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Summary. Motivated by a hedging problem in mathematical ®nance, El
Karoui and Quenez [7] and Kramkov [14] have developed optional versions
of the Doob-Meyer decomposition which hold simultaneously for all
equivalent martingale measures. We investigate the general structure of such
optional decompositions, both in additive and in multiplicative form, and
under constraints corresponding to di�erent classes of equivalent measures.
As an application, we extend results of Karatzas and CvitanicÂ [3] on hedging
problems with constrained portfolios.
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1 Introduction

Let V be a non-negative supermartingale on some ®ltered probability space
(X;F; �Ft�t�0; P �. The Doob-Meyer decomposition implies that V can be
represented in the form

V � V0 �M ÿ C ;

where M is a local martingale and C is an increasing optional process. Such
an optional decomposition is in general not unique. In fact, the Doob-Meyer
decomposition asserts existence and uniqueness under the additional re-
quirement that C is predictable.

Now suppose that the supermartingale property of V holds simulta-
neously for all probability measures Q � P such that a given semimartingale
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X is a local martingale under Q. Denote by P�X � the class of these measures.
In this case and under the assumption that X is locally bounded, Kramkov
[14] has shown that an optional decomposition of the form

V � V0 �
Z

H dX ÿ C �1:1�

holds where C is an increasing optional process. The stochastic integral is a
local martingale for any Q 2 P�X �. Thus, we have an optional decomposi-
tion which is valid simultaneously for all measures in the class P�X �. The
local boundedness assumption has been removed in FoÈ llmer and Kabanov
[10]; see also Delbaen and Schachermayer [4], Kramkov [13]. An optional
decomposition was ®rst proved by El Karoui and Quenez [7] in the special
case where X is a di�usion process, and where the process V is of the form

Vt � ess sup
Q2P�X �

EQ� fT jFt�; 0 � t � T ;

for some FT -measurable random variable fT . In terms of mathematical ®-
nance, V is the value process associated to the problem of hedging a con-
tingent claim fT with complete safety in an incomplete situation where the
equivalent martingale measure is not unique. From this point of view, an
optional decomposition of the form (1.1) provides a hedging strategy H
which covers perfectly the given claim, and at the same time yields cumu-
lative side payments described by the increasing process C. This interpre-
tation suggests to investigate the structure of optional decompositions under
additional constraints on the integrand H .

In this paper we derive optional decompositions in the following general
setting. We prescribe a convex class S of semimartingales, for example a
class of stochastic integrals whose integrands satisfy certain convex con-
straints. We look for a decomposition of the form

V � V0 � S ÿ C ;

where S 2S and C is an increasing optional process. Our criterion for the
existence of such an optional decomposition takes the following form: The
process

V ÿ AS�Q�
is a supermartingale under any measure Q in a certain class P�S�, where
AS�Q� is an increasing predictable process depending only on Q andS. IfS
is a linear space then P�S� is the class of all equivalent local martingale
measures for S. If S is a cone then P�S� is the class of all equivalent local
supermartingale measures. In both cases, the process AS�Q� is equal to 0. If
S is a class of stochastic integrals of X where the integrands satisfy certain
convex constraints then these constraints are incorporated in the process
AS�Q�.

If constraints are formulated not in terms of the integrands H but in
terms of the proportions HiX i=V , one is led to an analogous multiplicative
decomposition:

2 H. FoÈ llmer, D. Kramkov



V � V0E�S ÿ C� ;
where S 2S, C is an increasing optional process, and E denotes the DoleÂ -
ans-Dade exponential. Here our criterion says that the process

V =E�AS�Q��
is a supermartingale under any Q 2 P�S�. This leads to extensions of vari-
ous results on hedging under convex constraints; see, e.g., Karatzas and
CvitanicÂ [3].

For the theory of stochastic integration we refer to Dellacherie and Meyer
[6], Protter [18], and Jacod and Shiryaev [11]. The stochastic integral of a
predictable process H with respect to a semimartingale X will be denoted asR

H dX or H � X . Let L�X � denote the space of all predictable processes
integrable with respect to X . A process H 2 L�X � will be called (locally)
admissible if H � X is (locally) bounded from below. The classes of admissible
and locally admissible integrands are denoted as La�X � and La

loc�X �. The
EÂmery distance between two semimartingales X and Y is de®ned as

D�X ; Y � � sup
jH j�1

X
n�1

2ÿnE min�j �H � �X ÿ Y �n j; 1�
� � !

;

where the supremum is taken over the set of all predictable processes H
bounded by 1. For this metric the space of semimartingales is complete, see
EÂ mery [9]. The corresponding topology is called the semimartingale or EÂmery
topology. If X is a semimartingale then the space L�X � is complete with
respect to the metric

dX �H ;G� � D�H � X ;G � X � ; �1:2�
see MeÂ min [17].

Let �X;F; Ft� �t�0; P � denote a ®ltered probability space which satis®es
the ``usual'' conditions. Except for processes which appear as integrands of
stochastic integrals, all processes considered in the sequel are assumed to be
real-valued, to have right-continuous paths with left limits, and to be
adapted with respect to the given ®ltration; in particular they are all optional.
For two such processes X and Y , the relation X � Y means that Y ÿ X is an
increasing process.

2 The upper variation process for a family of semimartingales

Let S be a family of semimartingales which are locally bounded from below
with initial value S0 � 0. We assume that S contains the constant process
S � 0.

Let us introduce the classP�S� of all probabilitymeasuresQ � P such that
any S 2S is a special semimartingale under Q, and such that there is an upper
bound for all the predictable processes arising in the Doob-Meyer decompo-
sition of the special semimartingales S 2S under Q. In other words:
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De®nition 2.1 We denote by P�S� the class of all probability measures
Q � P with the following property: There exists an increasing predictable
process A (depending on Q andS) such that S ÿ A is a local supermartingale
under Q for any S 2 S, i.e.,

AS�Q� � A 8S 2S ; �2:1�
where AS�Q� denotes the compensator of S under Q. An increasing pre-
dictable process AS�Q� will be called an upper variation process ofS under Q
if it satis®es condition (2.1) and is minimal with respect to this property, i.e.,

AS�Q� � A

for any predictable increasing process A which satis®es (2.1).

Example 2.1 Let S be a linear family of locally bounded processes. Then a
measure Q � P belongs to P�S� if and only if each S 2 S is a local mar-
tingale under Q, i.e.,

P�S� � Q � P jQ is a local martingale measure for Sf g :
In this case, the upper variation process is given by AS�Q� � 0.

Example 2.2 Let S be a cone of processes which are locally bounded from
below. Then a measure Q � P belongs to P�S� if and only if each S 2 S is a
local supermartingale under Q, i.e.,

P�S� � Q � P jQ is a local supermartingale measure for Sf g :
Here again, the upper variation process is given by AS�Q� � 0:

De®nition 2.2 The family S will be called predictably convex if for Si 2S
(i � 1; 2) and for any predictable process h such that 0 � h � 1 we have

h � S1 � �1ÿ h� � S2 2 S :

From now on we assume that S is predictably convex. Under this as-
sumption, we show that the upper variation process exists for any Q 2 P�S�,
and that it can be constructed as the essential supremum of the family of
compensators under Q.

Lemma 2.1 A probability measure Q � P belongs to P�S� i� any S 2 S is a
special semimartingale under Q and

ess sup
S2S

AS�Q�t < �1 �2:2�

a.s. for all t � 0. In this case the upper variation process exists and is uniquely
determined by the equations

AS�Q�s � ess sup
S2S

AS�Q�s;

E�AS�Q�s� � sup
S2S

E�AS�Q�s�
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for any stopping time s.Moreover, there exists a sequence Sn 2 S such that the
compensators An � ASn�Q� satisfy An � An�1 and

lim
n!1 sup

0�t�s
AS�Q�t ÿ An

t

ÿ � � 0 a:s:

for any stopping time s such that AS�Q�s < �1 a.s.

Proof The necessity of (2.2) is obvious. To prove su�ciency we assume ®rst
that S consists of predictable processes of bounded variation. In this case,
the set P�S� is either empty or it contains all Q � P . For A and B in S
consider the process

C � 1

2
A� B� Var�Aÿ B�� � ;

where

Var�Aÿ B� � �Aÿ B�� � �Aÿ B�ÿ

is de®ned in terms of the Hahn decomposition of Aÿ B. We have A � C and
B � C, and C belongs to S since S is predictably convex. Thus S is up-
wards directed. By this property and standard diagonalization arguments,
one can construct a sequence �Cn�n�1 in S such that Cn � Cn�1 and

lim
n!1Cn

t � ess sup
S2S

St

for all rational t � 0. Moreover, this convergence is uniform on any interval
�0; s� such that ess supS2S Ss < �1. The resulting limit process, denoted by
ess supS2S S, is increasing and predictable, and it dominates any A 2S.
Thus, ess supS2S S is the upper variation process with respect to any Q � P .

The general case follows if we apply the same argument to the space of
compensators of S 2S with respect to Q 2 P�S�. (

Example 2.3 Let X be a semimartingale, and let G � 0 and G � 0 belong to
the space La

loc�X � of locally admissible integrands for X . In other words, the
stochastic integrals G � X and G � X are well de®ned and are locally bounded
from below. We denote by

H � H : G � H � G
� 	

the family of predictable processes bounded from above by G and from
below by G. All stochastic integrals H � X for H 2H are locally bounded
from below, the class

S � H � X : H 2Hf g
is predictably convex, and so S satis®es our assumptions above. Let Q � P
be such that X is a special semimartingale with respect to Q, and denote by

X � M � A

the canonical decomposition, where M is a local martingale under Q and A is
a predictable process of bounded variation. The compensator of any process
S � H � X 2S has the form H � A with H 2H, and we have the estimate
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H � A � H � A� ÿ H � Aÿ � G � A� ÿ G � Aÿ :

On the other hand, the equality is achieved for H � hG� �1ÿ h�G, where
h � dA�=dA. Thus, Lemma 2.1 implies that the upper variation process
AS�Q� of S under Q is given by

AS�Q�t �
Z t

0

Gs dA�s ÿ
Z t

0

Gs dAÿs ; t � 0 :

In particular we have shown that the set P�S� contains all probability
measures Q � P such that X is a special semimartingale under Q.

3 A decomposition theorem

As in the previous section we consider a family S of semimartingales which
is predictably convex and contains the process 0, and such that all processes
S 2S are locally bounded from below with initial value S0 � 0. Moreover
we assume that P�S� 6� ; and that the set S has the following closure
property:

Assumption 3.1 If �Sn� is a sequence in S which is uniformly bounded from
below and converges in the semimartingale topology to S then we have
S 2S.

If S is a set of stochastic integrals as in Example 2.3 then this closure
property will follow from a theorem of MeÂ min [17]. We consider this case in
more detail in the next section.

Theorem 3.1 Let V be a process which is locally bounded from below. Then the
following statements are equivalent:

�i� V admits a decomposition

V � V0 � S ÿ C ;

where S 2S, and C is an increasing process;
�ii� for all Q 2 P�S� the process V ÿ AS�Q� is a local supermartingale under
Q.

Remarks 3.1 1) The theorem can also be stated without Assumption 3.1 and
without the assumption that S is predictably convex. In this case the
equivalence holds if the process S in decomposition �i� is assumed to be in the
minimal class bS � S of semimartingales such that bS is predictably convex
and satis®es Assumption 3.1.
2) Condition �ii� means that the process AV �Q� in the canonical decompo-
sition V � M � AV �Q� of the special semimartingale V under Q is dominated
by AS�Q�, i.e., AV �Q� � AS�Q�.

The proof of Theorem 3.1 will be given in Section 6. We conclude this
section with a multiplicative version of Theorem 3.1 which will be useful in
the next section devoted to the application to portfolio strategies under
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convex constraints. Let E�X � denote the DoleÂ ans-Dade exponential of a
semimartingale X :

E�X � � eXÿX0ÿ1
2hX ciY

s��
1� D XS� �eÿD Xs ;

where hX ci denotes the quadratic variation of the continuous martingale part
of X . Recall that E�X � is a solution of the following stochastic di�erential
equation:

Z � 1� Zÿ � X ; Z0 � 1 :

Moreover any solution of this equation coincides with E�X � on the set
�x; t� : E�X �ÿ 6� 0
� 	

.

Corollary 3.1 Let V be a nonnegative process. Under the assumptions of
Theorem 3.1 the following statements are equivalent:

�i� V admits a decomposition

V � V0E�S ÿ C� ;
where S 2S, and C is an increasing process;
�ii� for all Q 2 P�S� the process V =E�AS�Q�� is a supermartingale under Q.

Proof Hereafter we assume that V0 � 1. Let us recall the following formula:

E�X �E�A� � E�X � A� �X ;A�� � E�A� �1� D A� � X �� ; �3:1�
which holds for any semimartingale X with initial value X0 � 0 and for any
predictable process A of bounded variation.
�i� ) �ii� Let Q 2 P�S�. De®ne a semimartingale X by the following

formula:

X � 1

1� D AS�Q� � S ÿ C ÿ AS�Q�ÿ �
:

Accounting for (3.1) we get

E�X �E�AS�Q�� � E�S ÿ C� � V :

From the de®nition of AS�Q� we deduce that X is a local supermartingale
under Q. Moreover E�X � � 0, because V � 0. It follows that

E�X � � V =AS�Q�
is a supermartingale under Q.
�ii� ) �i� It is su�cient to prove the existence of a decomposition (i) on

any interval �0; sn�, n � 1, where

sn � inf t � 0 : Vt � 1

n

� �
:

Hereafter we assume that all processes are de®ned on the set C � [n�1�0; sn�
� �x; t� : Vÿ > 0f g.
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De®ne

Rt �
Z t

0

dVs

Vsÿ
:

We have V � E�R� and according to Theorem 3.1 the proof will follow if
Rÿ AS�Q� is a local supermartingale under any Q 2 P�S�.

Let us ®x Q 2 P�S� and de®ne

X � 1

1� D AS�Q� � Rÿ AS�Q�ÿ �
:

From (3.1) we deduce that

E�X �E�AS�Q�� � E�R� � V :

By assumption E�X � is a local supermartingale under Q and, since E�X �ÿ > 0
on C, we get that X is also a local supermartingale under Q. This implies the
desired supermartingale property for

Rÿ AS�Q� � 1� D AS�Q�ÿ � � X : (

4 Constrained portfolios

Let us consider a model of a security market which consists of d � 1 assets:
one bond and d stocks. Hereafter we suppose that the bond is chosen as a
numeraire and denote by X � �X i�1�i�d the discounted price process of the
stocks.

A portfolio P is de®ned as a triple �v;H ;C�, where the constant v is the
initial value of the portfolio, H � �H i�1�i�d is a predictable X -integrable
process specifying the amount of each asset held in the portfolio, and
C � �Ct�t�0 is an increasing process of accumulated consumption. The value
process V � �Vt�t�0 of such a portfolio P is given by

Vt � v�
Z t

0

Hs dXs ÿ Ct; t � 0 : �4:1�

The condition C � 0 means that the portfolio P is self-®nancing.
Let nowH � La

loc�X � be a family of locally admissible integrands for X .
We assume that H contains H � 0, is closed in La

loc�X � with respect to the
distance dX de®ned in (1.2), and is convex in the following sense: for any H
and G inH and any predictable process 0 � h � 1 the process hH� �1ÿ h�G
belongs to H. A portfolio P � �v;H ;C� is called H-constrained if H 2H.

Example 4.1 The role ofH is to model various constraints on the choice of a
portfolio. One may, for instance, consider the following cases:

1. H � La
loc�X �: no constraints;

2.H � H 2 La
loc�X � : H i � 0; 1 � i � m

� 	
: no short selling of the ®rst m

assets;
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3. H � H 2 La
loc�X � : Gi � H i � G

i
; Gi � 0; G

i � 0; 1 � i � d
n o

where Gi

and G
i
belong to La

loc�X �: upper and lower bounds on the number of assets
held in the portfolio.

The next theorem gives a ``dual'' characterization of H-constrained
portfolios. In the unconstrained case H � La

loc�X �, the theorem reduces to
the optional decomposition theorem of Kramkov [14] and, in the case of a
di�usion process X , of El Karoui and Quenez [7]; see also [10], [4], [13].
Consider the family of semimartingales

S � H � X : H 2Hf g : �4:2�

Theorem 4.1 Let P�S� 6� ;, and consider a process V which is locally bounded
from below. Then the following statements are equivalent:

�i� V is the value process of an H-constrained portfolio, i.e.

V � V0 � H � X ÿ C

with H 2H and an increasing process C
�ii� for all Q 2 P�S� the process V ÿ AS�Q� is a local supermartingale under

Q.

Proof In view of Theorem 3.1 the only delicate point in the proof is to check
that the family S given by (4.2) satis®es Assumption 3.1. This follows from
MeÂ min's theorem [17], which states that the space of stochastic integrals is
closed in the semimartingale topology. (

Following CvitanicÂ and Karatzas [2] and [3] let us also consider the case
when constraints are imposed on the proportions of portfolio capital in-
vested in the di�erent stocks. To avoid technicalities we assume hereafter
that X is a strictly positive process. Let

Ri
t �

Z t

0

dX i
s

X i
sÿ
; t � 0 ;

denote the return process of the ith stock.
A portfolio P is called admissible if it has a nonnegative value at any time

instant. The value process of such a portfolio given by the additive repre-
sentation (4.1) can also be written in the following multiplicative form:

V � V0E K � Rÿ D� � ;
where Ki

t � H i
t X

i
tÿ=VtÿIfVtÿ>0g is the proportion of the portfolio capital in-

vested in the ith stock at time t and

Dt �
Z t

0

dCs

Vsÿ
IfVsÿ>0g; t � 0 ;

is the accumulated proportion consumed up to time t.
Let nowK be a family of integrands for R. As before we suppose thatK

contains the constant process K � 0, is closed in La
loc with respect to the
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distance dX , and is convex in the following sense: for any K and L inK and
any predictable process 0 � h � 1 the process hK � �1ÿ h�L belongs to K.

The next theorem gives a ``dual'' characterization of admissible portfolios
whose proportions take values in the set K. Consider the family of semi-
martingales

S � K � R : K 2Kf g ; �4:3�
and recall that E�X � denotes the DoleÂ an-Dade exponential of the semimar-
tingale X .

Theorem 4.2 Let P�S� 6� ;, and let V be a nonnegative process. Then the
following statements are equivalent:

�i� V is the value process of an admissible portfolio whose proportions belong to
K, i.e.,

V � V0E K � Rÿ D� �
with K 2K and an increasing process D
�ii� for all Q 2 P�S� the process V =E�AS�Q�� is a supermartingale under Q.

Proof The proof follows from Corollary 3.1 with the same arguments as in
the proof of Theorem 4.1. (

As an application let us consider the problem of (super-) replication of
contingent claims with constrained portfolios. A contingent claim of Euro-
pean type is de®ned as a positive random variable fT on �X;FT � interpreted
as the value of the claim at time T . A strategy P with value process V is called
a hedging portfolio for the claim fT if P is admissible and VT � fT . An H-
constrained strategy bP with value process bV is called a minimal H-con-
strained hedging portfolio if

Vt � bVt � fT Ift�Tg; t � T ;

for any H-constrained hedging portfolio P with value process V .

Proposition 4.1 Let the set S be de®ned by (4.2). Assume that

sup
Q2P S� �

EQ� fT ÿ AS�Q�T � < �1 :

Then a minimal H-constrained hedging strategy bP � �bv; bH ; bC� exists, and its
value at time t � T equalsbVt � bv� �bH � X �t ÿ bCt � ess sup

Q2P S� �
EQ fT ÿ AS�Q�T jFt
� �� AS�Q�t

ÿ ��
;

where a� � max�a; 0�.
Proposition 4.1 follows from Proposition 4.2 below which characterizes

the value process of a minimal H-constrained hedging portfolio for a con-
tingent claim of American type.

Let f � � ft�t�0 be a nonnegative process. We interpret f as the reward
process of an American option. Note that if ft � fT Ift�Tg then we have a

10 H. FoÈ llmer, D. Kramkov



contingent claim of European type. A portfolio P with value process
V � �Vt�t�0 is called a hedging strategy for f if

Vt � ft; t � 0 :

An H-constrained portfolio eP with value process eV � �eVt�t�0 is called a
minimal H-constrained hedging portfolio if

Vt � eVt � ft; t � 0

for any H-constrained hedging portfolio P with value process V .
The following theorem can be considered as a generalization of results of

Bensoussan [1] and Karatzas [12] to the setting of markets with constraints.
For Q 2 P�S� and t � 0 we denote byMt�Q� the set of stopping times s

with values in �t;�1� such that the process ASu_t�Q� ÿ ASt �Q�
ÿ �

u�0 is
bounded on �0; s�.
Proposition 4.2 Let the set S be de®ned by (4.2). Assume that

sup
Q2P�S�;

sup
s2M0�Q�

EQ�fs ÿ AS�Q�s� < �1 :

Then a minimalH-constrained hedging portfolio eP � �ev; eH ; eC� exists, and its
value at time t � 0 equalseVt � ev� �eH � X �t ÿ eCt � ess sup

Q2P�S�;s2Mt�Q�
EQ� fs ÿ AS�Q�sjFt� � AS�Q�t
ÿ �

:

Proof De®ne

eVt � ess sup
Q2P�S�; s2Mt�Q�

EQ� fs ÿ AS�Q�sjFt� � AS�Q�t
ÿ �

:

Let Q 2 P�S� and V t� �t�0 be the value process of anH-constrained hedging
strategy. Let sn� �n�1 be a localizing sequence such that EQAS�Q�sn

� n. Since
V � f � 0 we deduce from Theorem 4.1 that V ÿ AS�Q� is a supermartingale
under Q on �0; sn�. Therefore for any t � 0 and stopping time s 2Mt�Q� we
have

Vt^sn �EQ�Vs^sn ÿ AS�Q�s^sn
jFt^sn � � AS�Q�t^sn

� fsn Ift>sng � EQ fs^sn ÿ AS�Q�s^sn
� AS�Q�t

� �
Ift�sngjFt

h i
:

From the de®nition of Mt�Q� we deduce that the sequence
fs^sn ÿ AS�Q�s^sn

� AS�Q�t
� �

Ift�sng; n � 1 ;

is uniformly bounded from below. It follows from Fatou's lemma that

Vt � EQ� fs ÿ AS�Q�sjFt� � AS�Q�t ;
hence

Vt � eVt; t � 0 :
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Note that eVt � ft; t � 0. Therefore we only have to show that eV is the value
process of an H-constrained portfolio. This fact follows from Theorem 4.1
and Lemma A.1 in the Appendix. (

Similarly one may describe the value process of a minimal hedging
portfolio whose proportions belong to the set K.

Proposition 4.3 Consider a contingent claim of European type given by fT � 0,
and let the set S be de®ned by (4.3). Assume that

sup
Q2P S� �

EQ fT=E�AS�Q��T
� �

< �1 :

Then there exists a hedging strategy bP with proportions belonging to the setK
such that its value at time t equalsbVt � ess sup

Q2P�S�
E�AS�Q��tEQ fT =E�AS�Q��T jFt

� �ÿ �
:

Moreover, if V is the value of a hedging strategy with proportions in K then
Vt � bVt, t � 0.

Denote by Mt the set of stopping times s with values in �t;�1�.
Proposition 4.4 Let f t� �t�0 be a nonnegative process, and let the set S be
de®ned by (4.3). Assume that

sup
s2M0;

sup
Q2P�S�

EQ fs=E�AS�Q��s
� �

< �1 :

Then there exists a hedging strategy eP with proportions belonging to the setK
such that its value at time t equalseVt � ess sup

Q2P�S�; s2Mt

E�AS�Q��tEQ� fs=E�AS�Q��sjFt�
� �

:

Moreover, if V is the value of a hedging strategy with proportions in K then
Vt � eVt, t � 0.

The proofs are similar to the proof of Proposition 4.2 and are omitted
here.

5 Fatou convergence

Let f n� �n�1 be a sequence of measurable functions on �X;F; P �. We use the
standard notation L0 (resp. L1, L1) for the space of all (resp. P -integrable, P -
essentially bounded) real-valued random variables on �X;F; P �. If C is a
subset in a linear space, then conv C will denote the minimal convex set
containing C.

The work of McBeth [16], Schachermayer [19] and Delbaen and Schac-
hermayer [5] has shown the usefulness of the following concept.

De®nition 5.1 The sequence f n� �n�1 is Fatou convergent to f if f n� �n�1 is
uniformly bounded from below and f n ! f almost surely. A subset C in L0

which is closed with respect to Fatou convergence will be called Fatou closed.
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The following lemma on Fatou convergence is taken from [5], see also
[19].

Lemma 5.1 Let � f n�n�1 be a sequence of nonnegative measurable functions.

1) There is a sequence gn 2 conv� f n; f n�1; . . .�, n � 1, which converges almost
surely to a function g with values in �0;1�.
2) If conv� f 1; f 2; . . .� is bounded in L0 then g is ®nite almost surely.
3) If there are a > 0 and d > 0 such that P � f n > a� > d for all n, then
P �g > 0� > 0.

We will also need the following fact from functional analysis.

Theorem 5.1 A convex set C in L1 is r�L1;L1�-closed if and only if for each
sequence f n� �n�1 in C, which is uniformly bounded and converges in probability
to a function f , we have f 2 C.

Let C be a convex set in L0 of functions which are bounded from below,
and assume that C contains all bounded negative functions. We use the
notation

aC�Q� � sup
h2C

EQh;

P�C� � Q � P : aC�Q� < �1� 	
:

Proposition 5.1 Assume that the set C is Fatou closed, and that P�C� 6� 0.
Then

1) the set C \ L1 is r�L1;L1�-closed,
2) a function g 2 L0 which is bounded from below belongs to C i� for all
Q 2 P�C�

EQg � aC�Q� : �5:1�

Proof Let us de®ne C1 � C \ L1. Note that

aC�Q� � sup
h2C1

EQh ;

since C is Fatou closed.
The assertion 1) follows immediately from Theorem 5.1 while the ``only

if '' statement in 2) is trivial. To prove su�ciency in 2) let us ®rst assume that
g belongs to L1 and satis®es (5.1). Suppose that g =2C1. Since C1 is convex
and r�L1;L1�-closed, we can apply the separation theorem to obtain a
signed measure R with density in L1 such that

sup
h2C1

ERh < ERg : �5:2�

Since the set C1 contains all bounded negative random variables, R is a
positive measure, which can be normalized to be a probability measure. If, in
addition, R � P then (5.2) implies that R 2 P�C� and

aC�R� < ERg ;
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in contradiction to (5.1).
In the general case where R� P , we de®ne

R� � �Q� �1ÿ ��R
for Q 2 P�C� and 0 < � < 1. It is clear that R� 2 P�C�, and that

sup
h2C1

ER�h � aC�R�� < ER�g

if � is small enough. So we only have to apply the preceding argument to R�

instead of R in order to get a contradiction.
If g is only bounded from below then, as we have proved, the function

gn � g ^ n belongs to C1. This implies g 2 C since the sequence gn� �n�1 is
Fatou convergent to g. (

Now we introduce a concept of Fatou convergence in the setting of
stochastic processes.

De®nition 5.2 Let T be a dense subset of R�. A sequence of processes
X n� �n�1 is Fatou convergent on T to a process X if X n� �n�1 is uniformly
bounded from below, and if for any t � 0 we have

Xt � lim sup
s#t;s2T

lim sup
n!1

X n
s

� lim inf
s#t;s2T

lim inf
n!1 X n

s

almost surely. If T � R� the sequence X n� �n�1 is called simply Fatou con-
vergent.

In analogy to Lemma 5.1 we have the following result.

Lemma 5.2 1) Let X n� �n�1 be a sequence of supermartingales which are uni-
formly bounded from below such that X n

0 � 0, n � 1. Let T be a dense
countable subset of R�. Then there is a sequence Y n 2 conv�X n;X n�1; . . .�,
n � 1, and a supermartingale Y such that Y0 � 0 and Y n� �n�1 is Fatou con-
vergent on T to Y .
2) Let An� �n�1 be a sequence of increasing processes such that An

0 � 0, n � 1.
There is a sequence Bn 2 conv�An;An�1; . . .�, n � 1, and an increasing process
B with values in R� such that Bn� �n�1 is Fatou convergent to B. If there are
T > 0, a > 0 and d > 0 such that P �An

T > a� > d for all n � 1, then
P �BT > 0� > 0.

Proof Assertion 2) was proved in [14]. To prove 1) we construct a sequence

Y n 2 conv�X n;X n�1; . . .�; n � 1 ;

such that �Y n
t �n�1 converges almost surely to a variable Y 0t for all t 2T. This

can be done by Lemma 5.1 and the diagonal procedure of extracting a
subsequence. Using Fatou's lemma we see that for s < t, s 2T, t 2T

E�Y 0t jFs� � lim inf
n!1 E�Y n

t jFs� � lim inf
n!1 Y n

s � Y 0s :

14 H. FoÈ llmer, D. Kramkov



The standard construction based on Doob's Upcrossing lemma shows that
the process Y de®ned as

Yt � lim
s#t;s2T

Y 0s

is a right-continuous supermartingale with left limits. It is easy to see that
Y n� �n�1 is Fatou convergent to Y , and that

Y0 � lim inf
s#0;s2T

lim inf
n!1 E�Y n

s jF0� � 0 : (

Let now X be a predictably convex family of semimartingales which are
locally bounded from below. We assume that X contains all locally bounded
decreasing processes, in particular the process X � 0. The following propo-
sition will play a crucial role in the proof of Theorem 3.1.

Proposition 5.2 Assume that P�X� 6� ;, and that the set X is closed under
Fatou convergence on some dense countable setT � R�. Consider a stochastic
process V which is locally bounded from below. Then V belongs toX if and only
if for all Q 2 P�X� the process V ÿ AX�Q� is a local supermartingale under Q.

Proof The necessity follows from the de®nition of the upper variation pro-
cess. The proof of su�ciency consists of two parts. First, we approximate V
at a ®nite number of points by a process X 2 X. Then we pass to the limit
and use the assumption that X is closed under Fatou convergence in order to
show that V belongs to X. For simplicity we assume that P 2 P�X�, and that
the upper variation process AX � AX�P � and the process V satisfy

AX � N ; Vt ÿ Vs � ÿN ; V0 � 0 ; �5:3�
for any s < t and some N � 0. The general case will follow by a localization
argument.

1) Let T0 be a ®nite partition of R�. We are going to show the existence
of X 2 X which is bounded from below and such that

Xt � Vt t 2T0 :
Note that one may choose X to be constant after the maximal point t 2T0,
in which case (5.3) and the supermartingale property of X ÿ AX imply that
X � ÿ2N . Since X is predictably convex, it is enough to show that

Vt ÿ Vs � Xt ÿ Xs �5:4�
for any s < t and some X 2 X which is bounded from below. Hereafter we ®x
s < t and denote g � Vt ÿ Vs.

Let Y be the family of processes Y 2 X which are bounded from below,
equal to 0 on �0; s�, and constant on �t;�1�. Using the notation

C � hjh � Yt; Y 2 Yf g ;
our claim (5.4) means that g 2 C, and this will be deduced from Proposition
5.1.

First we show that C is Fatou closed. Let hn� �n�1 be a sequence in C
which is Fatou convergent to a function h, and let Y n� �n�1 be a sequence in Y
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such that Y n
t � hn. Since X n � Y n ÿ AX is a supermartingale and the sequence

�Y n
t ÿ AXt �n�1 is uniformly bounded from below, the processes �Y n ÿ AX�n�1

are uniformly bounded from below. From Lemma 5.2 we deduce the exis-
tence of a sequence Zn 2 conv�X n;X n�1; . . .�, n � 1, and of a process Z such
that Zn� �n�1 is Fatou convergent to Z on the set T. By assumption we have
Z � AX 2 Y, and this implies h 2 C since

Zt � AXt � lim
n!1 Y n

t � lim
n!1 hn � h :

To ®nish the proof of (5.4) we have to show that

EQg � sup
h2C

EQh �5:5�

for any Q � P such that the right-hand side of (5.5) is ®nite. Let Q be such a
measure. Since

sup
h2C

EQh � sup
Y2Y

EQYt � sup
Y2Y

EQAY
t

we deduce from Lemma 2.1 that

sup
h2C

EQh � EQAY�Q�t ; �5:6�

where AY�Q� is the upper variation process of Y under Q. Note that AY�Q� is
equal to 0 on �0; s� and constant on �t;�1�.

Now let R � P be a probability measure de®ned by the following prop-
erties:

1. R � P on Fs,
2. ER��jFs� � EQ��jFs� on Ft,
3. ER��jFt� � EP ��jFt� on F.

We have R 2 P�X� and

AX�R�u � AXu^s � AXu_t ÿ AXt � AY�Q�u; u � 0 :

The supermartingale property of V ÿ AX�R� under R implies

ER�gjFs� � ER�Vt ÿ VsjFs� � ER�AX�R�t ÿ AX�R�sjFs� � ER�AYt �Q�jFs�
and therefore

EQ�gjFs� � EQ�AYt �Q�jFs� ;
which together with (5.6) implies (5.5).

2) Let �Tn�n�1 be an increasing sequence of ®nite partitions such that
T � Sn�1Tn. As we have shown, there is a sequence X n� �n�1 in X such that
X n � ÿ2N and X n

t � Vt for t 2Tn. It follows that X n� �n�1 is Fatou con-
vergent on T to V . Since X is closed under Fatou convergence on T, we
conclude that V 2 X. (
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6 Proof of Theorem 3.1

Condition �ii� of the theorem is clearly necessary for a decomposition of the
form �i�. To prove su�ciency we denote by X the set of processes X which
are locally bounded from below and are of the form X � S ÿ C, where S 2S
and C is an increasing process with C0 � 0. Obviously, P�S� � P�X�. Thus,
the proof follows from Proposition 5.2 and Proposition 6.1 below, which
asserts that X is closed under Fatou convergence on dense subsets of R�.

Proposition 6.1 Let T be a dense subset of R�. If a sequence X n� �n�1 in X is
Fatou convergent on T to X then X 2 X.
Proof Clearly it is enough to show that X is dominated by some elementbX 2 X with respect to the ordering �. Thus, the proposition follows from
Lemma 6.1 and Lemma 6.3 below. (

For a negative number a we denote Y � Y�T; a� the set of random
processes Y such that there is a sequence Y n� �n�1 in X which is Fatou con-
vergent on T to Y and is bounded from below by the constant a. On Y we
use the ordering � de®ned by X � Y i� Y ÿ X is an increasing process. To
simplify the notation let us assume that P 2 P�S�, and let us write
AS � AS�P �. In addition, we assume hereafter that all processes X 2 X are
constant after time 1 and that

AS � N

for some N � 0. The general case follows by a localization argument.

Lemma 6.1 Let X be an element of Y. There is a maximal element bX in the
ordered set Y such that X � bX .
Proof For Y 2 Y we de®ne

b�Y � � sup
Z2Y;Z�Y

E Z1 ÿ Y1� � :

It is clear that Y is maximal if and only if b�Y � � 0.
1) Let us show that, for any Y 2 Y such that b�Y � > 0, there is U 2 X

such that U � a and

P �U ÿ Y ��1 � 8
����������
b�Y �

p� �
� 8

����������
b�Y �

p
; �6:1�

where we use the notation

�U ÿ Y ��1 � sup
0�t�1

jUt ÿ Ytj :

If this assertion fails, and if Kn� �n�1 is a sequence in X which is Fatou
convergent on T to Y and such that Kn � a, n � 1, then

lim inf
n!1 P �Kn ÿ Y ��1 � 4�

ÿ � � 4� ; �6:2�

where � � 2
����������
b�Y �p

. In this case there are two increasing sequences �ik; jk�k�1
such that
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P�sup
t�1
�Kik

t ÿ Kjk
t � � �� � �; k � 1 :

De®ne the stopping time

sk � inf t � 0 : Kik
t ÿ Kjk

t � �
� 	

;

and the processes

Lk
t �Kik

t^sk
� �Kjk

t ÿ Kjk
t^sk
� ;

Ak
t ��Kik

sk
ÿ Kjk

sk
�Ift�skg :

It follows that Lk 2 X and Ak is an increasing process such that
P �Ak

1 � �� � �. Moreover,

Lk
t ÿ Ak

t � Kik
t Ift<skg � Kjk

t Ift�skg :

Hence, the sequence �Lk ÿ Ak�k�1 is Fatou convergent on T to Y and is
bounded from below by the constant a.

Lemma 5.2 implies the existence of Bk 2 conv�Ak;Ak�1; . . .�, k � 1, and of
an increasing process B such that Bn� �n�1 is Fatou convergent on T to B.
Since P�Ak

1 � �� � �, we have that EB1 � �2. Denote by Mk the convex
combination of �Lk; Lk�1; . . .� obtained with the same weights as Bk. The
sequence Mn� �n�1 is Fatou convergent on T to Y � B and Mn � a, n � 1.
Therefore, Z � Y � B belongs to Y. It is clear that Y � Z. However

E Z1 ÿ Y1� � � EB1 � �2 � 4b�Y �
and we come to a contradiction.

2) Let Y n� �n�1 be a sequence in Y such that Y 1 � X , Y n � Y n�1 and
b�Y n� � 2ÿ2�n�3�, and let bX be the limit of Y n� �n�1. From 1) we deduce the
existence of a sequence Un� �n�1 in X such that P �Un ÿ Y n��1 � 2ÿn

ÿ � � 2ÿn

and U n � a. It follows that bX 2 Y. Finally, since Y n � bX we have X � bX and
b�bX � � infn�1 b�Y n� � 0. (

Lemma 6.2 Let bY be a maximal element of Y�T; a�. Let An� �n�1 be a sequence
of increasing processes and Kn� �n�1 be a sequence in S such that Kn � a,
n � 1. Assume that the convergencebYt � lim sup

s#t;s2T
lim sup

n!1
�Kn

s ÿ An
s �

� lim inf
s#t;s2T

lim inf
n!1 �K

n
s ÿ An

s �

holds almost surely, for any t � 0. Then the variables An
1 and the maximal

functions �Kn ÿ bY ��1 tend to 0 in probability as n tends to 1.

Proof If there are an increasing sequence �nk�k�1 and a number � > 0 such
that P�Ank

1 > �� > �, then Lemma 5.2 implies the existence of Bk 2 conv
�Ank ;Ank�1 ; . . .�, k � 1, and of an increasing process B such that Bn� �n�1 is
Fatou convergent to B and P �B1 > 0� > 0. Denote by Nk the convex com-
bination of �Knk ;Knk�1 ; . . .� obtained with the same weights as Bk. The
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sequence N n� �n�1 is Fatou convergent on T to bY � B, and Nn � a. This
contradicts the maximality of bY .

To ®nish the proof we have to show that the maximal functions
�Km ÿ Kn��1 tend to 0 in probability as m and n tend to1. This follows as in
part 1) of the proof of Lemma 6.1. (

The next lemma is the very assertion we need to ®nish the proof of
Proposition 6.1.

Lemma 6.3 Let bY be a maximal element of Y�T; a�. Then bY 2S.

Proof The basic idea is to construct a sequence Mn� �n�1 in S which is
convergent to bY in the semimartingale topology and is uniformly bounded
from below.

1) From Lemma 6.2 we deduce the existence of a sequence H n� �n�1 inS such
that Hn � a and the maximal functions �H n ÿ bY ��1 tend to 0 in probability. In
particular, supn�1�Hn��1 < �1. We are going to construct a sequence Ln� �n�1
of convex combinations of Hn� �n�1 which satis®es in addition the condition
supn�1�Ln; Ln�1 < �1.

The process Hn ÿ AS is a supermartingale and therefore can be decom-
posed as

H n ÿ AS � Rn ÿ An ;

where Rn is a local martingale and An is an increasing predictable process
with An

0 � 0. Since Hn � a and AS � N , we have Rn � aÿ N and
An � Rn � N ÿ a. It follows that Rn is a supermartingale and EAn

1 � N ÿ a.
From Lemma 5.2 we deduce the existence of a sequence Bn 2 conv

�An;An�1; . . .�, n � 1, and of an increasing process B such that Bn� �n�1 is Fatou
convergent to B. Fatou's lemma implies that EB1 � N ÿ a. It follows that

sup
n�1

Bn
1 < �1 and sup

n�1
�Bn;Bn�1 � sup

n�1

X
t�0
�D Bn

t �2 � sup
n�1
�Bn

1�2 < �1

Let Kn 2 conv�H n;H n�1; . . .� and Sn 2 conv�Rn;Rn�1; . . .� be the convex
combinations obtained with the same weights as Bn 2 conv�An;An�1; . . .�.
Since

Kn ÿ AS � Sn ÿ Bn ;

we have

sup
n�1
�Sn��1 � sup

n�1
�Kn��1 � sup

n�1
Bn
1 � AS1 � sup

n�1
�Hn��1 � sup

n�1
Bn
1 � AS1 < �1 ;

where
�S��1 � sup

t�1
jStj :

It follows that the stopping time

rm � inf
n�1

inf 0 � t � 1 : jSn
t j � m

� 	
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is less then 1 with vanishing probability as m tends to 1. In view of the
supermartingale property of Sn and the inequality Sn � aÿ N , we obtain

E�Sn��rm
� m� EjSn

rm
j � m� 2N ÿ 2a� ESn

rm
� m� 2N ÿ 2a :

Now the Davis inequality implies the existence of a constant cm < �1 such
that

E�Sn; Sn�1=2rm
� cm :

From Lemma 5.2 we deduce the existence of a sequence

Cn 2 conv Sn; Sn� �1=2; Sn�1; Sn�1� �1=2
; . . .

� �
; n � 1 ;

which is Fatou convergent to an increasing process C. An application of
Fatou's lemma gives

EC1Ifrm�1g � lim inf
n!1 ECn

1Ifrm�1g � cm :

Since P �rm � 1� tends to 1 as m tends to1, we have C1 < �1 almost surely.
It follows that supn�1 Cn

1 < �1.
Let Ln 2 conv�Kn;Kn�1; . . .� and T n 2 conv�Sn; Sn�1; . . .� and Dn 2 conv

�Bn; Bn�1; . . .� be the convex combinations obtained with the same weights as
Cn. We have

Ln � T n � AS ÿ Dn

and

T n; T n� �1=21 � Cn
1 ; �Dn;Dn�1=21 � sup

k�n
�Bk;Bk�1=21 ;

see the ``Minkowski inequality'' (54.1) in [6], Chapter VII. Hence

sup
n�1

Ln; Ln� �1� 3 sup
n�1

T n; T n� �1�3 sup
n�1

Dn;Dn� �1�3�AS;AS�1 < �1 :

2) Let us de®ne the probability measure R � P on �X;F� with density

dR
dP
� eÿq

Eeÿq
;

where q � supn�1 Ln; Ln� �1. Since
ER sup

n�1
Ln;Ln� �1< �1 ;

Ln is a special semimartingale with respect to R, and so it can be decomposed
as

Ln � F n � An ;

where F n is a local martingale under R and An is a predictable process of
bounded variation. Note that

ER F n; F n� �1� ER Ln; Ln� �1 ;

see [6], VII Theorem 55. This implies supn�1 ER F n; F n� �1< �1, i.e., the se-
quence F n� �n�1 is bounded in the space M2�R; �0; 1�� of square integrable
martingales with respect to R and with parameter set �0; 1�. Thus there is a
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sequence Gn 2 conv�F n; F n�1; . . .�, n � 1, which is convergent in
M2�R; �0; 1��, hence also in the semimartingale topology.
3) Let Mn� �n�1 be the sequence of convex combinations of Ln� �n�1 with the
canonical decomposition

Mn � Gn � Bn ;

where Gn is the convergent sequence of martingales constructed in 2) and
Bn 2 conv�An;An�1; . . .�. In order to establish convergence of Mn� �n�1 in the
semimartingale topology we only have to show that the sequence Bn� �n�1 is
convergent in the semimartingale topology. The proof proceeds along the
lines of the proof of Lemma 4.11 in [5]. It is su�cient to show thatR 1
0 jdBn

t ÿ dBm
t j tends to 0 as n and m tend to1. If this were not the case, we

could ®nd two increasing sequences �in; jn�n�1 and a number � > 0 such that
P �Cn

1 > �� > �, where

Cn
t �

1

2

Z t

0

jdBin
s ÿ dBjn

s j; t � 0 :

Let us show that this contradicts the maximal property of bY .
Hahn's decomposition implies the existence of a predictable process hn

with values in fÿ1; 1g such that

Cn
t �

1

2

Z t

0

hn�dBin ÿ dBjn�; t � 0 :

Let us denote

Nn
t �

1

2

Z t

0

�1� hn� dMin � 1

2

Z t

0

�1ÿ hn� dMjn

and let N n � H n � Dn be the canonical decomposition of Nn under R, where

H n
t �

1

2

Z t

0

�1� hn� dGin � 1

2

Z t

0

�1ÿ hn� dGjn

is a martingale under R and

Dn
t �

1

2

Z t

0

�1� hn� dBin � 1

2

Z t

0

�1ÿ hn� dBjn

is a predictable process of bounded variation. Since Mn 2 S and the setS is
predictably convex we have N n 2S.

By the construction of hn we deduce that the processes Dn ÿ Bin and
Dn ÿ Bjn are increasing. Moreover, since

H n
t ÿ Gin

t �
1

2

Z t

0

�hn ÿ 1� dGin ÿ dGjn
ÿ �

and the processes Gin ÿ Gjn tend to 0 inM2�R; �0; 1��, the maximal functions
Hn ÿ Gin� ��1 tend to 0 in probability. The same holds for H n ÿ Gjn� ��1. Taking
if necessary a subsequence we can suppose that convergence holds almost
surely and that the stopping times
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sn � inf
k�n

inf 0 � t � 1 : Hk < max Gik ;G jk
ÿ �ÿ 1=n

� 	
are equal to 1 with probability tending to 1 as n tends to 1. Since
�Min ÿ bY ��1 ! 0 in probability and

N n ÿ Cn � H n � 1

2
�Bin � Bjn� � Hn ÿ 1

2
�Gin � G jn� � 1

2
�Min �Mjn�

we deduce that the maximal functions �N n ÿ Cn ÿ bY ��1 tend to 0 in proba-
bility.

For t < sn and k � n we have

N k
t � H k

t � Dk
t �max�Gik

t ;G
jk
t � �max�Bik

t ;B
jk
t � ÿ 1=n

�max�Mik
t ;M

jk
t � ÿ 1=n :

At time sn a jump DN k is either DMik or DMjk and hence the equality

Nk
t � min�Mik

t ;M
jk
t � ÿ 1=n

holds for t � sn. Since Mn � a we get

N k
t � aÿ 1=n; 0 � t � sn; k � n :

If we de®ne bNn
t � na

naÿ1 N n
t^sn

, t � 0, then bN n 2S, bN n � a, and the maximal
functions �bN n ÿ Cn ÿ bY ��1 tend to 0 in probability.

Now Lemma 6.2 implies that the variables Cn
1 tend to 0 in probability.

This contradiction proves the convergence of Bn� �n�1 in the semimartingale
topology. (

Appendix: a stochastic control lemma

Here we prove a stochastic control lemma which was used in the proof of
Proposition 4.2. Let S be a family of semimartingales which are locally
bounded from below. We suppose that P S� � 6� ; and denote by AS�Q� the
upper variation process of S with respect to Q 2 P S� �. Recall that Mt�Q�
denotes the set of stopping times s with values in �t;�1� and such that the
process AS�Q�u_t ÿ AS�Q�t

ÿ �
u�0 is bounded on �0; s�. As before, all processes

are assumed to be real-valued, to have right-continuous paths with left limits,
and to be adapted with respect to the given ®ltration Ft� �t�0. For simplicity
we assume hereafter that the initial r-®eld F0 is trivial.

Lemma A.1 Let f t� �t�0 be a nonnegative process such that

sup
Q2P S� �

sup
s2M0�Q�

EQ� fs ÿ AS�Q�s� < �1 :

There exists a process Ut� �t�0 such that for t � 0

Ut � ess sup
Q2P S� �; s2Mt�Q�

EQ� fs ÿ AS�Q�sjFt� � AS�Q�t
ÿ �

almost surely. Moreover, for any Q 2 P S� � the process U ÿ AS�Q� is a local
supermartingale under Q.
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Proof Without loss of generality we can suppose that P 2 P S� �. For sim-
plicity we assume that the upper variation process of S with respect to P is
uniformly bounded, i.e.,

AS :� AS�P � � N �A:1�
for some N <1. The general case follows by localization arguments.

We need to show that U is a supermartingale with respect to P . To any
Q 2 P�S� we can associate the corresponding density process z with respect
to P . For t � 0 we denote by Zt the set of density processes z corresponding
to some Q 2 P�S� which are equal to 1 on the interval �0; t�. Throughout we
will use the notation

AS�z� � AS�Q�; Mt�z� �Mt�Q�
if z 2Zt corresponds to Q 2 P�S�. Due to the fact that AS�z� � AS on �0; t�
for z 2Zt, we get

Ut � ess sup
z2Zt ; s2Mt�z�

E�zs� fs ÿ AS�z�s � ASt �jFt� :

For n � 1 we denote by Mt�z; n� the set of stopping times s with values in
�t;�1� and such that the process AS�Q�u_t ÿ AS�Q�t

ÿ �
u�0 is bounded by n

on �0; s�. We also de®ne the process

U n
t � ess sup

z2Zt ; s2Mt�z;n�
E�zs� fs ÿ AS�z�s � ASt �jFt� :

Since for any z 2Zt

Mt�z� �
[
n�1
Mt�z; n� ; �A:2�

we deduce that
Ut � sup

n�1
U n

t : �A:3�

Let z1 and z2 belong to Zt, s1 2Mt�z1; n� and s2 2Mt�z2; n�, where n is a
®xed positive number. De®ne the set

K � x : E�z1s1� fs1 ÿ AS�z1�s1 jFt� > E�z2s2�fs2 ÿ AS�z2�s2 jFt�
n o

:

Since K 2Ft, we conclude that the process

z � z1IK � z2�1ÿ IK�
belongs to Zt and the stopping time

s � s1IK � s2�1ÿ IK�
is an element of M�z; n�. Moreover, we have

AS�z� �AS�z1�IK � AS�z2��1ÿ IK�;
E�zs� fs ÿ AS�z�s�jFt� �max E�z1s1� fs1 ÿ AS�z1�s1�jFt�;E�z2s2

n
� fs2 ÿ AS�z2�s2�jFt�

o
:
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Note that for any z 2 Zt and s 2Mt�z; n� we have
zs� fs ÿ AS�z�s � ASt � n� � 0 :

Now the results of Striebel [20] (see [8], Lemma 16.A.5) imply that for s � t:

E�Un
t jFs� � ess sup

z2Zt ; s2Mt�z;n�
E�zs� fs ÿ AS�z�s � ASt �jFs� :

Taking the supremum over n and using (A.2) and (A.3) we get

E�UtjFs� � ess sup
z2Zt ; s2Mt�z�

E�zs� fs ÿ AS�z�s � ASt �jFs� : �A:4�

Evidently, Zt �Zs. Moreover, we haveMt�Q� �Ms�Q� for Q 2 P�S� due
to (A.1) . It follows that

E�Ut ÿ ASt jFs� � ess sup
z2Zs; s2Ms�z�

E�zs� fs ÿ AS�z�s�jFs�

� Us ÿ ASs :

Hence U ÿ AS is a supermartingale.
To ®nish the proof we have to show that U admits a right-continuous

modi®cation with limits from the left. This is equivalent to the existence of
such a modi®cation for V � U ÿ AS. According to Theorem 3.1 in [15], this
is the case if and only if the function �EVt�t�0 is right-continuous.

When s � 0 the equality (A.4) takes the form

EVt � sup
z2Zt ; s2Mt�z�

E�zs� fs ÿ AS�z�s�� : �A:5�

Let t, tn� �n�1 be positive numbers such that tn # t, n! �1, and tn < t � 1,
n � 1. Since V is a supermartingale, we have

EVt � lim
n!1EVtn :

To prove the reverse inequality we ®x � > 0 and choose a process z � z���
from Zt and a stopping time r � r��� from Mt�z� such that

EVt < E�zr� fr ÿ AS�z�r�� � � and P �r > t� � 1 : �A:6�
This is possible by (A.5) and the right-continuity of the processes under
consideration. For n � 1 we de®ne the stopping time rn and the process zn as
follows

rn � r; r � tn
t � 1; r < tn

�
; zn

u �
zu=ztn ; r � tn and u � tn
1; r < tn or u < tn

�
:

We have zn 2Ztn , rn 2Mtn�zn� and

AS�zn�u �
�AS�z�u ÿ AS�z�tn � AStn �; r � tn and u � tn

ASu ; r < tn or u < tn

�
:

Since

AS�zn�rn
� ASrn

� AS�z�r ÿ AS�z�t ;
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it follows from (A.1) and the de®nition of the set Mt�z� that the se-
quence AS�zn�rn

� �
n�1

is uniformly bounded. Now we use Fatou's lemma and

(A.6) to conclude that

EVt � lim inf
n!1 E�zn

rn
� frn ÿ AS�zn�rn

�� � � � lim
n!1EVtn � � :

Hence, �EVt�t�0 is a right-continuous function. This completes the proof of
the lemma. (
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