability.

#### Theorem: (Friedgut, 1999)

For each k and n there exists a threshold density function  $c_k(n)$ .

- For a given k, each n may have its own threshold  $c_k(n)$ .
- These thresholds may not converge to a limit as  $n \to \infty$ .

## Satisfiability Threshold Conjecture

For each k > 2 there exists a threshold density  $c_k$  such that:

- If  $c < c_k$  then  $F_k(cn)$  is satisfiable with high probability.
- If  $c > c_k$  then  $F_k(cn)$  is not satisfiable with high probability.

#### Theorem: (Friedgut, 1999)

For each k and n there exists a threshold density function  $c_k(n)$ .

- For a given k, each n may have its own threshold  $c_k(n)$ .
- These thresholds may not converge to a limit as  $n \to \infty$ .

## Satisfiability Threshold Conjecture

For each k > 2 there exists a threshold density  $c_k$  such that:

- If  $c < c_k$  then  $F_k(cn)$  is satisfiable with high probability.
- If  $c > c_k$  then  $F_k(cn)$  is not satisfiable with high probability.

#### Theorem: (Friedgut, 1999)

For each k and n there exists a threshold density function  $c_k(n)$ .

- For a given k, each n may have its own threshold  $c_k(n)$ .
- These thresholds may not converge to a limit as  $n \to \infty$ .
- Friedgut used Fourier Analysis in his proof of this theorem.

Theorem: (Achlioptas, Naor, Peres, 2003) For  $k \ge 1$ , there exist constants  $\alpha$  and  $\beta$  such that

- If  $c < 2^k \ln 2 \alpha k$  then  $F_k(cn)$  is satisfiable whp.
- If  $c > 2^k \ln 2 \beta k$  then  $F_k(cn)$  is not satisfiable whp.

Theorem: (Achlioptas, Naor, Peres, 2003) For  $k \ge 1$ , there exist constants  $\alpha$  and  $\beta$  such that

- If  $c < 2^k \ln 2 \alpha k$  then  $F_k(cn)$  is satisfiable whp.
- If  $c > 2^k \ln 2 \beta k$  then  $F_k(cn)$  is not satisfiable whp.

**Theorem:** (Kaporis, Kirousis, Lalas, 2002)  $F_3(3.42n)$  is satisfiable with high probability.

Theorem: (Achlioptas, Naor, Peres, 2003) For  $k \ge 1$ , there exist constants  $\alpha$  and  $\beta$  such that

- If  $c < 2^k \ln 2 \alpha k$  then  $F_k(cn)$  is satisfiable whp.
- If  $c > 2^k \ln 2 \beta k$  then  $F_k(cn)$  is not satisfiable whp.

**Theorem:** (Kaporis, Kirousis, Lalas, 2002)  $F_3(3.42n)$  is satisfiable with high probability.

**Theorem:** (Dubois, Boufkhad, Mandler, 2000)  $F_3(4.6n)$  is not satisfiable with high probability.

• We are given *cn* randomly chosen *k*-clauses, one at a time.

- We are given *cn* randomly chosen *k*-clauses, one at a time.
- Accept or reject each clause as it is presented with no knowledge of what is coming.

- We are given *cn* randomly chosen *k*-clauses, one at a time.
- Accept or reject each clause as it is presented with no knowledge of what is coming.
- ALL clauses taken must be satisfied.

- We are given *cn* randomly chosen *k*-clauses, one at a time.
- Accept or reject each clause as it is presented with no knowledge of what is coming.
- ALL clauses taken must be satisfied.

**Question:** What is the maximum expected number of clauses that an algorithm can accept?

- We are given *cn* randomly chosen *k*-clauses, one at a time.
- Accept or reject each clause as it is presented with no knowledge of what is coming.
- ALL clauses taken must be satisfied.

**Question:** What is the maximum expected number of clauses that an algorithm can accept?

(either c is fixed or  $c \to \infty$ )

# Easy

There is an online algorithm which accepts an expected  $(1 - \frac{1}{2^k})cn$  clauses.

# Easy

There is an online algorithm which accepts an expected  $(1 - \frac{1}{2^k})cn$  clauses.

Begin by setting all variables to true, then accept any clause which doesn't have everything false.

# Easy

There is an online algorithm which accepts an expected  $(1 - \frac{1}{2^k})cn$  clauses.

Begin by setting all variables to true, then accept any clause which doesn't have everything false.

So, if k = 2 then accept  $\{\bullet, \bullet\}$ ,  $\{\bullet, \bullet\}$ ,  $\{\bullet, \bullet\}$ , and reject  $\{\bullet, \bullet\}$ . This accepts an expected  $\frac{3}{4}cn$  clauses.

| Given: ( $k=2$ )                                                                                                   | Accept? | Set to:                                                                   |
|--------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------|
| $\{\bullet,\bullet\}$ , $\{\bullet,\bullet\}$ , $\{\bullet,\bullet\}$                                              | Yes     | $\{ullet,ullet\},\{ullet,ullet\}$ , $\{ullet,ullet\}$ , $\{ullet,ullet\}$ |
| $\{\bullet,\bullet\}$                                                                                              | No      |                                                                           |
| $[ \{\bullet, \bullet\}, \{\bullet, \bullet\}, \{\bullet, \bullet\}, \{\bullet, \bullet\}, \{\bullet, \bullet\} ]$ | Yes     |                                                                           |

| Given: ( $k=2$ )                                                                                                            | Accept? | Set to:                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------|
| $\{\bullet,\bullet\}$ , $\{\bullet,\bullet\}$ , $\{\bullet,\bullet\}$                                                       | Yes     | $\{ullet,ullet\}$ , $\{ullet,ullet\}$ , $\{ullet,ullet\}$ , $\{ullet,ullet\}$ |
| $\{ullet,ullet\}$                                                                                                           | No      |                                                                               |
| $[\{\bullet,\bullet\},\{\bullet,\bullet\},\{\bullet,\bullet\},\{\bullet,\bullet\},\{\bullet,\bullet\},\{\bullet,\bullet\}]$ | Yes     |                                                                               |

This accepts an expected  $\frac{3}{4}cn + \frac{3}{8}n$  clauses as  $c \to \infty$ .

| Given: ( $k=2$ )                                                                                                           | Accept? | Set to:                                                                   |
|----------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------|
| $\{\bullet,\bullet\}$ , $\{\bullet,\bullet\}$ , $\{\bullet,\bullet\}$                                                      | Yes     | $\{ullet,ullet\},\{ullet,ullet\}$ , $\{ullet,ullet\}$ , $\{ullet,ullet\}$ |
| $\{\bullet,\bullet\}$                                                                                                      | No      |                                                                           |
| $[\{\bullet,\bullet\},\{\bullet,\bullet\},\{\bullet,\bullet\},\{\bullet,\bullet\},\{\bullet,\bullet\},\{\bullet,\bullet\}$ | Yes     |                                                                           |

This accepts an expected  $(1 - \frac{1}{2^k})cn + a_k n$  clauses as  $c \to \infty$ .

| k     | 1   | 2     | 3              | 4      | 5              | 10     |
|-------|-----|-------|----------------|--------|----------------|--------|
| $a_k$ | 0.5 | 0.375 | $0.2842\ldots$ | 0.2209 | $0.1765\ldots$ | 0.0809 |

Here we look at all *cn* clauses and take as many as possible.

Here we look at all *cn* clauses and take as many as possible.

For the equivalent offline problem, we expect to take  $(1 - \frac{1}{2^k})cn + \Theta(\sqrt{c})n$  out of cn clauses. (Coppersmith, Gamarnik, Hajiaghayi, Sorkin, 2004)

Here we look at all *cn* clauses and take as many as possible.

For the equivalent offline problem, we expect to take  $(1 - \frac{1}{2^k})cn + \Theta(\sqrt{c})n$  out of cn clauses. (Coppersmith, Gamarnik, Hajiaghayi, Sorkin, 2004)

Therefore, an optimal online algorithm is somewhere between  $(1 - \frac{1}{2^k})cn + a_k n$  and  $(1 - \frac{1}{2^k})cn + \Theta(\sqrt{c})n$ .

Here we look at all *cn* clauses and take as many as possible.

For the equivalent offline problem, we expect to take  $(1 - \frac{1}{2^k})cn + \Theta(\sqrt{c})n$  out of cn clauses. (Coppersmith, Gamarnik, Hajiaghayi, Sorkin, 2004)

Therefore, an optimal online algorithm is somewhere between  $(1 - \frac{1}{2^k})cn + a_k n$  and  $(1 - \frac{1}{2^k})cn + \Theta(\sqrt{c})n$ .

**Theorem:** (K,05) Any online algorithm accepts less than  $(1 - \frac{1}{2^k})cn + \ln 2n$  clauses with high probability.

1. Begin by accepting every possible clause for as long as possible.

- 1. Begin by accepting every possible clause for as long as possible.
- 2. When given the first clause that can't be accepted, reject it and set all the variables.

- 1. Begin by accepting every possible clause for as long as possible.
- 2. When given the first clause that can't be accepted, reject it and set all the variables.
- 3. Accept all remaining clauses if and only if they are satisfied by our assignment.

- 1. Begin by accepting every possible clause for as long as possible.
- 2. When given the first clause that can't be accepted, reject it and set all the variables.
- 3. Accept all remaining clauses if and only if they are satisfied by our assignment.

Claim: With high probability this will accept

$$\left(1 - \frac{1}{2^k}\right)cn + \left(\ln 2 - o_k(1)\right)n$$

out of cn clauses.

- 1. Begin by accepting every possible clause for as long as possible.
- 2. When given the first clause that can't be accepted, reject it and set all the variables.
- 3. Accept all remaining clauses if and only if they are satisfied by our assignment.

Claim: With high probability this will accept

$$\left(1-\frac{1}{2^k}\right)cn + \left(\ln 2 - o_k(1)\right)n$$

out of cn clauses.

**Corollary:** The naive algorithm is asymptotically optimal.

Let  $\lambda = 2^k \ln 2 - \alpha k$ . Both of the following are true with high probability:

Let  $\lambda = 2^k \ln 2 - \alpha k$ .

Both of the following are true with high probability:

• The first  $\lambda n$  clauses will be accepted.

Let  $\lambda = 2^k \ln 2 - \alpha k$ .

Both of the following are true with high probability:

• The first  $\lambda n$  clauses will be accepted. Theorem, ANP, 03
Let  $\lambda = 2^k \ln 2 - \alpha k$ . Both of the following are true with high probability:

- The first  $\lambda n$  clauses will be accepted. Theorem, ANP, 03
- $(1 \frac{1}{2^k})(c \lambda)n O(\sqrt{n})$  of the remaining clauses will be accepted.

Let  $\lambda = 2^k \ln 2 - \alpha k$ . Both of the following are true with high probability:

- The first  $\lambda n$  clauses will be accepted. Theorem, ANP, 03
- $(1 \frac{1}{2^k})(c \lambda)n O(\sqrt{n})$  of the remaining clauses will be accepted. each of  $(c \lambda)n$  clauses accepted with probability  $1 \frac{1}{2^k}$

Let  $\lambda = 2^k \ln 2 - \alpha k$ . Both of the following are true with high probability:

- The first  $\lambda n$  clauses will be accepted. Theorem, ANP, 03
- $(1 \frac{1}{2^k})(c \lambda)n O(\sqrt{n})$  of the remaining clauses will be accepted. each of  $(c \lambda)n$  clauses accepted with probability  $1 \frac{1}{2^k}$

Let  $\lambda = 2^k \ln 2 - \alpha k$ . Both of the following are true with high probability:

- The first  $\lambda n$  clauses will be accepted. Theorem, ANP, 03
- $(1 \frac{1}{2^k})(c \lambda)n O(\sqrt{n})$  of the remaining clauses will be accepted. each of  $(c \lambda)n$  clauses accepted with probability  $1 \frac{1}{2^k}$

$$= \left(1 - \frac{1}{2^k}\right)cn + \left(\frac{1}{2^k}\lambda - O(\frac{1}{\sqrt{n}})\right)n$$

Let  $\lambda = 2^k \ln 2 - \alpha k$ . Both of the following are true with high probability:

- The first  $\lambda n$  clauses will be accepted. Theorem, ANP, 03
- $(1 \frac{1}{2^k})(c \lambda)n O(\sqrt{n})$  of the remaining clauses will be accepted. each of  $(c \lambda)n$  clauses accepted with probability  $1 \frac{1}{2^k}$

$$= \left(1 - \frac{1}{2^k}\right) cn + \left(\frac{1}{2^k}\lambda - O(\frac{1}{\sqrt{n}})\right)n$$
$$= \left(1 - \frac{1}{2^k}\right) cn + \left(\ln 2 - \frac{\alpha k}{2^k} - O(\frac{1}{\sqrt{n}})\right)n$$

Let  $\lambda = 2^k \ln 2 - \alpha k$ . Both of the following are true with high probability:

- The first  $\lambda n$  clauses will be accepted. Theorem, ANP, 03
- $(1 \frac{1}{2^k})(c \lambda)n O(\sqrt{n})$  of the remaining clauses will be accepted. each of  $(c \lambda)n$  clauses accepted with probability  $1 \frac{1}{2^k}$

$$= \left(1 - \frac{1}{2^k}\right)cn + \left(\frac{1}{2^k}\lambda - O(\frac{1}{\sqrt{n}})\right)n$$
$$= \left(1 - \frac{1}{2^k}\right)cn + \left(\ln 2 - \frac{\alpha k}{2^k} - O(\frac{1}{\sqrt{n}})\right)n$$
$$= \left(1 - \frac{1}{2^k}\right)cn + (\ln 2)n - o_k(1)n$$

Theorem: Any online algorithm cannot accept

 $\frac{7}{8}cn + (\ln 2)n + o(n)$ 

clauses with high probability.

Theorem: Any online algorithm cannot accept

 $\frac{7}{8}cn + (\ln 2)n + o(n)$ 

clauses with high probability.

**Proof:** Let  $S_i$  be the set of valid assignments after *i* clauses.

Theorem: Any online algorithm cannot accept

 $\frac{7}{8}cn + (\ln 2)n + o(n)$ 

clauses with high probability.

**Proof:** Let  $S_i$  be the set of valid assignments after *i* clauses.

So,  $|S_0| = 2^n$ 

Theorem: Any online algorithm cannot accept

 $\frac{7}{8}cn + (\ln 2)n + o(n)$ 

clauses with high probability.

**Proof:** Let  $S_i$  be the set of valid assignments after *i* clauses.

So,  $|S_0| = 2^n$  and  $S_i \subseteq S_{i-1}$ , with equality if clause *i* is rejected.

Theorem: Any online algorithm cannot accept

 $\frac{7}{8}cn + (\ln 2)n + o(n)$ 

clauses with high probability.

**Proof:** Let  $S_i$  be the set of valid assignments after *i* clauses.

So,  $|S_0| = 2^n$  and  $S_i \subseteq S_{i-1}$ , with equality if clause *i* is rejected.

Let  $B_i$  be the number of clauses accepted minus  $\frac{7}{8}cn$ , i.e. the number accepted "beyond" what we can get easily.

Theorem: Any online algorithm cannot accept

 $\frac{7}{8}cn + (\ln 2)n + o(n)$ 

clauses with high probability.

**Proof:** Let  $S_i$  be the set of valid assignments after *i* clauses.

So,  $|S_0| = 2^n$  and  $S_i \subseteq S_{i-1}$ , with equality if clause *i* is rejected.

Let  $B_i$  be the number of clauses accepted minus  $\frac{7}{8}cn$ , i.e. the number accepted "beyond" what we can get easily. Note that  $B_{i+1} - B_i \leq \frac{1}{8}$ .

Theorem: Any online algorithm cannot accept

 $\frac{7}{8}cn + (\ln 2)n + o(n)$ 

clauses with high probability.

**Proof:** Let  $S_i$  be the set of valid assignments after *i* clauses.

So,  $|S_0| = 2^n$  and  $S_i \subseteq S_{i-1}$ , with equality if clause *i* is rejected.

Let  $B_i$  be the number of clauses accepted minus  $\frac{7}{8}cn$ , i.e. the number accepted "beyond" what we can get easily. Note that  $B_{i+1} - B_i \leq \frac{1}{8}$ .

Need to show  $B_{cn} \leq n \ln 2 + o(n)$  with high probability.

Any step of the algorithm will fit one of these two cases:

Any step of the algorithm will fit one of these two cases:

Case 1: Be "non-ambitious" and turn down any "beyond" clauses.

Any step of the algorithm will fit one of these two cases:

**Case 1**: Be "non-ambitious" and turn down any "beyond" clauses. Here we will only assume  $B_i \leq B_{i-1}$  and  $|S_i| \leq |S_{i-1}|$ .

Any step of the algorithm will fit one of these two cases:

**Case 1**: Be "non-ambitious" and turn down any "beyond" clauses. Here we will only assume  $B_i \leq B_{i-1}$  and  $|S_i| \leq |S_{i-1}|$ .

Case 2: Accept all clauses.

Any step of the algorithm will fit one of these two cases:

**Case 1**: Be "non-ambitious" and turn down any "beyond" clauses. Here we will only assume  $B_i \leq B_{i-1}$  and  $|S_i| \leq |S_{i-1}|$ .

**Case 2:** Accept all clauses.  $B_i \leq B_{i-1} + \frac{1}{8}$  is always required.

Any step of the algorithm will fit one of these two cases:

**Case 1**: Be "non-ambitious" and turn down any "beyond" clauses. Here we will only assume  $B_i \leq B_{i-1}$  and  $|S_i| \leq |S_{i-1}|$ .

**Case 2:** Accept all clauses.  $B_i \leq B_{i-1} + \frac{1}{8}$  is always required.  $E[|S_i|] \leq \frac{7}{8}|S_{i-1}|$  comes from Jensen's Inequality.

Any step of the algorithm will fit one of these two cases:

**Case 1**: Be "non-ambitious" and turn down any "beyond" clauses. Here we will only assume  $B_i \leq B_{i-1}$  and  $|S_i| \leq |S_{i-1}|$ .

**Case 2:** Accept all clauses.  $B_i \leq B_{i-1} + \frac{1}{8}$  is always required.  $E[|S_i|] \leq \frac{7}{8}|S_{i-1}|$  comes from Jensen's Inequality.

Define  $Y_i := \ln |S_i| - 2^3 \ln(1 - \frac{1}{8})B_i$ .

Any step of the algorithm will fit one of these two cases:

**Case 1**: Be "non-ambitious" and turn down any "beyond" clauses. Here we will only assume  $B_i \leq B_{i-1}$  and  $|S_i| \leq |S_{i-1}|$ .

**Case 2:** Accept all clauses.  $B_i \leq B_{i-1} + \frac{1}{8}$  is always required.  $E[|S_i|] \leq \frac{7}{8}|S_{i-1}|$  comes from Jensen's Inequality.

Define  $Y_i := \ln |S_i| - 2^3 \ln(1 - \frac{1}{8})B_i$ .

Note: We have  $E[Y_i] \leq Y_{i-1}$  in either case.

Any step of the algorithm will fit one of these two cases:

**Case 1**: Be "non-ambitious" and turn down any "beyond" clauses. Here we will only assume  $B_i \leq B_{i-1}$  and  $|S_i| \leq |S_{i-1}|$ .

**Case 2:** Accept all clauses.  $B_i \leq B_{i-1} + \frac{1}{8}$  is always required.  $E[|S_i|] \leq \frac{7}{8}|S_{i-1}|$  comes from Jensen's Inequality.

Define  $Y_i := \ln |S_i| - 2^3 \ln(1 - \frac{1}{8})B_i$ .

Note: We have  $E[Y_i] \leq Y_{i-1}$  in either case.

This means  $Y_{cn} \leq Y_0 + o(n)$  is true whp.

$$Y_i := \ln |S_i| - 2^3 \ln(1 - \frac{1}{8})B_i.$$

$$Y_i := \ln |S_i| - 2^3 \ln(1 - \frac{1}{8})B_i.$$

$$B_0 = 0$$
 and  $|S_0| = 2^n \Rightarrow Y_0 = n \ln 2$ .

$$Y_i := \ln |S_i| - 2^3 \ln(1 - \frac{1}{8})B_i.$$

$$B_0 = 0$$
 and  $|S_0| = 2^n \Rightarrow Y_0 = n \ln 2$ .

 $|S_{cn}| \ge 1$ 

$$Y_i := \ln |S_i| - 2^3 \ln(1 - \frac{1}{8})B_i.$$

$$B_0 = 0$$
 and  $|S_0| = 2^n \quad \Rightarrow \quad Y_0 = n \ln 2$ .

$$|S_{cn}| \ge 1 \implies Y_{cn} \ge 2^3 \ln(1 - \frac{1}{8}) B_{cn}$$

$$Y_i := \ln |S_i| - 2^3 \ln(1 - \frac{1}{8})B_i.$$

$$B_0 = 0$$
 and  $|S_0| = 2^n \quad \Rightarrow \quad Y_0 = n \ln 2$ .

$$|S_{cn}| \ge 1 \implies Y_{cn} \ge 2^3 \ln(1 - \frac{1}{8}) B_{cn} \ge B_{cn}.$$

$$Y_i := \ln |S_i| - 2^3 \ln(1 - \frac{1}{8})B_i.$$

$$B_0 = 0$$
 and  $|S_0| = 2^n \quad \Rightarrow \quad Y_0 = n \ln 2$ .

$$|S_{cn}| \ge 1 \implies Y_{cn} \ge 2^3 \ln(1 - \frac{1}{8}) B_{cn} \ge B_{cn}.$$

$$B_{cn} \leq Y_{cn} \leq Y_0 + o(n) = n \ln 2 + o(n).$$

$$Y_i := \ln |S_i| - 2^3 \ln(1 - \frac{1}{8})B_i.$$

$$B_0 = 0$$
 and  $|S_0| = 2^n \quad \Rightarrow \quad Y_0 = n \ln 2$ .

$$|S_{cn}| \ge 1 \implies Y_{cn} \ge 2^3 \ln(1 - \frac{1}{8}) B_{cn} \ge B_{cn}.$$

$$B_{cn} \leq Y_{cn} \leq Y_0 + o(n) = n \ln 2 + o(n).$$

Suppose k = 2.

Suppose k = 2.

**Theorem:** (Chvátal, Reed, 1992) c = 1 is the threshold for satisfiability of  $F_2(cn)$ .

Suppose k = 2.

**Theorem:** (Chvátal, Reed, 1992) c = 1 is the threshold for satisfiability of  $F_2(cn)$ .

 $\{x_1, x_2\} \quad \{\overline{x}_2, x_4\} \quad \{\overline{x}_1, x_3\} \quad \{\overline{x}_2, x_3\} \quad \{x_2, \overline{x}_4\} \quad \{\overline{x}_3, \overline{x}_4\}$ 

Suppose k = 2.

**Theorem:** (Chvátal, Reed, 1992) c = 1 is the threshold for satisfiability of  $F_2(cn)$ .



Suppose k = 2.

**Theorem:** (Chvátal, Reed, 1992) c = 1 is the threshold for satisfiability of  $F_2(cn)$ .


More about offline

Suppose k = 2.

**Theorem:** (Chvátal, Reed, 1992) c = 1 is the threshold for satisfiability of  $F_2(cn)$ .

**Theorem:** (Erdős, Rényi, 1960) c = 1 is the threshold for appearance of a giant component in the random graph with 2n vertices and cn edges. More about offline

Suppose k = 2.

**Theorem:** (Chvátal, Reed, 1992) c = 1 is the threshold for satisfiability of  $F_2(cn)$ .

**Theorem:** (Erdős, Rényi, 1960) c = 1 is the threshold for appearance of a giant component in the random graph with 2n vertices and cn edges.

**Question:** Is there a correlation?

• Let G be any simple graph with 2n vertices and cn edges.

- Let G be any simple graph with 2n vertices and cn edges.
- Make a family of clauses S(G) by randomly assigning  $\{x_1, \overline{x}_1, x_2, \overline{x}_2, \dots, x_n, \overline{x}_n\}$  to the 2n vertices, so each edge in *G* corresponds to one clause.

- Let G be any simple graph with 2n vertices and cn edges.
- Make a family of clauses S(G) by randomly assigning  $\{x_1, \overline{x}_1, x_2, \overline{x}_2, \dots, x_n, \overline{x}_n\}$  to the 2n vertices, so each edge in *G* corresponds to one clause.
- We would like to know the probability that S(G) is satisfiable over the space of all possible assignments to the vertices.

- Let G be any simple graph with 2n vertices and cn edges.
- Make a family of clauses S(G) by randomly assigning
  {x<sub>1</sub>, x<sub>1</sub>, x<sub>2</sub>, x<sub>2</sub>, ..., x<sub>n</sub>, x<sub>n</sub>} to the 2n vertices, so each edge
  in G corresponds to one clause.
- We would like to know the probability that S(G) is satisfiable over the space of all possible assignments to the vertices.
- This question is equivalent to Random 2 SAT with n variables and cn clauses if G is a random graph, but we allow G to be *anything*, provided  $\Delta(G)$  isn't too large.

- Let G be any simple graph with 2n vertices and cn edges.
- Make a family of clauses S(G) by randomly assigning  $\{x_1, \overline{x}_1, x_2, \overline{x}_2, \dots, x_n, \overline{x}_n\}$  to the 2n vertices, so each edge in G corresponds to one clause.
- We would like to know the probability that S(G) is satisfiable over the space of all possible assignments to the vertices.
- This question is equivalent to Random 2 SAT with n variables and cn clauses if G is a random graph, but we allow G to be *anything*, provided  $\Delta(G)$  isn't too large.

Notation: For any graph G,  $\Delta(G)$  is the maximum degree and  $d_i(G)$  is the number of vertices of degree i ( $i \ge 0$ ).

Suppose G is a graph with 2n vertices and  $\epsilon > 0$  is any constant.

Suppose G is a graph with 2n vertices and  $\epsilon > 0$  is any constant.

Theorem: If G has less than  $(1 - \epsilon)n$  edges and  $\Delta(G) = o(\frac{n^{1/10}}{\log n})$ , then S(G) is satisfiable whp.

Suppose G is a graph with 2n vertices and  $\epsilon > 0$  is any constant.

Theorem: If G has less than  $(1 - \epsilon)n$  edges and  $\Delta(G) = o(\frac{n^{1/10}}{\log n})$ , then S(G) is satisfiable whp.

Theorem: If  $\Delta(G) = o(n^{1/8})$  and there is some function  $\tau = o(\log n)$  such that

$$\sum_{i=0}^{\tau} id_i(G) = (1+\epsilon)2n$$

then S(G) is not satisfiable whp.

Suppose G is a graph with 2n vertices and  $\epsilon > 0$  is any constant.

Theorem: If G has less than  $(1 - \epsilon)n$  edges and  $\Delta(G) = o(\frac{n^{1/10}}{\log n})$ , then S(G) is satisfiable whp.

Theorem: If  $\Delta(G) = o(n^{1/8})$  and there is some function  $\tau = o(\log n)$  such that

$$\sum_{i=0}^{\tau} id_i(G) = (1+\epsilon)2n$$

then S(G) is not satisfiable whp.

**Conjecture:** If G has more than  $(1 + \epsilon)n$  edges then there exists  $\phi$  such that if  $\Delta(G) = o(n^{\phi})$  then S(G) is not satisfiable whp.

• Find the largest  $z_k$  for which there exists an online algorithm that accepts  $(1 - \frac{1}{2^k})cn + z_kn$  out of cn clauses for any k > 1.

- Find the largest  $z_k$  for which there exists an online algorithm that accepts  $(1 \frac{1}{2^k})cn + z_kn$  out of cn clauses for any k > 1.
  - $^{\circ}~$  When k=1 a greedy algorithm is easily seen to be optimal.

- Find the largest  $z_k$  for which there exists an online algorithm that accepts  $(1 \frac{1}{2^k})cn + z_kn$  out of cn clauses for any k > 1.
  - $^\circ~$  When k=1 a greedy algorithm is easily seen to be optimal.
  - $\circ$  We have  $z_2$  between 0.453 and 0.624.

- Find the largest  $z_k$  for which there exists an online algorithm that accepts  $(1 \frac{1}{2^k})cn + z_kn$  out of cn clauses for any k > 1.
  - $^\circ~$  When k=1 a greedy algorithm is easily seen to be optimal.
  - $\circ$  We have  $z_2$  between 0.453 and 0.624.
  - $\circ$  As k gets large,  $z_k \rightarrow \ln 2$ .

- Find the largest  $z_k$  for which there exists an online algorithm that accepts  $(1 \frac{1}{2^k})cn + z_kn$  out of cn clauses for any k > 1.
  - $^\circ~$  When k=1 a greedy algorithm is easily seen to be optimal.
  - $\circ$  We have  $z_2$  between 0.453 and 0.624.
  - As k gets large,  $z_k \rightarrow \ln 2$ .
- Does satisfiability in *online* 2 SAT correspond with the appearance of a giant component in the corresponding 2n-vertex graph?

- Find the largest  $z_k$  for which there exists an online algorithm that accepts  $(1 \frac{1}{2^k})cn + z_kn$  out of cn clauses for any k > 1.
  - $^\circ~$  When k=1 a greedy algorithm is easily seen to be optimal.
  - $\circ$  We have  $z_2$  between 0.453 and 0.624.
  - As k gets large,  $z_k \rightarrow \ln 2$ .
- Does satisfiability in *online* 2 SAT correspond with the appearance of a giant component in the corresponding 2n-vertex graph?
- When  $c = 1 + \epsilon$ , the number of rejected clauses is somewhere between  $O(\epsilon)n$  and  $O(\epsilon^3)n$ . Where is the truth?

- Find the largest  $z_k$  for which there exists an online algorithm that accepts  $(1 \frac{1}{2^k})cn + z_kn$  out of cn clauses for any k > 1.
  - $^\circ~$  When k=1 a greedy algorithm is easily seen to be optimal.
  - $\circ$  We have  $z_2$  between 0.453 and 0.624.
  - As k gets large,  $z_k \rightarrow \ln 2$ .
- Does satisfiability in *online* 2 SAT correspond with the appearance of a giant component in the corresponding 2n-vertex graph?
- When c = 1 + ε, the number of rejected clauses is somewhere between O(ε)n and O(ε<sup>3</sup>)n. Where is the truth?
- Find the constant for Random 3 SAT, if it exists.

- Find the largest  $z_k$  for which there exists an online algorithm that accepts  $(1 \frac{1}{2^k})cn + z_kn$  out of cn clauses for any k > 1.
  - $^\circ~$  When k=1 a greedy algorithm is easily seen to be optimal.
  - $\circ$  We have  $z_2$  between 0.453 and 0.624.
  - As k gets large,  $z_k \rightarrow \ln 2$ .
- Does satisfiability in *online* 2 SAT correspond with the appearance of a giant component in the corresponding 2n-vertex graph?
- When c = 1 + ε, the number of rejected clauses is somewhere between O(ε)n and O(ε<sup>3</sup>)n. Where is the truth?
- Find the constant for Random 3 SAT, if it exists.
- Solve the conjecture!

I will stop now.

I will stop now.

You're welcome.

I will stop now.

You're welcome.

Are there any questions?