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1 Introduction

A typical financial model presumes that the prices of traded securities are not
affected by an investor’s buy and sell orders. From a practical viewpoint this
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assumption is justified as long as his trading volume remains small enough
to be easily covered by market liquidity. An opposite situation occurs, for in-
stance, when an economic agent has to sell a large block of shares over a short
period of time; see, e.g., Almgren and Chriss [1] and Schied and Schöneborn
[25]. This and other examples motivate the development of financial models
for a “large” trader, where the dependence of market prices on his strategy,
called a price impact or a demand pressure, is taken into account.

Hereafter, we assume that the interest rate is zero and, in particular, is
not affected by investor’s trading actions. As usual in mathematical finance
we describe a (self-financing) strategy by a predictable process Q = (Qt)0≤t≤T
where Qt is the number of stocks held just before time t and T is a finite
time horizon. The role of a “model” is to define a predictable process X(Q)
representing the evolution of the cash balance for the strategy Q. We denote
by S(Q) the marginal price process of traded stocks, that is, St(Q) is the
price at which one can trade an infinitesimal quantity of stocks at time t.
Recall that in the standard model of a “small” agent the price S does not
depend on Q and

Xt(Q) =

∫ t

0

QudSu −QtSt.

In mathematical finance a common approach is to specify the price impact
of trades exogenously, that is, to postulate it as one of the inputs. For
example, Frey and Stremme [12], Platen and Schweizer [23], Papanicolaou
and Sircar [22], and Bank and Baum [4] choose a stochastic field of reaction
functions, which explicitly state the dependence of the marginal prices on
the investor’s current holdings, Çetin, Jarrow, and Protter in [6] start with
a stochastic field of supply curves, which define the prices in terms of traded
quantities (changes in holdings), and Cvitanić and Ma [8] make the drift and
the volatility of the price process dependent on a trading strategy; we refer
the reader to the recent survey [15] by Gokay, Roch, and Soner for more
details and additional references. Note that in all these models the processes
X(Q) and S(Q), of the cash balance and of the marginal stock price, only
depend on the “past” of the strategy Q, in the sense that,

(1.1) Xt(Q) = Xt(Q
t), St(Q) = St(Q

t),

where Qt , (Qmin(s,t))0≤s≤T .
The exogenous nature of the above models facilitates their calibration to

market data; see, e.g., [7] by Çetin, Jarrow, Protter, and Warachka. There
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are, however, some disadvantages. For example, the models in [12], [23], [22],
[4], [6], and [7] do not satisfy the natural “closability” property:

|Qn| ≤ 1

n
=⇒ XT (Qn)→ 0, n→∞,

while in [8] the stock price is not affected by a jump in investor’s holdings:
St(Qt + ∆Qt) = St(Qt). More importantly, this direct modeling approach
lacks a well-defined hierarchy of the small agent case, where any particular
model is just a parameterization of the general semimartingale setup.

In our project we instead seek to derive the dependence of prices on
strategies endogenously by relying on the framework developed in financial
economics. A starting point here is the postulate that, at any given moment,
a price reflects a balance between demand and supply or, more formally, it
is an output of an equilibrium. In addition to the references cited below we
refer the reader to the book [21] by O’Hara and the survey [2] by Amihud,
Mendelson, and Pedersen.

To be more specific we denote by ψ the terminal price of the traded
security, which we assume to be given exogenously, that is, ST (Q) = ψ for
any strategy Q. Recall that in a small agent model the absence of arbitrage
implies the existence of an equivalent probability measure Q such that

(1.2) St = EQ[ψ|Ft], 0 ≤ t ≤ T,

where Ft is the σ-field describing the information available at time t. This
result is often called the fundamental theorem of asset pricing ; in full gen-
erality, it has been proved by Delbaen and Schachermayer in [9, 10]. The
economic nature of this pricing measure Q does not matter in the standard,
small agent, setup. However, it becomes important in an equilibrium-based
construction of models for a large trader where it typically originates from a
Pareto optimal allocation of wealth; see Definition 2.3 below.

We shall consider an economy formed by M market participants, called
hereafter the market makers, whose preferences for terminal wealth are de-
fined by utility functions um = um(x), m = 1, . . . ,M , and an identical sub-
jective probability measure P. It is well-known, see Theorem 4.3 for an exact
statement, that the Pareto optimality of our market makers’ terminal wealth
allocation α = (αm)m=1,...,M yields the pricing measure Q defined by

(1.3)
dQ
dP

= vmu′m(αm), m = 1, . . . ,M,
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where vm > 0 is a normalizing constant.
It is natural to expect that in the case when the strategy Q is not anymore

negligible an expression similar to (1.2) should still hold true for the marginal
price process:

(1.4) St(Q) = EQt(Q)[ψ|Ft(Q)], 0 ≤ t ≤ T.

This indicates that the price impact at time t described by the mapping Q 7→
St(Q) may be attributed to two common aspects of market’s microstructure:

1. Information: Q 7→ Ft(Q). Models focusing on information aspects
naturally occur in the presence of an insider, where Ft(Q), the infor-
mation available to the market makers at time t, is usually generated by
the sum of Q and the cumulative demand process of “noise” traders; see
Glosten and Milgrom [14], Kyle [19], and Back and Baruch [3], among
others.

2. Inventory : Q 7→ Qt(Q). In view of (1.3), this reflects how αt(Q), the
Pareto optimal allocation of the total wealth or “inventory” induced
by Q, affects the valuation of marginal trades. Note that the random
variable αt(Q) is measurable with respect to the terminal σ-field FT (Q)
(not with respect to the current σ-field Ft(Q)!).

In our study we shall focus on the inventory aspect of price formation and
disregard the informational component. We assume that the market makers
share the same exogenously given filtration (Ft)0≤t≤T as the large trader and,
in particular, their information flow is not affected by his strategy Q:

Ft(Q) = Ft, 0 ≤ t ≤ T.

Note that this informational symmetry is postulated only regarding the ex-
ternally given random outcome. As we shall discuss below, in inventory based
models, the actual form of the map Q 7→ Qt(Q), or, equivalently, Q 7→ αt(Q)
is implied by game-theoretical features of the interaction between the mar-
ket makers and the investor. In particular, it depends on the knowledge the
market makers possess at time t about the subsequent evolution (Qs)t≤s≤T
of the investor’s strategy, conditionally to the forthcoming random outcome
on [t, T ].

For example, the models in Grossman and Miller [16] and Garleanu, Ped-
ersen, and Poteshman [13] rely on a setup inspired by the Arrow-Debreu
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equilibrium. Their framework implicitly assumes that already at initial time
the market makers have full knowledge of the investor’s future strategy Q
(of course, contingent on the unfolding random scenario). In this case, the
resulting pricing measures and the Pareto allocations do not depend on time:

(1.5) Qt(Q) = Q(Q), αt(Q) = α(Q), 0 ≤ t ≤ T,

and are determined by the budget equations:

EQ(Q)[α
m(0)] = EQ(Q)[α

m(Q)], m = 1, . . . ,M,

and the clearing condition:

M∑
m=1

αm(Q) =
M∑
m=1

αm(0) +

∫ T

0

Qt dSt(Q).

Here Q(Q) and S(Q) are defined in terms of α(Q) by (1.3) and (1.4). The
positive sign in the clearing condition is due to our convenience convention
to interpret Q as the number of stocks held by the market makers, see Re-
mark 2.6. It is instructive to note that for the case of exponential utilities,
when um(x) = − exp(−amx), am > 0, m = 1, . . . ,M , the stock price depends
only on the “future” of the strategy:

St(Q) = St((Qs)t≤s≤T ), 0 ≤ t ≤ T,

which is just the opposite of (1.1).
In our model the interaction between the market makers and the investor

takes place according to a Bertrand competition; a similar framework (but
with a single market maker and only in a one-period setting) was used in
Stoll [26]. The key economic assumptions can be summarized as follows:

1. After every trade the market makers can redistribute new income to
form a Pareto allocation.

2. As a result of a trade, the expected utilities of the market makers do
not change.

Indeed, in a Bertrand competition, market makers will quote the most ag-
gressive prices that will not lower their utility levels; in the limit, this will
leave these unchanged. In the process, the market makers are also supposed

6



to find the most effective way to share among themselves the risk of the
resulting total endowment, thus producing a Pareto optimal allocation.

This framework implicitly assumes that at any time t the market makers
have no a priori knowledge about the subsequent trading strategy (Qs)t≤s≤T
of the economic agent (even conditional to the future random outcome). As
a consequence, the marginal price process S(Q) and the cash balance process
X(Q) are related to Q as in (1.1). Similarly, the dependence on Q of the
pricing measures and of the Pareto optimal allocations is non-anticipative in
the sense that

Qt(Q) = Qt(Q
t), αt(Q) = αt(Q

t), 0 ≤ t ≤ T,

which is quite opposite to (1.5).
For ease of exposition, the development of our model will be accomplished

in two steps: in this paper we shall deal with a single-period case, while the
companion paper [5] will study a continuous-time framework. A brief road
map of the present paper will be given at the end of the next section.

2 Model

We consider a single-period financial model with initial time 0 and matu-
rity 1 where M ∈ {1, 2, . . .} market makers quote prices for a finite number
of traded assets. Uncertainty is modeled by a complete probability space
(Ω,F ,P). As usual, we identify random variables differing on a set of mea-
sure zero and use notations L0(Rd), for the metric space of such equivalence
classes with values in Rd and convergence in probability, and Lp(Rd), p ≥ 1,
for the Banach space of p-integrable random variables.

The way the market makers serve the incoming orders crucially depends
on their attitude toward risk, which we model in the classical framework of
expected utility. Thus, we interpret the probability measure P as a descrip-
tion of the common beliefs of our market makers (same for all) and denote
by um = (um(x))x∈R market maker m’s utility function for terminal wealth.

Assumption 2.1. Each um = um(x), m = 1, . . . ,M , is a strictly concave,
strictly increasing, continuously differentiable, and bounded above function
on the real line R satisfying

(2.1) lim
x→∞

um(x) = 0.
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The normalization to zero in (2.1) is added only for notational conve-
nience. From Assumption 2.1 we clearly deduce

(2.2) lim
x→−∞

um(x) = −∞.

Many of our results will be derived under the following additional condi-
tion on the utility functions, which, in particular, implies their boundedness
from above.

Assumption 2.2. Each utility function um = um(x), m = 1, . . . ,M , is
twice continuously differentiable and its absolute risk aversion coefficient is
bounded away from zero and infinity, that is, for some c > 0,

(2.3)
1

c
≤ am(x) , −u

′′
m(x)

u′m(x)
≤ c, x ∈ R.

From Assumptions 2.1 and 2.2 we deduce

(2.4)
1

c
≤ −u

′
m(x)

um(x)
≤ c, x ∈ R.

The prices quoted by the market makers are also influenced by their initial
endowments α0 = (αm0 )m=1,...,M ∈ L0(RM), where αm0 is an F -measurable
random variable describing the terminal wealth of the mth market maker (if
the large investor, to be introduced later, chooses not to trade). We assume
that the initial allocation α0 is Pareto optimal, that is, there is no strictly
better re-allocation of the same resources in the sense of the following

Definition 2.3. A vector of F -measurable random variables α = (αm)m=1,...,M

is called a Pareto optimal allocation if

(2.5) E[|um(αm)|] <∞, m = 1, . . . ,M,

and there is no other allocation β ∈ L0(RM) with the same total endowment,

(2.6)
M∑
m=1

βm =
M∑
m=1

αm,

which leaves all market makers not worse and at least one of them better off
in the sense that

E[um(βm)] ≥ E[um(αm)] for all m = 1, . . . ,M,

and
E[um(βm)] > E[um(αm)] for some m ∈ {1, . . . ,M}.
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Remark 2.4. If there are M ≥ 2 market makers, then, under Assumption
2.1, the integrability requirement (2.5) follows automatically from the other
conditions of Pareto optimality. Conversely, in the case of a single market
maker, (2.5) is, plainly, the only condition an allocation must satisfy to be
Pareto optimal.

Finally, we consider an economic agent or investor who is going to trade
the marketed contingent claims ψ = (ψj)j=1,...,J ∈ L0(RJ), where ψj deter-
mines the cash payoff of the jth security at the common maturity 1. As a
result of trading with the investor the total endowment of the market makers
will change from Σ0 ,

∑M
m=1 α

m
0 to

(2.7) Σ(x, q) , Σ0 + x+ 〈q, ψ〉 = Σ0 + x+
J∑
j=1

qjψj,

where x ∈ R and q ∈ RJ are, respectively, the cash amount and the number
of contingent claims acquired by the market makers from the investor. Here,
〈·, ·〉 denotes the Euclidean scalar product. Our model will assume that
Σ(x, q) is re-allocated among the market makers in the form of a Pareto
optimal allocation. For this to be possible we have to impose

Assumption 2.5. For any x ∈ R and q ∈ RJ there is an allocation β ∈
L0(RM) with total random endowment Σ(x, q) defined in (2.7) such that

(2.8) E[um(βm)] > −∞, m = 1, . . . ,M.

As we shall show in Lemma 4.6 below, under Assumptions 2.1 and 2.2,
Assumption 2.5 is equivalent to the existence of all exponential moments for
ψ under the pricing measure Q0 associated with the initial Pareto optimal
allocation α0.

We specify an investment strategy of the agent by a vector q ∈ RJ of
the number of contingent claims ψ = (ψj)j=1,...,J sold by the investor at
time 0. For a strategy to be self-financing we have to complement q by a
corresponding amount of cash x ∈ R spent by the investor.

Remark 2.6. Our description of trading strategies follows the standard prac-
tice of mathematical finance except for the sign: positive values of q or x
now mean short positions for the economic agent in securities and cash, and,
hence, total long positions for the market makers. This convention makes
future notations more simple and intuitive.
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The central assumptions of our model, which will allow us to identify
uniquely the cash amount x = x(q) associated with an order q, are that, as
a result of the trade,

1. the random endowment Σ(x, q) is redistributed between the market
makers to form a new Pareto allocation α1;

2. the market makers’ expected utilities do not change:

(2.9) E[um(αm1 )] = E[um(αm0 )], m = 1, . . . ,M.

The first condition accounts for the market makers’ ability to trade among
themselves so as to optimally share risk. Only in very special cases the
market makers can achieve the required Pareto allocations by trading in ψ
alone. This is the case, for example, if all utility functions are exponential, or
if L0(R) coincides with the linear space generated by 1 and ψ = (ψj)j=1,...,J .
In general, a larger set of contingent claims containing non-linear functions
of ψ and of the initial endowment Σ0 is needed.

The second item can be interpreted as a result of the competition among
the market makers, where as long as one of them can improve in terms of
utility by trading with the agent at a slightly lower price she will do so; in
the limit, this leads to the indifference relation (2.9) for the pre- and post-
transaction endowments. Note a similarity of this argument to the reasoning
behind the famous Bertrand model of competition in economic theory.

By analogy with the popular utility-based valuation method in mathe-
matical finance, one could view the resulting cash amount x = x(q) as the
market indifference price for the agent’s order q.

Theorem 2.7. Under Assumptions 2.1 and 2.5, every position q ∈ RJ yields
a unique cash amount x = x(q) and a unique Pareto optimal allocation α1 =
α1(q) of Σ(x, q) preserving the market makers’ expected utilities in the sense
of (2.9).

Proof. For a real number y denote by B(y) the family of allocations β =
(βm)m=1,...,M with total endowment less than Σ(y, q) and such that

E[um(βm)] ≥ E[um(αm0 )], m = 1, . . . ,M.

By Assumptions 2.1 and 2.5, this set is non-empty for sufficiently large y and,
by the concavity of utility functions, is a convex subset of L0(RM). Denote

ŷ , inf{y ∈ R : B(y) 6= ∅},
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let (yn)n≥1 be a strictly decreasing sequence of real numbers converging to ŷ,
and arbitrarily choose βn ∈ B(yn), n ≥ 1.

From Assumption 2.1 we deduce the existence of c > 0 such that, for
m = 1, . . . ,M ,

y− ≤ c(−um(y)), y ∈ R,

where y− , max(0,−y); for example, we can take

c = 1/ min
m=1,...,M

u′m(0).

It follows that

E[(βmn )−)] ≤ cE[(−um(βmn ))] ≤ cE[(−um(αm0 ))] <∞, n ≥ 1,

and, therefore, the sequence ((βn)−)n≥1 is bounded in L1(RM). Since, in
addition,

M∑
m=1

βmn ≤ Σ(yn, q) ≤ Σ(y1, q),

the family of all possible convex combinations of (βn)n≥1 is bounded in
L0(RM).

By Lemma A1.1 in [9] we can then choose convex combinations ζn of
(βk)k≥n, n ≥ 1, converging almost surely to a random variable ζ ∈ L0(RM).
Clearly,

(2.10)
M∑
m=1

ζm ≤ Σ(ŷ, q).

Since the utility functions are bounded from above, the Fatou lemma yields:

(2.11) E[um(ζm)] ≥ lim sup
n→∞

E[um(ζmn )] ≥ E[um(αm0 )],

where the second estimate holds because ζn ∈ B(yn) by the convexity of
B(yn). It follows that ζ ∈ B(ŷ). The minimality of ŷ then immediately
implies the equalities in (2.10) and (2.11) and the Pareto optimality of ζ.
Hence, we can select x = ŷ and α1 = ζ, thus proving their existence.

Finally, the uniqueness of x and α1 follows from the strict concavity of
utility functions.
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In the rest of the paper we shall study in depth the way the cash balances
x = x(q) : RJ → R and the Pareto allocations α1 = α1(q) : RJ → L0(RM),
determined by Theorem 2.7, depend on the order q of the large investor. Our
main results, Theorems 5.1 and 5.2, are stated in Section 5. Most notably,
Theorem 5.1 characterizes x(q) and α1(q) in terms of the solution to a finite-
dimensional minimax problem, while Theorem 5.2 computes the gradient
vector and the Hessian matrix for the function x = x(q). Note that this
Hessian matrix provides a quantitative description of the local price impact
effect in our model.

A key role in our analysis is played by a pair of conjugate saddle func-
tions F0 and G0 defined in Section 4 and associated with the description of
the Pareto allocations in our economy in terms of the utility function of a
representative market maker. The corresponding conjugate spaces of saddle
functions are studied in Section 3. Note that the results of these two sections
are also extensively used in the construction of the continuous-time version
of our model; see the companion paper [5].

3 Conjugate spaces of saddle functions

A key role in our study of random fields of Pareto optimal allocations in
Section 4 will be played by the spaces of saddle functions Fi and Gi, i =
1, 2, introduced in (3.6)–(3.7) and (3.15)–(3.16) below and by the conjugate
relationships between these spaces established in Theorems 3.3 and 3.4 of
this section.

Recall some standard notations. For a function f = f(x, y), where x ∈
Rn and y ∈ Rm, we denote by ∂f

∂x
,
(
∂f
∂x1
, . . . , ∂f

∂xn

)
the vector of partial

derivatives with respect to x and by ∇f , (∂f
∂x
, ∂f
∂y

) its gradient. For a set

A ⊂ Rd, the notations ∂ A and clA stand for, respectively, its boundary and
closure. Moreover, for x, y, z ∈ Rd, 〈x, y〉 denotes the Euclidean scalar or
inner product and |z| ,

√
〈z, z〉 the corresponding norm.

3.1 The spaces F1 and F2

For ease of notation denote

(3.1) A , (0,∞)M ×R×RJ .
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We shall often decompose a ∈ A as a = (v, x, q), where v ∈ (0,∞)M , x ∈ R,
and q ∈ RJ . In our later application, A will play the role of the parameter
space of Pareto optimal allocations.

For a function f : A→ (−∞, 0) define the following conditions:

(F1) The function f is continuously differentiable on A.

(F2) For any (x, q) ∈ R × RJ , the function f(·, x, q) is positively homoge-
neous:

(3.2) f(cv, x, q) = cf(v, x, q), for all c > 0 and v ∈ (0,∞)M ,

and strictly decreasing on (0,∞)M . Moreover, if M > 1 then f(·, x, q)
is strictly convex on

SM , {w ∈ (0, 1)M :
M∑
m=1

wm = 1},

the interior of the simplex in RM , and for any sequence (wn)n≥1 in SM

converging to a boundary point of SM

(3.3) lim
n→∞

f(wn, x, q) = 0.

(F3) For any v ∈ (0,∞)M , the function f(v, ·, ·) is concave on R×RJ .

(F4) For any (v, q) ∈ (0,∞)M ×RJ , the function f(v, ·, q) is strictly concave
and strictly increasing on R and

(3.4) lim
x→∞

f(v, x, q) = 0.

(F5) The function f is twice continuously differentiable on A and, for any
a ∈ A,

∂2f

∂x2
(a) < 0,

and the matrix A(f)(a) = (Alm(f)(a))1≤l,m≤M given by

(3.5) Alm(f)(v, x, q) ,
vlvm

∂f
∂x

(
∂2f

∂vl∂vm
− 1

∂2f
∂x2

∂2f

∂vl∂x

∂2f

∂vm∂x

)
(v, x, q),

has full rank.
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We now define the families of functions:

F1 ,{f : A→ (−∞, 0) : (F1)–(F4) hold},(3.6)

F2 ,{f ∈ F1 : (F5) holds},(3.7)

For convenience of future references we formulate some elementary iden-
tities for the matrix A(f) from (3.5).

Lemma 3.1. For f ∈ F2, the matrix A(f) defined in (3.5) satisfies

M∑
m=1

Alm(f) = −vl ∂
2f

∂vl∂x
/
∂2f

∂x2
, l = 1, . . . ,M,

M∑
l,m=1

Alm(f) = −∂f
∂x
/
∂2f

∂x2
.

Proof. From the positive homogeneity condition (3.2) we deduce

M∑
m=1

vm
∂2f

∂vl∂vm
= 0,

M∑
m=1

vm
∂2f

∂x∂vm
=
∂f

∂x
,

and the result follows.

Remark 3.2. Slightly abusing notations we shall use the same symbols Fi,
i = 1, 2, for the families of functions f = f(v, x) defined on (0,∞)M×R whose

natural extensions f̃(v, x, q) , f(v, x) to functions defined on A belong to Fi.
Note that in this case (F3) follows trivially from (F4). A similar convention
will also be used for other spaces of functions introduced below.

3.2 The spaces G1 and G2

For ease of notation denote

B , (−∞, 0)M × (0,∞)×RJ .

We shall often decompose b ∈ B as b = (u, y, q), where u ∈ (−∞, 0)M ,
y ∈ (0,∞), and q ∈ RJ . In our future study of Pareto optimal allocations
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u = (um)m=1,...,M will play the role of the vector of indirect utilities of the
market makers.

For a function g : B→ R define the following conditions:

(G1) The function g is continuously differentiable on B.

(G2) For any (y, q) ∈ (0,∞)×RJ , the function g(·, y, q) is strictly increasing
and strictly convex on (−∞, 0)M . Moreover,

(a) If (un)n≥1 is a sequence in (−∞, 0)M converging to 0, then

(3.8) lim
n→∞

g(un, y, q) =∞.

(b) If (un)n≥1 is a sequence in (−∞, 0)M converging to a boundary
point of (−∞, 0)M , then

(3.9) lim
n→∞
|∂g
∂u

(un, y, q)| =∞.

(c) If M > 1 and (un)n≥1 is a sequence in (−∞, 0)M such that

(3.10) lim sup
n→∞

umn < 0 for all m = 1, . . . ,M

and

(3.11) lim
n→∞

um0
n = −∞ for some m0 ∈ {1, . . . ,M},

then

(3.12) lim
n→∞

g(un, y, q) = −∞.

(G3) For any y ∈ (0,∞), the function g(·, y, ·) is convex on (−∞, 0)M ×RJ .

(G4) For any (u, q) ∈ (−∞, 0)M × RJ , the function g(u, ·, q) is positively
homogeneous, that is,

(3.13) g(u, y, q) = yg(u, 1, q), y > 0.
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(G5) The function g is twice continuously differentiable on B and, for any
b ∈ B, the matrix B(g)(b) = (Blm(g)(b))1≤l,m≤M given by

(3.14) Blm(g)(u, y, q) ,
y

∂g
∂ul

∂g
∂um

∂2g

∂ul∂um
(u, y, q)

has full rank.

We define the families of functions

G1 ,{g : B→ R : (G1)–(G4) hold},(3.15)

G2 ,{g ∈ G1 : (G5) holds}.(3.16)

3.3 Conjugacy relationships

The following two theorems establish conjugacy relationships between the
families of functions Fi and Gi, i = 1, 2. The detailed proofs of these results
are rather long and are postponed until Section 6.

Theorem 3.3. A function f : A → (−∞, 0) belongs to F1 if and only if
there is g ∈ G1 which is conjugate to f in the sense that, for any (u, y, q) ∈ B,

g(u, y, q) = sup
v∈(0,∞)M

inf
x∈R

[〈v, u〉+ xy − f(v, x, q)]

= inf
x∈R

sup
v∈(0,∞)M

[〈v, u〉+ xy − f(v, x, q)],
(3.17)

and, for any (v, x, q) ∈ A,

f(v, x, q) = sup
u∈(−∞,0)M

inf
y∈(0,∞)

[〈v, u〉+ xy − g(u, y, q)],

= inf
y∈(0,∞)

sup
u∈(−∞,0)M

[〈v, u〉+ xy − g(u, y, q)].
(3.18)

The minimax values in (3.17) and (3.18) are attained at unique saddle
points and, for any fixed q ∈ RJ , the following conjugacy relationships be-
tween (v, x) ∈ (0,∞)M ×R and (u, y) ∈ (−∞, 0)M × (0,∞) are equivalent:

1. Given (u, y), the minimax values in (3.17) are attained at (v, x).

2. Given (v, x), the minimax values in (3.18) are attained at (u, y).

16



3. We have x = ∂g
∂y

(u, y, q) = g(u, 1, q) and v = ∂g
∂u

(u, y, q).

4. We have y = ∂f
∂x

(v, x, q) and u = ∂f
∂v

(v, x, q).

Moreover, in this case, f(v, x) = 〈u, v〉, g(u, y) = xy, and

(3.19)
∂g

∂q
(u, y, q) = −∂f

∂q
(v, x, q).

For f ∈ F2 and g ∈ G2, in addition to the matrices A(f) and B(g) given
by (3.5) and (3.14), define the following matrices of second derivatives, for
m = 1, . . . ,M and i, j = 1, . . . , J :

Cmj(f)(v, x, q) ,
vm

∂f
∂x

(
∂2f

∂vm∂qj
− 1

∂2f
∂x2

∂2f

∂vm∂x

∂2f

∂x∂qj

)
(v, x, q),(3.20)

Dij(f)(v, x, q) ,
1
∂f
∂x

(
− ∂2f

∂qi∂qj
+

1
∂2f
∂x2

∂2f

∂x∂qi
∂2f

∂x∂qj

)
(v, x, q),(3.21)

and

Emj(g)(u, y, q) ,
1
∂g
∂um

∂2g

∂um∂qj
(u, y, q) =

1
∂g
∂um

∂2g

∂um∂qj
(u, 1, q),(3.22)

H ij(g)(u, y, q) ,
1

y

∂2g

∂qi∂qj
(u, y, q) =

∂2g

∂qi∂qj
(u, 1, q),(3.23)

where in (3.22) and (3.23) we used the positive homogeneity (3.13) of g with
respect to y.

We use standard notations of linear algebra: for a square matrix A of
full rank, A−1 denotes its inverse, and, for a matrix B, BT stands for its
transpose.

Theorem 3.4. A function f : A→ (−∞, 0) belongs to F2 if and only if it
is conjugate to a function g ∈ G2 in the sense that (3.17) and (3.18) hold.

Moreover, if, for q ∈ RJ , the vectors a = (v, x, q) ∈ A and b = (u, y, q) ∈
B are conjugate in the sense of the equivalent conditions of items 1–4 of
Theorem 3.3, then the matrices of the second derivatives for f , A(f), C(f),
and D(f), defined in (3.5), (3.20), and (3.21), and the matrices of the second
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derivatives for g, B(g), E(g), and H(g), defined in (3.14), (3.22), and (3.23),
are related by

B(g)(b) = (A(f)(a))−1,(3.24)

E(g)(b) = −(A(f)(a))−1C(f)(a),(3.25)

H(g)(b) = (C(f)(a))T (A(f)(a))−1C(f)(a) +D(f)(a).(3.26)

Remark 3.5. Our choice of the specific form for the matricesA(f)(a), C(f)(a),
and D(f)(a) and B(g)(b), E(g)(b), and H(g)(b) was partially motivated
by the fact that they are invariant under the transformations (v, x, q) →
(cv, x, q) and (u, y, q) → (u, cy, q), c > 0, which are natural in light of the
positive homogeneity conditions (3.2) and (3.13).

3.4 Additional conjugacy relations

If f ∈ F1 and g ∈ G1 are conjugate in the sense that (3.17) and (3.18) hold
true, then any extra condition for f has its conjugate analog for g. Below we
shall present several such extensions, which will prove useful in the study of
Pareto optimal allocations.

Lemma 3.6. Suppose M > 1. Let f ∈ F1 and g ∈ G1 be conjugate in the
sense of (3.17) and (3.18). Then the following conditions are equivalent:

(F6) For any (x, q) ∈ R ×RJ and any sequence (wn)n≥1 in SM converging
to a boundary point of SM we have

lim
n→∞

M∑
m=1

∂f

∂vm
(wn, x, q) = −∞.

(G6) For any (y, q) ∈ (0,∞) × RJ and any sequence (un)n≥1 in (−∞, 0)M

converging to a boundary point of (−∞, 0)M we have

lim
n→∞

g(un, y, q) =∞.

Note that (G6) implies (a) and (b) in (G2) and holds trivially whenM = 1
by (3.8).
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Proof. To simplify notations we shall omit the dependence of f and g on the
irrelevant parameter q. Recall the notations ∂ A and clA for the boundary
and the closure of a set A.

(F6) =⇒ (G6). Let (un)n≥1 be a sequence in (−∞, 0)M converging
to û ∈ ∂ (−∞, 0)M . Denote xn , g(un, 1), n ≥ 1, and, contrary to (G6),
suppose

lim inf
n→∞

g(un, 1) = lim inf
n→∞

xn <∞.

As g(·, 1) is an increasing function on (−∞, 0)M and the sequence (un)n≥1
is bounded from below, the sequence (xn)n≥1 is also bounded from below.
Hence, by passing to a subsequence, we can assume that (xn)n≥1 converges
to some x̂ ∈ R.

Denoting vn , ∂g
∂u

(un, 1) and wn , vn∑M
m=1 v

m
n

we deduce from items 3 and

4 of Theorem 3.3 and the positive homogeneity condition (3.2) for f that

un =
∂f

∂v
(vn, xn) =

∂f

∂v
(wn, xn), n ≥ 1.

As wn ∈ SM , passing to a subsequence, we can assume that (wn)n≥1 converges
to ŵ ∈ cl SM . If ŵ ∈ SM , then

û = lim
n→∞

un = lim
n→∞

∂f

∂v
(wn, xn) =

∂f

∂v
(ŵ, x̂) ∈ (−∞, 0)M ,

contradicting our choice of û. If, on the other hand, ŵ ∈ ∂ SM , then, by (3.3)
and the monotonicity of f = f(v, x) with respect to x,

lim
n→∞

f(wn, xn) = 0.

It follows that, for any v ∈ (0,∞)M ,

0 ≥ f(v, x̂) = lim
n→∞

f(v, xn) ≥ lim
n→∞

(
f(wn, xn) +

〈
∂f

∂v
(wn, xn), v − wn

〉)
= lim

n→∞
(f(wn, xn) + 〈un, v − wn〉) = 〈û, v − ŵ〉 .

Hence, if we extend, by continuity, the convex function f(·, x̂) to the bound-
ary of its domain by setting

f(v, x̂) = 0, v ∈ ∂ (0,∞)M ,
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then its subdifferential at ŵ is non-empty and contains û. In this case, there
is a sequence (ṽn)n≥1 ⊂ (0,∞)M which converges to ŵ and such that

û = lim
n→∞

∂f

∂v
(ṽn, x̂),

see Theorem 25.6 in [24]. Denoting w̃n , ṽn∑M
m=1 ṽ

m
n

, n ≥ 1, and accounting

for (3.2) we obtain

û = lim
n→∞

∂f

∂v
(w̃n, x̂),

which contradicts (F6).
(G6) =⇒ (F6). Fix x ∈ R, let (wn)n≥1 be a sequence in SM converging

to w ∈ ∂ SM , and denote

un ,
∂f

∂v
(wn, x), yn ,

∂f

∂x
(wn, x), n ≥ 1.

By (3.3), the concave functions f(wn, ·), n ≥ 1, converge to 0. Hence, their
derivatives also converge to 0, implying that

(3.27) lim
n→∞

yn = 0.

Contrary to (F6) suppose (un)n≥1 contains a bounded subsequence. Pass-
ing to a subsequence we can then assume that (un)n≥1 converges to u ∈
(−∞, 0]M .

By the equivalence of items 3 and 4 in Theorem 3.3,

wn = yn
∂g

∂u
(un, 1), x = g(un, 1), n ≥ 1.

In view of (3.27), the first equality implies that u 6∈ (−∞, 0)M . Hence,
u ∈ ∂ (−∞, 0)M , contradicting (G6) and the second equality.

Lemma 3.7. Let f ∈ F1 and g ∈ G1 be conjugate as in (3.17) and (3.18)
and let c > 0 be a constant. Then the following conditions are equivalent:

(F7) For any a = (v, x, q) ∈ A and m = 1, . . . ,M ,

1

c

∂f

∂x
(a) ≤ −vm ∂f

∂vm
(a) ≤ c

∂f

∂x
(a).
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(G7) For any (u, q) ∈ (−∞, 0)M ×RJ and m = 1, . . . ,M ,

1

c
≤ −um ∂g

∂um
(u, 1, q) ≤ c.

Proof. Follows from the items 3 and 4 in the list of equivalent characteriza-
tions of saddle points in Theorem 3.3 and the positive homogeneity condition
(3.13) for g.

Lemma 3.8. Let f ∈ F2 and g ∈ G2 be conjugate as in (3.17) and (3.18)
and let c > 0 be a constant. Then the following conditions are equivalent:

(F8) For any a ∈ A and any z ∈ RM ,

1

c
〈z, z〉 ≤ 〈z, A(f)(a)z〉 ≤ c 〈z, z〉 ,

where the matrix A(f)(a) is defined in (3.5).

(G8) For any b ∈ B and any z ∈ RM ,

1

c
〈z, z〉 ≤ 〈z,B(g)(b)z〉 ≤ c 〈z, z〉 ,

where the matrix B(g)(b) is defined in (3.14).

Proof. Follows from the inverse relation (3.24) between the matrices A(f)(a)
and B(g)(b).

Lemma 3.9. Let f ∈ F2 and g ∈ G2 be conjugate as in (3.17) and (3.18)
and let c > 0 be a constant. Then the following conditions are equivalent:

(F9) For any a = (v, x, q) ∈ A and m = 1, . . . ,M ,

−1

c

∂2f

∂x2
(a) ≤ vm

∂2f

∂vm∂x
(a) ≤ −c∂

2f

∂x2
(a).

(G9) For any (u, q) ∈ (−∞, 0)M ×RJ , the vector z ∈ RM solving the linear
equation:

B(g)(u, 1, q)z = 1,

where 1 , (1, . . . , 1) ∈ RM , satisfies

1

c
≤ zm ≤ c, m = 1, . . . ,M.
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Proof. By Lemma 3.1, the condition (F9) can be equivalently stated as

1

c
≤ (A(f)(a)1)m ≤ c, m = 1, . . . ,M,

and the result follows from the inverse relation (3.24) between the matrices
A(f)(a) and B(g)(b).

To simplify future references we define

F̃1 , {f ∈ F1 : (F6) holds},(3.28)

G̃1 , {g ∈ G1 : (G6) holds},(3.29)

and, for a constant c > 0,

F̃2(c) , {f ∈ F2 : (F6)–(F9) hold for given c},(3.30)

G̃2(c) , {g ∈ G2 : (G6)–(G9) hold for given c}.(3.31)

Note that when M = 1 the conditions (F6) and (G6) hold trivially; in par-

ticular, F̃1 = F1 and G̃1 = G1.
From Theorems 3.3 and 3.4 and Lemmas 3.6–3.9 we immediately obtain

Theorem 3.10. A function f : A → (−∞, 0) belongs to F̃1 if and only

if it is conjugate to a function g ∈ G̃1 in the sense of (3.17) and (3.18).

Moreover, if c > 0, then f ∈ F̃2(c) if and only if it is conjugate to g ∈ G̃2(c).

4 Random fields of Pareto allocations

A key role in the future quantitative analysis of our model from Section 2
will be played by a pair of conjugate saddle functions F0 = F0(a) and G0 =
G0(b) introduced in Sections 4.3 and 4.4 below. These functions are closely
related with the well-known finite-dimensional parameterization of Pareto
allocations in terms of the utility function of a representative agent, see, e.g.,
Duffie [11] and Karatzas and Shreve [18]. In our setting this parameterization
is studied in Sections 4.1 and 4.2.
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4.1 Representative market maker

We begin with a study of the classical utility function of the representative
market maker :

(4.1) r(v, x) , sup
x1+···+xM=x

M∑
m=1

vmum(xm), v ∈ (0,∞)M , x ∈ R,

which our Theorems 4.1 and 4.2 will identify as an element of F̃1 and F̃2(c),
respectively, under Assumptions 2.1 and 2.2. Note that throughout this
section we interpret these families of functions, defined in (3.28) and (3.30),
in the sense of Remark 3.2.

Theorem 4.1. Under Assumption 2.1 the function r = r(v, x) belongs to F̃1.
Moreover, for any (v, x) ∈ (0,∞)M ×R, the supremum in (4.1) is attained
at the vector x̂ ∈ RM uniquely determined by (4.2) or, equivalently, (4.3)
below:

vmu′m(x̂m) =
∂r

∂x
(v, x),(4.2)

um(x̂m) =
∂r

∂vm
(v, x), m = 1, . . . ,M.(4.3)

Proof. Define the function g = g(v, x, z) : (0,∞)M ×R×RM−1 → R by

g(v, x, z) ,
M−1∑
m=1

vmum(zm) + vMuM(x−
M−1∑
m=1

zm)

and observe that

(4.4) r(v, x) = sup
z∈RM−1

g(v, x, z), v ∈ (0,∞)M , x ∈ R.

For any v ∈ (0,∞)M , the function g(v, ·, ·) is strictly concave, continuously
differentiable, and, by (2.1) and (2.2), for any x ∈ R,

lim
|z|→∞

g(v, x, z) = −∞.

It follows that the upper bound in (4.4) is attained at a unique ẑ = ẑ(v, x)
satisfying
(4.5)

0 =
∂g

∂zm
(v, x, ẑ) = vmu′m(ẑm)− vMu′M(x−

M−1∑
k=1

ẑk), m = 1, . . . ,M − 1,
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and, hence, the upper bound in (4.1) is attained at the unique x̂ = (x̂m)m=1,...,M

given by

x̂m = ẑm, m = 1, . . . ,M − 1,

x̂M = x−
M−1∑
m=1

ẑm.

By Lemma A.3 in Appendix A the function r(v, ·) is concave, differen-
tiable, (hence, continuously differentiable), and

∂r

∂x
(v, x) =

∂g

∂x
(v, x, ẑ) = vMu′M(x−

M−1∑
m=1

ẑk) = vMu′M(x̂M),

which jointly with (4.5) proves (4.2). As u′M > 0 we have ∂r
∂x
> 0 and, hence,

r(v, ·) is strictly increasing. From (2.1) we obtain

lim
x→∞

r(v, x) = 0.

Finally, the strict concavity of r(v, ·) follows directly from the strict concav-
ity of (um)m=1,...,M and the attainability of the upper bound in (4.1), thus
finishing the verification of (F4).

For (x, z) ∈ RM , the function g(·, x, z) is affine on (0,∞)M and, in par-
ticular, convex and continuously differentiable. Hence, by Lemma A.4 in
Appendix A, the function r(·, x) is convex, differentiable, (hence, continu-
ously differentiable), and

∂r

∂vm
(v, x) =

∂g

∂vm
(v, x, ẑ) = um(x̂m), m = 1, . . . ,M,

proving (4.3). As um < 0, the function r(·, x) is strictly decreasing. It is,
clearly, positively homogeneous. Moreover, if M > 1 then by (2.1)

(4.6) lim
n→∞

r(wn, x) = 0,

for any sequence (wn)n≥1 in SM converging to w ∈ ∂ SM . Hence, to complete
the verification of (F2) we only need to show the strict convexity of this
function on SM .

Let w1 and w2 be distinct elements of SM , w3 be their midpoint, and x̂i
be the points in RM where the upper bound in (4.1) is attained for r(x,wi),
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i = 1, 2, 3. From (4.2) we deduce that the points (x̂i)i=1,2,3 are distinct and,
hence,

r(w3, x) =
M∑
m=1

wm3 um(x̂m3 ) =
1

2

(
M∑
m=1

wm1 um(x̂m3 ) +
M∑
m=1

wm2 um(x̂m3 )

)

<
1

2

(
M∑
m=1

wm1 um(x̂m1 ) +
M∑
m=1

wm2 um(x̂m2 )

)
=

1

2
(r(x,w1) + r(x,w2)) .

This finishes the verification of (F2).
As we have already shown, r = r(v, x) is a saddle function with well-

defined partial derivatives at every point. In this case, r is continuously
differentiable, see Theorem 35.8 and Corollary 35.7.1 in [24], and, hence,
satisfies (F1).

With (F3) following trivially from (F4), to complete the proof, we only
have to verify (F6). Assume M > 1 and let (wn)n≥1 be a sequence in SM

converging to w ∈ ∂ SM . For n ≥ 1 denote by x̂n ∈ RM the maximal
allocation of x corresponding to wn. In view of (4.6), limn→∞ x̂

k
n = ∞ for

any index k with wk > 0. As
∑M

m=1 x̂
m
n = x, there is an index m0 such that

limn→∞ x̂
m0
n = −∞ and, therefore, accounting for (4.3) and (2.2),

lim
n→∞

M∑
m=1

∂r

∂vm
(wmn , x) ≤ lim

n→∞

∂r

∂vm0
(wm0

n , x) = lim
n→∞

um0(x̂
m0
n ) = −∞.

Denote by tm = tm(x) the risk-tolerance coefficients of the utility func-
tions um = um(x):

tm(x) , −u
′
m(x)

u′′m(x)
=

1

am(x)
, x ∈ R, m = 1, . . . ,M.

The same symbol x̂ = x̂(v, x) will be used to define the functional dependence
of the maximal vector x̂ = (x̂m)m=1,...,M from Theorem 4.1 on v and x.

Theorem 4.2. Under Assumptions 2.1 and 2.2 the function r = r(v, x)

belongs to F̃2(c) with the same constant c > 0 as in (2.3), the function
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x̂ = x̂(v, x) is continuously differentiable, and, for l,m = 1, . . . ,M ,

∂x̂m

∂x
(v, x) =

tm(x̂m)∑M
k=1 tk(x̂

k)
,(4.7)

vl
∂x̂m

∂vl
(v, x) = vm

∂x̂l

∂vm
(v, x) = tm(x̂m)

(
δlm −

tl(x̂
l)∑M

k=1 tk(x̂
k)

)
,(4.8)

where δlm , 1{l=m} is the Kronecker delta,

∂2r

∂x2
(v, x) = −∂r

∂x
(v, x)

1∑M
k=1 tk(x̂

k)
,(4.9)

vm
∂2r

∂vm∂x
(v, x) =

∂r

∂x
(v, x)

tm(x̂m)∑M
k=1 tk(x̂

k)
,(4.10)

vlvm
∂2r

∂vl∂vm
(v, x) =

∂r

∂x
(v, x)tl(x̂

l)

(
δlm −

tm(x̂m)∑M
k=1 tk(x̂

k)

)
,(4.11)

and, for the matrix A(r) in (F5),

Alm(r)(v, x) ,
vlvm

∂r
∂x

(
∂2r

∂vl∂vm
− 1

∂2r
∂x2

∂2r

∂vl∂x

∂2r

∂vm∂x

)
(v, x)

= tl(x̂
l)δlm.

(4.12)

Proof. The proof relies on the Implicit Function Theorem. Define the func-
tion h = h(v, x, y, z) : (0,∞)M ×R×RM ×R→ RM+1 by

hm(v, x, y, z) = z − vmu′m(ym), m = 1, . . . ,M,

hM+1(v, x, y, z) =
M∑
m=1

ym − x,

and observe that, by Theorem 4.1,

h

(
v, x, x̂(v, x),

∂r

∂x
(v, x)

)
= 0, (v, x) ∈ (0,∞)M ×R.

Fix (v0, x0), set y0 , x̂(v0, x0), z0 , ∂r
∂x

(v0, x0), and denote by B =
(Bkl)k,l=1,...,M+1 the Jacobian of h(v0, x0, ·, ·) evaluated at (y0, z0). Accounting
for the fact that

vm0 u
′
m(ym0 ) = z0, m = 1, . . . ,M,
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we deduce

Bkl = Blk = −vk0u′′k(yk0)δkl =
z0

tk(yk0)
δkl, k, l = 1, . . . ,M,

B(M+1)m = Bm(M+1) = 1, m = 1, . . . ,M,

B(M+1)(M+1) = 0.

Direct computations show that the inverse matrix C , B(−1) is given by

Ckl = C lk =
tk(y

k
0)

z0

(
δkl −

tl(y
l
0)∑M

i=1 ti(y
i
0)

)
, k, l = 1, . . . ,M,

C(M+1)m = Cm(M+1) =
tm(ym0 )∑M
i=1 ti(y

i
0)
, m = 1, . . . ,M,

C(M+1)(M+1) = − z0∑M
i=1 ti(y

i
0)
.

Since, for m = 1, . . . ,M + 1 and l = 1, . . . ,M ,

∂hm

∂x
(v0, x0, y0, z0) = −δm(M+1),

vl
∂hm

∂vl
(v0, x0, y0, z0) = −vmu′m(ym0 )δlm = −z0δlm,

the Implicit Function Theorem implies the continuous differentiability of the
functions x̂ = x̂(v, x) and ∂r

∂x
= ∂r

∂x
(v, x) in the neighborhood of (v0, x0) and

the identities:

∂x̂m

∂x
(v0, x0) = −

M+1∑
k=1

Cmk ∂h
k

∂x
(v0, x0, y0, z0) = Cm(M+1),

vl
∂x̂m

∂vl
(v0, x0) = −

M+1∑
k=1

Cmkvl
∂hk

∂vl
(v0, x0, y0, z0) = z0C

ml,

∂2r

∂x2
(v0, x0) = −

M+1∑
k=1

C(M+1)k ∂h
k

∂x
(v0, x0, y0, z0) = C(M+1)(M+1),

vl
∂2r

∂x∂vl
(v0, x0) = −

M+1∑
k=1

C(M+1)kvl
∂hk

∂vl
(v0, x0, y0, z0) = z0C

(M+1)l,

proving (4.7)–(4.8) and (4.9)–(4.10).
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The continuous differentiability of ∂r
∂v

= ∂r
∂v

(v, x) with respect to v and the
identity (4.11) follow from (4.3) and (4.8). Direct computations relying on
(4.9), (4.10), and (4.11) lead to the expression (4.12) for A(r), which jointly
with (4.9) implies the validity of (F5) for r = r(v, x).

Finally, accounting for (2.4) and observing that (2.3) can be equivalently
stated as

1

c
≤ tm(x) ≤ c, x ∈ R, m = 1, . . . ,M,

we deduce that, for the function r = r(v, x), the property (F7) follows
from (4.2) and (4.3), (F8) is implied by (4.12), and (F9) follows from (4.9)
and (4.10).

4.2 Parameterization of Pareto allocations

A well-known use of the utility function of the representative market maker
defined in (4.1) is the following characterization of Pareto optimal allocations.

Theorem 4.3. Under Assumption 2.1 the following statements are equiva-
lent for a random vector α ∈ L0(RM):

1. The allocation α = (αm)m=1,...,M is Pareto optimal.

2. The random variables α = (αm)m=1,...,M satisfy the integrability condi-
tion (2.5) and there is a (deterministic) vector λ = (λm)m=1,...,M ∈ SM

such that

(4.13) λmu′m(αm) =
∂r

∂x
(λ,

M∑
m=1

αm), m = 1, . . . ,M.

Moreover, such a vector λ is defined uniquely.

Proof. Denote by B the family of allocations β ∈ L0(RM) with the same
total endowment as α, that is, satisfying (2.6). Clearly, B is a convex set.

1 =⇒ 2: The integrability condition (2.5) holds by the definition of a
Pareto optimal allocation. By the concavity of the utility functions, the set

C , {z ∈ RM : zm ≤ E[um(βm)], m = 1, . . . ,M, for some β ∈ B}

is convex and, by the Pareto optimality of α, the point

ẑm , E[um(αm)], m = 1 . . . ,M,
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belongs to the boundary of C. Hence, there is a non-zero v ∈ RM such that

〈v, ẑ〉 ≥ 〈v, z〉 , z ∈ C,

or, equivalently,

E[
M∑
m=1

vmum(αm)] = sup
β∈B

E[
M∑
m=1

vmum(βm)].

As v 6= 0, the properties of the utility functions in Assumption 2.1 imply
that v ∈ (0,∞)M and, then, by normalization, we can choose λ , v ∈ SM .
By Theorem 4.1, the fact that the upper bound above is attained at α is
equivalent to (4.13).

2 =⇒ 1: By Theorem 4.1, for any β ∈ B

M∑
m=1

λmum(βm) ≤ r(λ,
M∑
m=1

αm) =
M∑
m=1

λmum(αm).

Given the integrability requirement (2.5), this clearly implies the Pareto op-
timality of α.

Finally, we note that (4.13) and the normalization requirement λ ∈ SM

determine λ uniquely.

The following result allows us to parameterize the Pareto allocations in
our economy by the set A defined in (3.1).

Lemma 4.4. Let Assumption 2.1 hold. Then Assumption 2.5 is equivalent
to

(4.14) E[r(v,Σ(x, q))] > −∞, (v, x, q) ∈ A.

In this case, for a = (v, x, q) ∈ A, the random vector π(a) ∈ L0(RM)
defined by

(4.15) vmu′m(πm(a)) =
∂r

∂x
(v,Σ(x, q)), m = 1, . . . ,M,

forms a Pareto optimal allocation. Conversely, for (x, q) ∈ R × RJ , any
Pareto allocation of the total endowment Σ(x, q) is given by (4.15) for some
v ∈ (0,∞)M .
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Proof. Under Assumption 2.5, there is an allocation β = (βm)m=1,...,M of
Σ(x, q) satisfying (2.8). Since,

M∑
m=1

vmum(βm) ≤ r(v,Σ(x, q)) ≤ 0,

we obtain (4.14).
Assume now that (4.14) holds. By Theorem 4.1, the condition (4.15) is

equivalent to
M∑
m=1

vmum(πm(a)) = r(v,Σ(x, q)),

which, jointly with (4.14), implies that um(πm(a)) ∈ L1, m = 1, . . . ,M , and,
in particular, implies Assumption 2.5. The Pareto optimality of π(a) is now
an immediate corollary of Theorem 4.3.

Finally, the fact that any Pareto allocation of Σ(x, q) is given by (4.15),
for some v ∈ (0,∞)M , follows from Theorem 4.3.

Hereafter we shall denote by π : A→ L0(RM) the random field of Pareto
allocations defined in Lemma 4.4.

Lemma 4.5. Under Assumptions 2.1 and 2.5, for any a = (v, x, q) ∈ A,
there is a probability measure Q(a) such that

(4.16)
dQ(a)

dP
=

∂r
∂x

(v,Σ(x, q))

E[ ∂r
∂x

(v,Σ(x, q))]
=

u′m(πm(a))

E[u′m(πm(a))]
, m = 1, . . . ,M,

where π(a) = (πm(a))m=1,...,M is the Pareto optimal allocation defined in
(4.15).

Proof. In view of Lemma 4.4 it is sufficient to verify that

E[
∂r

∂x
(v,Σ(x, q))] <∞.

This follows from (4.14) and the inequality

∂r

∂x
(v,Σ(x, q)) ≤ r(v,Σ(x, q))− r(v,Σ(x− 1, q)),

which holds by the concavity of r(v, ·).
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The probability measure Q(a) defined in (4.16) is called the pricing mea-
sure of the Pareto optimal allocation π(a). Denote by Q0 the pricing measure
of the initial Pareto allocation α0 = (αm0 )m=1,...,M :

(4.17)
dQ0

dP
=

u′m(αm0 )

E[u′m(αm0 )]
, m = 1, . . . ,M.

Lemma 4.6. Under Assumptions 2.1 and 2.2 the pricing measure Q0 of the
initial Pareto optimal allocation is well-defined by (4.17) and Assumption 2.5
is equivalent to the existence of all exponential moments of ψ = (ψj)j=1,...,J

under Q0:

(4.18) EQ0 [e
z|ψ|] <∞, z ∈ R.

Proof. For Q0 to be well-defined we have to verify that

E[u′m(αm0 )] <∞, m = 1, . . . ,M.

This follows from (2.4) and the inequality

E[um(αm0 )] > −∞, m = 1, . . . ,M,

which holds by the definition of a Pareto optimal allocation.
Let λ0 ∈ SM denote the weight of α0 defined in Theorem 4.3. The positive

homogeneity and the monotonicity properties of r(·, x) imply the equivalence
of (4.14) and

(4.19) E[r(λ0,Σ(x, q))] > −∞, (x, q) ∈ R×RJ .

From (4.2) and (2.4) we deduce

1

c

∂r

∂x
(v, x) ≤ −r(v, x) ≤ c

∂r

∂x
(v, x), (v, x) ∈ (0,∞)M ×R,

where the constant c > 0 is taken from Assumption 2.2. Hence, by Gronwall’s
inequality, for (x, q) ∈ R×RJ ,

1

c

∂r

∂x
(λ0,Σ0) exp

(
1

c
(x+ 〈q, ψ〉)+ − c(x+ 〈q, ψ〉)−

)
≤ −r(λ0,Σ(x, q))

≤ c
∂r

∂x
(λ0,Σ0) exp

(
c(x+ 〈q, ψ〉)+ − 1

c
(x+ 〈q, ψ〉)−)

)
,

where x+ , max(x, 0) and x− , max(−x, 0). The equivalence of (4.18)
and (4.19) follows now from the definition of Q0.
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4.3 Stochastic process of indirect utilities

A key role in the “quantitative” analysis of investment strategies presented in
Section 5 will be played by the indirect utility function of the representative
market maker defined by

(4.20) F0(a) , E[r(v,Σ(x, q))], a = (v, x, q) ∈ A.

It will be convenient to view F0(a) as the initial value of the martingale-
process of indirect utility, F (a) = (F0(a), F1(a)), with

(4.21) F1(a) , r(v,Σ(x, q)), a = (v, x, q) ∈ A.

Some important properties of the function F0 : A → (−∞, 0) and of the
random field F1 : A→ L0 are collected in Theorems 4.7 and 4.13 below.

To state the results we need to introduce some standard notations. Let m,
n, and l be non-negative integers and U be an open subset of Rn. We denote
by Cm = Cm(U,Rl) the Fréchet space of m-times continuously differentiable
maps f : U → Rl with the topology generated by the semi-norms

‖f‖m,C ,
∑

0≤|k|≤m

sup
x∈C
|∂

kf

∂xk
(x)|,

where C is a compact subset of U , k = (k1, . . . , kn) is a multi-index of non-
negative integers, |k| ,

∑n
i=1 ki, and

∂kf

∂xk
,

∂|k|f

∂xk11 . . . ∂xknn
.

In particular, form = 0, ∂0

∂x0
is the identity operator and ‖f‖0,C , supx∈C |f(x)|.

It is natural to view a random field ξ = ξ(x) : U → L0 as a function
ξ = ξ(x, ω) defined on U × Ω. For ω ∈ Ω, the function ξ(·, ω) : U → R is
called the sample path of ξ at ω.

Theorem 4.7. Under Assumptions 2.1 and 2.5 the function F0 : A →
(−∞, 0) defined in (4.20) and the sample paths of the random field F1 : A→
L0 defined in (4.21) belong to the space F̃1 defined in (3.28). Moreover, for
any compact set C ⊂ A

(4.22) E[‖F1(·)‖1,C ] <∞,
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and for any a = (v, x, q) ∈ A and i = 1, . . . ,M + 1 + J

(4.23)
∂F0

∂ai
(a) = E[

∂F1

∂ai
(a)].

The proof will rely on several lemmas.

Lemma 4.8. Let U be an open set in Rn, m be a non-negative integer, and
ξ = ξ(x) : U → L1 be a random field with sample paths in Cm = Cm(U)
such that for any compact set C ⊂ U

E[‖ξ‖m,C ] <∞.

Then the function f(x) , E[ξ(x)], x ∈ U , belongs to Cm and for any multi-
index k = (k1, . . . , kn) with |k| ≤ m

∂kf

∂xk
(x) = E[

∂kξ

∂xk
(x)], x ∈ U.

Proof. By induction, it is sufficient to consider the case when k = (1, 0, . . . , 0)

and, hence, ∂k

∂xk
= ∂

∂x1
. However, then the result is an immediate consequence

of the Fubini Theorem.

Lemma 4.9. Let U be an open set in Rd, f : U → R be a convex function,
C be a compact subset of U , and ε > 0 be such that

(4.24) C(ε) , {x ∈ Rd : inf
y∈C
|x− y| ≤ ε} ⊂ U.

Then for any y ∈ C we have

(4.25) min
x∈C

f(x) ≥ f(y) +
supx∈C |x− y|

ε

(
f(y)− max

x∈C(ε)
f(x)

)
.

Proof. Fix y ∈ C. For any x ∈ C there is z ∈ ∂ C(ε) such that y is a convex
combination of x and z: y = tx+ (1− t)z for some t ∈ (0, 1). Using the fact
that |y − z| ≥ ε we obtain

(4.26)
1− t
t

=
|x− y|
|y − z|

≤ supx∈C |x− y|
ε

.

The convexity of f implies

f(y) ≤ tf(x) + (1− t)f(z),
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or, equivalently,

f(x) ≥ f(y) +
1− t
t

(f(y)− f(z)),

which, in view of (4.26), yields (4.25).

Lemma 4.10. In addition to the conditions of Lemma 4.9 assume that f ∈
C1(U). Then

(4.27) ‖f‖1,C ≤

(
2
√
d

ε
+ 1

)
‖f‖0,C(ε).

Proof. For y ∈ C and x ∈ C(ε) we obtain from the convexity of f :

f(x)− f(y) ≥ 〈x− y,∇f(y)〉 .

It follows that

2‖f‖0,C(ε) ≥ sup
y∈C

sup
{x: |x−y|≤ε}

(〈x− y,∇f(y)〉) = ε sup
y∈C
|∇f(y)|.

Since,

|∇f(y)| ,

√√√√ d∑
i=1

(
∂f

∂xi
(y)

)2

≥ 1√
d

d∑
i=1

| ∂f
∂xi

(y)|,

we obtain

|f(y)|+
d∑
i=1

| ∂f
∂xi

(y)| ≤

(
2
√
d

ε
+ 1

)
‖f‖0,C(ε),

which clearly implies (4.27).

Lemma 4.11. Let U be an open set in Rd, ξ = ξ(x) : U → L1 be a random
field with sample paths in the space of convex functions on U . Then, for any
compact set C ⊂ U ,

(4.28) E[‖ξ‖0,C ] <∞.

If, in addition, the sample paths of ξ belong to C1 then

(4.29) E[‖ξ‖1,C ] <∞.
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Proof. Let us first show that for any compact set C ⊂ U

(4.30) E[max
x∈C

ξ(x)] <∞.

Without restricting generality we can assume that C is the closed convex hull
of a finite family (xi)i=1,...,I in U . From the convexity of ξ we then deduce

max
x∈C

ξ(x) = max
i=1,...,I

ξ(xi),

and (4.30) follows from the assumption ξ(x) ∈ L1, x ∈ U .
Since C is a compact set in U , for sufficiently small ε > 0 the set C(ε)

defined in (4.24) is also a compact subset of U . By (4.30) and Lemma 4.9
we obtain

E[min
x∈C

ξ(x)] > −∞,

which implies (4.28).
Finally, if f ∈ C1, then (4.29) follows from (4.28) and Lemma 4.10.

Lemma 4.12. Let U ⊂ Rn and V ⊂ Rm be open sets, ξ : U × V → L1 be a
random field with sample paths in the space of concave-convex functions on
U × V , and

f(x, y) , E[ξ(x, y)], (x, y) ∈ U × V.
Then f = f(x, y) is a concave-convex function on U×V and for any compact
set C ⊂ U × V

(4.31) E[‖ξ‖0,C ] <∞.

If, in addition, the sample paths of ξ belong to C1, then f ∈ C1 and

(4.32) E[‖ξ‖1,C ] <∞.

Proof. It is sufficient to consider the case C = C1×C2, where C1 and C2 are
compact subsets of U and V , respectively. To prove (4.31) it is enough to
show that

(4.33) sup
x∈C1

sup
y∈C2

ξ(x, y) ∈ L1.

Indeed, having established (4.33) for any random field ξ and any pair of open
sets U and V satisfying the conditions of the lemma we deduce

inf
x∈C1

inf
y∈C2

ξ(x, y) = − sup
x∈C1

sup
y∈C2

(−ξ(x, y)) ∈ L1,
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which, jointly with (4.33), implies (4.31). To verify (4.33) observe that the
random field

η(y) , sup
x∈C1

ξ(x, y), y ∈ V,

has sample paths in the space of convex functions and, by Lemma 4.11,
η(y) ∈ L1. Another application of Lemma 4.11 yields ‖η‖0,C2 ∈ L1, which
clearly implies (4.33).

To verify (4.32), choose ε > 0 so that the sets C1(ε) and C2(ε) defined
by (4.24) are still in U and V . Then, by Lemma 4.10, there is c = c(ε) > 0
such that for any x ∈ C1 and y ∈ C2

‖ξ(x, ·)‖1,C2 + ‖ξ(·, y)‖1,C1 ≤ c(‖ξ(x, ·)‖0,C2(ε) + ‖ξ(·, y)‖0,C1(ε))

≤ 2c‖ξ‖0,C1(ε)×C2(ε),

and the result follows.

Proof of Theorem 4.7. The assertions concerning the sample paths of F1 =
F1(a) are immediate corollaries of the corresponding properties of r = r(v, x)
established in Theorem 4.1. From Lemma 4.4 we deduce F1(a) ∈ L1, a ∈ A,
and then, by Lemma 4.12, obtain (4.22).

The continuous differentiability of F0 = F0(a) and the identities (4.23)
follow from Lemma 4.8. The validity of (3.3) in (F2) for F0 follows from the
corresponding property for F1 and the Dominated Convergence Theorem if
we observe that for any allocation β ∈ L0(RM) of Σ(x, q)

0 ≥ inf
w∈SM

F1(w, x, q) ≥
M∑
m=1

um(βm),

and use β from Assumption 2.5. Similarly, every other assertion regarding
F0 is an elementary corollary of the corresponding feature for F1.

For later use let us compute some of the first derivatives of F0 = F0(a)
and F1 = F1(a). From Theorem 4.1 we deduce, for any a = (v, x, q) ∈ A,
m = 1, . . . ,M , and j = 1, . . . , J ,

∂F1

∂vm
(a) = um(πm(a)),

∂F1

∂qj
(a) =

∂F1

∂x
(a)ψj,
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and thus

∂F0

∂vm
(a) = E[um(πm(a))],(4.34)

∂F0

∂qj
(a) =

∂F0

∂x
(a)EQ(a)[ψ

j].(4.35)

In particular, ∂F0

∂vm
(a) coincides with the indirect or expected utility of the

mth market maker at Pareto optimal allocation π(a). This fact will play a
key role in the quantitative analysis of investment strategies in Section 5.

We now study the second derivatives of F0 and F1.

Theorem 4.13. Under Assumptions 2.1, 2.2, and 2.5 the function F0 : A→
(−∞, 0) from (4.20) and the sample paths of the random field F1 : A→ L0

from (4.21) belong to the space F̃2(c) defined in (3.30) with the same constant
c > 0 as in Assumption 2.2. Moreover, for any compact set C ⊂ A

(4.36) E[‖F1‖2,C ] <∞,

and for any a = (v, x, q) ∈ A and i, j = 1, . . . ,M + 1 + J

(4.37)
∂2F0

∂ai∂aj
(a) = E[

∂2F1

∂ai∂aj
(a)].

Proof. The assertions regarding the sample paths of F1 follow from Theo-
rem 4.2. The validity of (F7) for F0 follows from (4.23) and the corresponding
property for F1.

To verify (4.36) fix a compact set C ⊂ A and suppose a0 , (λ0, 0, 0) ∈ C,
where λ0 ∈ SM is the weight vector of the initial Pareto optimal allocation α0.
From the formulas for the second derivatives of r = r(v, x) in Theorem 4.2
and Assumption 2.2 we deduce the existence of b = b(C) > 0 such that, for
i, j = 1, . . . ,M + 1 + J ,

| ∂
2F1

∂ai∂aj
(a)| ≤ b

∂F1

∂x
(a)(1 + |ψ|2),(4.38)

| ∂
2F1

∂ai∂x
(a)| ≤ b

∂F1

∂x
(a)(1 + |ψ|), a ∈ C.(4.39)

By Gronwall’s inequality, we deduce from (4.39) the existence of b > 0 such
that

(4.40)
∂F1

∂x
(a) ≤ b

∂F1

∂x
(a0)e

b|ψ|, a ∈ C.
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Using the fact that the Radon-Nikodym derivative of the pricing measure Q0

of the initial Pareto optimal allocation α0 is given by

dQ0

dP
=
∂F1

∂x
(a0)/

∂F0

∂x
(a0),

we deduce from (4.38) and (4.40) the existence of b > 0 such that

| ∂
2F1

∂ai∂aj
(a)| ≤ b

dQ0

dP
eb|ψ|, a ∈ C.

The inequality (4.36) now follows from Lemma 4.6 and the corresponding
inequality (4.22) in Theorem 4.7.

Given (4.36), the two-times continuous differentiability of F0 = F0(a) and
the formulas (4.37) follow from Lemma 4.8. In particular,

∂2F0

∂x2
(a) = E[

∂2F1

∂x2
(a)] < 0, a ∈ A,

proving the first condition in (F5).
The matrixA(F0) = A(F0)(a) from (3.5) is computed in (4.50), in Lemma 4.14

below. By Lemma 4.15, this representation for A(F0) implies (F8), with the
same c > 0 as in Assumption 2.2, and, hence, also the second condition in
(F5). Finally, (F9) for F0 follows from the corresponding property for F1 and
(4.37).

For a two-times continuously differentiable f = f(a) : A → R recall
the notations A(f), C(f), and D(f) for the matrices defined in (3.5), (3.20),
and (3.21). Our next goal is to compute these matrices for F1 = F1(a) and
F0 = F0(a).

Some additional notations are needed. For a ∈ A define the probability
measure R(a) by

(4.41)
dR(a)

dP
,
∂2F1

∂x2
(a)/

∂2F0

∂x2
(a),

and the stochastic process

(4.42) Ri(a) , −∂Fi
∂x

(a)/
∂2Fi
∂x2

(a), i = 0, 1,
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representing the absolute risk-tolerance of the indirect utility Fi at the Pareto
allocation π(a). Notice that R(a) = (R0(a), R1(a)) is a martingale under
R(a) and, for the pricing measure Q(a) defined in (4.16),

(4.43)
dQ(a)

dR(a)
=
R1(a)

R0(a)
.

Denote also

(4.44) τm(a) , tm(πm(a)), m = 1, . . . ,M,

where tm = tm(x) is the risk-tolerance of um = um(x). Observe that, by
(4.9),

(4.45)
M∑
m=1

τm(a) = R1(a),

and, by Assumption 2.2,

(4.46)
1

c
≤ τm ≤ c, m = 1, . . . ,M.

For a probability measure R and random variables ξ and η denote

CovR[ξ, η] , ER[ξη]− ER[ξ]ER[η],

the covariance of ξ and η under R.

Lemma 4.14. Under Assumptions 2.1, 2.2, and 2.5, for the stochastic field
F1 = F1(a), the matrices A(F1), C(F1), and D(F1) defined in (3.5), (3.20),
and (3.21) are given by, for l,m = 1, . . . ,M and i, j = 1, . . . , J ,

Alm(F1)(a) = δlmτ
m(a),(4.47)

Cmj(F1)(a) = 0,(4.48)

Dij(F1)(a) = 0,(4.49)

where the random variable τm(a) is defined in (4.44).
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The corresponding matrices for the function F0 = F0(a) are given by

Alm(F0)(a) =
1

R0(a)
ER(a)[τ

l(a)(δlm

M∑
k=1

τ k(a)− τm(a))]

+
1

R0(a)
ER(a)[τ

l(a)]ER(a)[τ
m(a)],

(4.50)

Cmj(F0)(a) =
1

R0(a)
CovR(a)[τ

m(a), ψj],(4.51)

Dij(F0)(a) =
1

R0(a)
CovR(a)[ψ

i, ψj],(4.52)

where R(a) and R0(a) are defined in (4.41) and (4.42).

Note that in (4.50) the matrix A(F0) is represented as the sum of two
symmetric non-negative semi-definite matrices.

Proof. From Theorem 4.2 we deduce

vm
∂2F1

∂vm∂x
(a) = −∂

2F1

∂x2
(a)τm(a),

vlvm
∂2F1

∂vl∂vm
(a) = −∂

2F1

∂x2
(a)τ l(a)(δlm

M∑
k=1

τ k(a)− τm(a)),

vm
∂2F1

∂vm∂qj
(a) = −∂

2F1

∂x2
(a)τm(a)ψj,

∂2F1

∂x∂qj
(a) =

∂2F1

∂x2
(a)ψj,

∂2F1

∂qi∂qj
(a) =

∂2F1

∂x2
(a)ψiψj,

and the formulas (4.47)–(4.49) and (4.50)–(4.52) follow by direct computa-
tions, where in the latter case we account for the definitions of R0(a) and
R(a).

To complete the proof of Theorem 4.13 we still have to verify (F8) for the
matrix A(F0).
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Lemma 4.15. Under Assumptions 2.1, 2.2, and 2.5, for any a ∈ A, the
matrix A(F0)(a) defined in (4.50) has full rank and, for any z ∈ Rn,

(4.53)
1

c
|z|2 ≤ 〈z, A(F0)(a)z〉 ≤ c|z|2,

with the same constant c > 0 as in Assumption 2.2.

Proof. To simplify notations we omit the dependence on a ∈ A. Elementary
calculations show that

〈z, A(F0)z〉 =
1

R0

(
ER

[
R1

M∑
m=1

τmz2m − 〈τ, z〉
2

]
+ 〈ER[τ ], z〉2

)

=
1

R0

ER

[
R1

M∑
m=1

τmz2m − 〈τ − ER[τ ], z〉2
]
,

where we used (4.45). This immediately implies the upper bound in (4.53):

〈z, A(F0)z〉 ≤
1

R0

ER[R1

M∑
m=1

τmz2m] = EQ[
M∑
m=1

τmz2m] ≤ c|z|2,

where we used the measure Q from (4.43) and the inequality (4.46) for τ .
To verify the lower bound we use (4.46) to write τ as

τ =
1

c
+ θ, θ ∈ L0(RM

+ ),

and obtain

〈z, A(F0)z〉 =
1

R0

ER

[
R1

M∑
m=1

(
1

c
+ θm)z2m − 〈θ − ER[θ], z〉2

]

=
1

c
|z|2 +

1

R0

ER

[
R1

M∑
m=1

θmz2m − 〈θ − ER[θ], z〉2
]
.

As R1 = 〈τ,1〉 ≥ 〈θ,1〉, where 1 , (1, . . . , 1), we deduce

R0

(
〈z, A(F0)z〉 −

1

c
|z|2
)
≥ ER

[
〈θ,1〉

M∑
m=1

θmz2m − 〈θ − ER[θ], z〉2
]

= ER

[
1

〈θ,1〉

M∑
m=1

θm(zm 〈θ,1〉 − 〈θ, z〉)2
]

+ 〈ER[θ], z〉2 ≥ 0.
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4.4 Stochastic process of cash balances

We now construct a stochastic process (G0, G1) with values in G̃1 related to
(F0, F1) in the sense of the conjugacy relations of Theorem 3.3. The function
G0 = G0(b) will play later a crucial role in the quantitative description of
strategies.

Theorem 4.16. Under Assumptions 2.1 and 2.5, there are a function G0 =
G0(b) : B → R and a random field G1 = G1(b) : B → L0 such that, for
i = 0, 1,

(4.54) Gi(u, y, q) , sup
v∈(0,∞)M

inf
x∈R

[〈v, u〉+ xy − Fi(v, x, q)], (u, y, q) ∈ B.

The function G0 and the sample paths of G1 belong to the space G̃1 defined
in (3.29).

If, in addition, Assumption 2.2 holds, then G0 and the sample paths of
G1 belong to the space G̃2(c) defined in (3.31) with the same constant c > 0
as in Assumption 2.2.

Proof. The results are immediate consequences of Theorems 4.7, 4.13, and
3.10.

From Theorem 4.16 and the equivalence of items 3 and 4 in Theorem 3.3
we deduce the identity

x = Gi(
∂Fi
∂v

(a), 1, q), i = 0, 1, a = (v, x, q) ∈ A.

Recall that, according to (4.34), ∂F0

∂vm
(a, t) represents the indirect or expected

utility of the mth market maker at time 0 given the Pareto allocation π(a).
Hence, G0(u, 1, q) defines the collective cash amount of the market makers
at time 0 when their indirect utilities are given by u and they jointly own q
stocks. Note that at maturity 1 a similar interpretation is apparent from the
following representation for the random field G1 = G1(b), obtained by direct
computations:

G1(z, y, q) = y

(
M∑
m=1

u−1m (zm)− 〈q, ψ〉 − Σ0

)
, (z, y, q) ∈ B,

where u−1m is the inverse function to um.
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5 Quantitative analysis of strategies

We continue with the study of investment strategies initiated in Section 2.
Theorems 5.1 and 5.2 below improve Theorem 2.7 and constitute the main
results of this paper.

Recall the notations π = π(a), for the random field of Pareto allocations
defined in Lemma 4.4, Q(a), for the pricing measure of π(a) defined in (4.16),
and G0 = G0(b), for the saddle function defined in (4.54).

Theorem 5.1. Under Assumptions 2.1 and 2.5, for every position q ∈ RJ

there is a unique cash amount x(q) and a unique Pareto optimal allocation
α1(q) with total endowment Σ(x(q), q) such that

(5.1) Um
0 , E[um(αm0 )] = E[um(αm1 (q))], m = 1, . . . ,M.

The Pareto optimal allocation α1(q) has the form

(5.2) α1(q) = π(a(q)), a(q) = (w(q), x(q), q),

where the weights w(q) ∈ SM and the cash amount x(q) ∈ R are given by

wm(q) =
∂G0

∂um
(U0, 1, q)/

M∑
k=1

∂G0

∂uk
(U0, 1, q), m = 1, . . . ,M.(5.3)

x(q) = G0(U0, 1, q).(5.4)

The function x = x(q) : RJ → R is convex, continuously differentiable, and,
for q ∈ RJ ,

(5.5)
∂x

∂qj
(q) = −EQ(a(q))[ψ

j], j = 1, . . . ,M.

Proof. The uniqueness of the cash amount and of the Pareto optimal alloca-
tion with the desired properties follows directly from the definition of Pareto
optimality and the strict concavity of utility functions.

For the existence, consider the cash amount x(q), the weights w(q), and
the Pareto optimal allocation α1(q) defined by (5.2)–(5.4). Clearly, by the
construction of the random field π = π(a), the total endowment of α1(q)
equals Σ(x(q), q). By Theorem 3.3, the identities (5.4) and (5.3) imply

∂F0

∂vm
(a(q)) = Um

0 , m = 1, . . . ,M,
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which, by (4.34), is exactly (5.1).
The convexity and the continuous differentiability of x = x(q) hold as

G0 ∈ G1. Finally, (5.5) follows from the relation (3.19) in Theorem 3.3 and
(4.35).

Hereafter, we shall denote by x = x(q) : RJ → R and w = w(q) : RJ →
SM the cash amount and the Pareto weights defined by (5.4) and (5.3),
respectively. Recall that, according to the sign convention of our model, the
large investor pays the cash amount x(−q) for the ownership of q securities.

For our sensitivity analysis of these maps we shall need some extra nota-
tion. For a random variable ξ and a probability measure R denote

VarR[ξ] , CovR[ξ, ξ],

the variance of ξ under R. For vectors µ ∈ SM and z ∈ RM we shall use a
similar notation:

(5.6) Varµ[z] ,
M∑
i=1

µ[i](zi)2 − (
M∑
i=1

µ[i]zi)2

interpreted as the variance of the random variable z defined on the sample
space {1, . . . ,M} with respect to the probability measure µ. For a ∈ A
define ρ(a) ∈ L0(SM) by

(5.7) ρm(a) ,
τm(a)∑M
k=1 τ

k(a)
=
τm(a)

R1(a)
, m = 1, . . . ,M,

where τ(a) = (τm(a))m=1,...,M and R1(a) are given by (4.44) and (4.42),
respectively. Finally, for g ∈ G2, recall the notations E(g) and H(g) for the
matrices defined in (3.22) and (3.23).

Theorem 5.2. Let Assumptions 2.1, 2.2, and 2.5 hold. Then the Pareto
weights w = w(q) are continuously differentiable, the cash amount x = x(q) is
two-times continuously differentiable and, for m = 1, . . . ,M , i, j = 1, . . . , J ,
and q ∈ RJ ,

Zmj(q) ,
1

wm
∂wm

∂qj
(q) = Emj(G0)(b(q))−

M∑
k=1

wk(q)Ekj(G0)(b(q)),(5.8)

∂2x

∂qi∂qj
(q) = H ij(G0)(b(q)),(5.9)
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where b(q) , (U0, 1, q). The matrices E = E(G0)(b(q)) and H = H(G0)(b(q))
admit the representations:

E = −A−1C,(5.10)

H = CTA−1C +D,(5.11)

where the matrices A , A(F0)(a(q)), C , C(F0)(a(q)), and D , D(F0)(a(q))
are computed in (4.50), (4.51), and (4.52) and a(q) , (w(q), x(q), q).

Moreover, the second-order expansion for x = x(q) can be written as

x(q + ∆q)− x(q) = −EQ[〈∆q, ψ〉] +
R0

2
ER

[(
dQ
dR

)2

Varρ[Z∆q]

]

+
1

2R0

{(
CovR[

dQ
dR

, 〈∆q, ψ〉]
)2

+ VarR[〈∆q, ψ〉]

}
+ o(|∆q|2), ∆q → 0,

(5.12)

where Z = Z(q) is defined in (5.8), we omitted the argument a(q) for Q,
R, R0, and ρ = (ρm)m=1,...,M from (4.16), (4.41), (4.42), and (5.7), and the
notation Varρ is explained in (5.6).

Proof. By Theorem 4.16, G0 ∈ G2. The representations (5.3), for w(q),
and (5.4), for x(q), then imply that w = w(q) ∈ C1, x = x(q) ∈ C2,
and (5.8) and (5.9) hold. The formulas (5.10) and (5.11) for the matrices
E = E(G0)(b(q)) and H = H(G0)(b(q)) follow from Theorem 3.4. Hence, to
complete the proof we only have to verify (5.12).

The linear term in (5.12) follows from (5.5). To verify the second-order
part we decompose the matrix A = A(F0)(a(q)) from (4.50) as

A = R0(S + ssT ),

where, for l,m = 1, . . . ,M ,

Slm ,
1

R2
0

ER[τ l(δlm

M∑
k=1

τ k − τm)],

sl ,
1

R0

ER[τ l].
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Recall the notation 1 , (1, . . . , 1) and observe that

S1 = (1TS)T = 0,(5.13)

〈s,1〉 =
1

R0

ER[
M∑
k=1

τ k] = 1,(5.14)

where at the last step we accounted for (4.45) and the martingale property
of Ri under R.

As H = H(G0)(b(q)) is the Hessian matrix for x = x(q) and accounting
for (5.10) and (5.11), we deduce the following expression for the second-order
part in (5.12):

1

2
〈∆q,H∆q〉 =

1

2
〈E∆q, AE∆q〉+

1

2
〈∆q,D∆q〉

=
R0

2
〈E∆q, SE∆q〉+

R0

2
(〈E∆q, s〉)2 +

1

2
〈∆q,D∆q〉 .

Since, by (5.8), (E − Z)∆q is the product of some scalar on the vector 1,
(5.13) implies that 〈E∆q, SE∆q〉 = 〈Z∆q, SZ∆q〉. Observe that, in view of
(4.43) and (4.45), the matrix S can be written as

Slm =
1

R2
0

ER[R2
1ρ
l(δlm − ρm)] = ER[

(
dQ
dR

)2

ρl(δlm − ρm)].

It follows that

〈Z∆q, SZ∆q〉 = ER[

(
dQ
dR

)2

Varρ[Z∆q]],

giving the first quadratic term in (5.12).
By (5.10), 〈1, (AE + C)∆q〉 = 0, which, in view of (5.13) and (5.14),

implies that
R0 〈s, E∆q〉+ 〈1, C∆q〉 = 0.

From the construction of C in (4.51) and accounting again for (4.43) and
(4.45) we deduce the second quadratic term in (5.12):

〈s, E∆q〉 = − 1

R0

〈1, C∆q〉 = − 1

R2
0

CovR[R1, 〈∆q, ψ〉]

= − 1

R0

CovR[
dQ
dR

, 〈∆q, ψ〉].
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Finally, the expression (4.52) for D yields the last term:

〈∆q,D∆q〉 =
1

R0

VarR[〈∆q, ψ〉].

Remark 5.3. The linear term in (5.12) corresponds to the “standard” model
of mathematical finance, where a “small” investor can trade any number of
securities ψ at “fixed” or exogenous prices EQ[ψ]. The second, quadratic,
component can thus be viewed as a price impact correction to this model.
Note that all three terms of the quadratic part are non-negative and the
last term, VarR[〈∆q, ψ〉], equals zero iff 〈∆q, ψ〉 = const. Hence, for any
non-trivial transaction our large investor will have to pay a strictly positive
penalty due to his price impact in comparison with a hypothetical small agent
trading at EQ[ψ].

A common technique in economic theory is to replace a collection of eco-
nomic agents with a single, representative, agent whose utility function is
given by (4.1) with a fixed or “frozen” weight w ∈ SM . In our case, this sim-
plification yields the linear term in (5.12), as well as the last two components
of the quadratic part. It is interesting to obtain conditions for the first term
of the quadratic part to vanish, since, then, the representative agent approx-
imation leads to the identical expression for the price impact coefficient as
our original model with many market makers. This is accomplished in the
following

Lemma 5.4. Let the conditions of Theorem 5.2 hold and q, r ∈ RJ . Then
the following assertions are equivalent:

1. ER

[(
dQ
dR

)2
Varρ[Z(q)r]

]
= 0;

2. Z(q)r = 0;

3. ERm [〈r, ψ〉] = EQ[〈r, ψ〉], m = 1, . . . ,M ,

where, for a ∈ A,

dRm(a)

dQ(a)
,

ρm(a)

EQ[ρm(a)]
, m = 1, . . . ,M,

and we omitted the argument a(q) for R, Q, ρ, and Rm.
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Proof. Denote ξ , 〈r, ψ〉 ∈ L0(R) and z , Z(q)r ∈ RM .
1 ⇐⇒ 2: Clearly, item 1 holds if and only if Varρ[z] = 0, which, in turn,

is equivalent to z = y1 for some y ∈ R. From the construction of the matrix
Z(q) in (5.8) we deduce that 〈w(q), z〉 = 0, where the Pareto weights w(q)
take values in SM . It follows that y = 0.

2 ⇐⇒ 3: From the definition of the measures Rm, m = 1, . . . ,M , we
deduce the equivalence of item 3 to

(5.15) ERm [ξ] = ER1 [ξ], m = 2, . . . ,M.

From (5.8) we deduce that Z(q)r = 0 if and only if Er = y1 for some
y ∈ R, where the matrix E = E(G0)(b(q)) satisfies (5.10). Hence, item 2 is
equivalent to the existence of a constant y ∈ R such that

(5.16) yA1 + Cr = 0,

where A = A(F0)(a(q)) and C = C(F0)(a(q)). From the expressions (4.50)
and (4.51) for the matrices A and C we obtain

(A1)m = ER[τm] = R0EQ[ρm],

(Cr)m =
1

R0

CovR[τm, ξ] =
1

R0

(ER[τmξ]− ER[τm]ER[ξ])

= EQ[ρm] (ERm [ξ]− ER[ξ]) , m = 1, . . . ,M,

which clearly implies the equivalence of (5.15) and (5.16).

The condition of item 3 is clearly satisfied when the random weights ρ
defined in (5.7) are deterministic. This is the case, for instance, if all market
makers have exponential utilities: um(x) = − exp(−amx), with constant
am > 0, m = 1, . . . ,M . Moreover, if the securities ψ form a complete model
in the sense that, jointly with the constant security paying 1 they span all
random variables, than the validity of item 3 for any r ∈ RJ is in fact
equivalent to ρ being deterministic.

6 Proofs of Theorems 3.3 and 3.4

The proofs will rely on the theory of saddle functions presented in Part VII
of the classical book [24] by Rockafellar.
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6.1 Proof of Theorem 3.3

The proof will be divided into a number of lemmas. To simplify notations
we omit the dependence on q, where it is not important, and then interpret
the classes F1 and G1 in the sense of Remark 3.2.

Lemma 6.1. Let f = f(v, x) : (0,∞)M × R → (−∞, 0) be in F1. Then
there exists a continuously differentiable g = g(u, y) : (−∞, 0)M × (0,∞)→
R, which is conjugate to f in the sense that, for any u ∈ (−∞, 0)M and
y ∈ (0,∞),

g(u, y) = sup
v∈(0,∞)M

inf
x∈R

[〈v, u〉+ xy − f(v, x)]

= inf
x∈R

sup
v∈(0,∞)M

[〈v, u〉+ xy − f(v, x)],
(6.1)

and, for any v ∈ (0,∞)M and x ∈ R,

f(v, x) = sup
u∈(−∞,0)M

inf
y∈(0,∞)

[〈v, u〉+ xy − g(u, y)],

= inf
y∈(0,∞)

sup
u∈(−∞,0)M

[〈v, u〉+ xy − g(u, y)].
(6.2)

Moreover, the minimax values in (6.1) and (6.2) are attained at unique saddle
points.

Proof. To facilitate the references to Section 37 in [24] we define f on the
whole Euclidean space RM+1 by setting its values outside of (0,∞)M ×R as

(6.3) f(v, x) =

{
0, v ∈ ∂RM

+

∞, v 6∈ RM
+

, x ∈ R,

where RM
+ , [0,∞)M . By (3.2) and (3.3), after this extension f becomes a

closed saddle function (according to the definition in Section 34 of [24]) with
effective domain

dom f , dom1 f × dom2 f = RM
+ ×R,

where

dom1 f , {v ∈ RM : f(v, x) <∞, ∀x ∈ R} = RM
+ ,

dom2 f , {x ∈ R : f(v, x) > −∞, ∀v ∈ RM} = R.
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Using the extended version of f we introduce the saddle functions

g(u, y) , sup
v∈RM

inf
x∈R

[〈v, u〉+ xy − f(v, x)]

= sup
v∈RM

+

inf
x∈R

[〈v, u〉+ xy − f(v, x)],

g(u, y) , inf
x∈R

sup
v∈RM

[〈v, u〉+ xy − f(v, x)]

= inf
x∈R

sup
v∈RM

+

[〈v, u〉+ xy − f(v, x)]

defined for u ∈ RM and y ∈ R and taking values in [−∞,∞]. By the duality
theory for conjugate saddle functions, see [24], Theorem 37.1 and Corollaries
37.1.1 and 37.1.2, the functions g and g have a common effective domain,
which we denote C × D, and coincide on (intC × D) ∪ (C × intD), where
intA denotes the interior of a set A.

Hence, on (intC×D)∪ (C× intD) we can define a finite saddle function
g = g(u, y) such that

g(u, y) = sup
v∈RM

+

inf
x∈R

[〈v, u〉+ xy − f(v, x)]

= inf
x∈R

sup
v∈RM

+

[〈v, u〉+ xy − f(v, x)].
(6.4)

Moreover, from the same Theorem 37.1, Corollaries 37.1.1 and 37.1.2 in [24],
and since (6.3) is the unique closed extension of f to RM+1 we deduce

f(v, x) = sup
u∈C

inf
y∈intD

[〈v, u〉+ xy − g(u, y)],

= inf
y∈D

sup
u∈intC

[〈v, u〉+ xy − g(u, y)], (v, x) ∈ RM+1.
(6.5)

Noting that the continuous differentiability of g on (−∞, 0)M × (0,∞) is
an immediate consequence of the existence and the uniqueness of the saddle
points for (6.1), see [24], Theorem 35.8 and Corollary 37.5.3, we obtain that
the result holds if

1. the interiors of the sets C and D are given by

intC = (−∞, 0)M ,(6.6)

intD = (0,∞);(6.7)
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2. for (u, y) ∈ (−∞, 0)M×(0,∞), the minimax values in (6.4) are attained
at a unique (v, x) ∈ (0,∞)M ×R;

3. for (v, x) ∈ (0,∞)M ×R, the minimax values in (6.5) are attained at
a unique (u, y) ∈ (−∞, 0)M × (0,∞).

For the set C we have

C , {u ∈ RM : g(u, y) <∞ for all y ∈ R}
= {u ∈ RM : sup

v∈RM
+

[〈u, v〉 − f(v, x)] <∞ for some x ∈ R}

= {u ∈ RM : sup
w∈SM

[〈u,w〉 − f(w, x)] ≤ 0 for some x ∈ R},

where at the last step we used (3.2). As f ≤ 0 on RM
+ × R, we have

C ⊂ (−∞, 0]M . On the other hand, by (3.3) and (3.4), and, since, for any
w ∈ SM , the function f(w, ·) is increasing,

lim
x→∞

inf
w∈SM

f(w, x) = 0.

It follows that (−∞, 0)M ⊂ C, proving (6.6).
For the set D we obtain

D , {y ∈ R : g(u, y) > −∞ for all u ∈ RM}
= {y ∈ R : inf

x∈R
[xy − f(v, x)] > −∞ for some v ∈ RM}.

From (3.4) we deduce that D ⊂ R+. As f ≤ 0 on RM
+ ×R, the point y = 0

belongs to D. If y > 0, then (3.2) implies the existence of v ∈ (0,∞)M such
that

y =
∂f

∂x
(v, 1),

and, therefore, for such y and v,

inf
x∈R

[xy − f(v, x)] = y − f(v, 1) > −∞.

Hence, D = R+, implying (6.7).
Fix v ∈ (0,∞)M and x ∈ R. By the properties of f ,

∇f(v, x) ∈ (−∞, 0)M × (0,∞) = intC × intD,
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implying that (u, y) , ∇f(v, x) is the unique saddle point of (6.5), see Corol-
lary 37.5.3 in [24].

Fix now u ∈ (−∞, 0)M and y ∈ (0,∞). As f (viewed as a function on
RM+1) is a closed saddle function and (u, y) belongs to the interior of the
effective domain of g, the minimax values in (6.4) are attained on a closed
convex set of saddle points, namely, the subdifferential of g evaluated at
(u, y), see Corollary 37.5.3 in [24]. To complete the proof it remains to be
shown that this set is a singleton in (0,∞)M ×R.

If (v̂, x̂) is a saddle point of (6.4), then (v̂, x̂) ∈ dom f = RM
+ ×R, and

g(u, y) = x̂y + 〈v̂, u〉 − f(v̂, x̂) = x̂y + sup
v∈RM

+

[〈v, u〉 − f(v, x̂)]

= 〈v̂, u〉+ inf
x∈R

[xy − f(v̂, x)].

Accounting for the positive homogeneity property (3.2) of f(·, x̂) we deduce
that

x̂y = g(u, y),(6.8)

〈v̂, u〉 − f(v̂, x̂) = sup
v∈RM

+

[〈v, u〉 − f(v, x̂)] = 0,(6.9)

x̂y − f(v̂, x̂) = inf
x∈R

[xy − f(v̂, x)].(6.10)

The equality (6.8) defines x̂ uniquely. To show the uniqueness of v̂ we
observe first that v̂ ∈ (0,∞)M . Indeed, otherwise, we would have f(v̂, x) =
0, x ∈ R, and the right side of (6.10) would be −∞. Hence, v̂ can be
decomposed as a product of ŵ ∈ SM and ẑ > 0. By (3.2) and (6.9),

〈ŵ, u〉 − f(ŵ, x̂) = sup
w∈SM

[〈w, u〉 − f(w, x̂)] = 0.

As f(·, x̂) is strictly convex on SM , this identity determines ŵ uniquely.
Finally, from (6.10) and the continuous differentiability of f(v̂, ·) on R we
deduce that

y =
∂f

∂x
(v̂, x̂) = ẑ

∂f

∂x
(ŵ, x̂),

proving the uniqueness of ẑ.

Lemma 6.2. Let f and g be as in Lemma 6.1. Then g satisfies the posi-
tive homogeneity property (3.13) and for (v, x) ∈ (0,∞)M ×R and (u, y) ∈
(−∞, 0)M × (0,∞) the relations below are equivalent:
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1. Given (u, y) the minimax values in (6.1) are attained at (v, x).

2. Given (v, x) the minimax values in (6.2) are attained at (u, y).

3. We have x = ∂g
∂y

(u, y) = g(u, 1) and v = ∂g
∂u

(u, y).

4. We have y = ∂f
∂x

(v, x) and u = ∂f
∂v

(v, x).

Moreover, in this case, f(v, x) = 〈u, v〉 and g(u, y) = xy.

Proof. First, we observe that (3.13) for g follows from the corresponding
feature (3.2) for f and the construction of g in (6.1). The equivalence of
items 1–4 follows from the characterization of saddle points in terms of the
subdifferentials of conjugate functions, see Theorem 37.5 and Corollary 37.5.3
in [24]. The last assertion is straightforward.

Lemma 6.3. Let f and g be as in Lemma 6.1. Then g ∈ G1.

Proof. The continuous differentiability of g = g(u, y) and the positive homo-
geneity condition (G4) have been already established in Lemmas 6.1 and 6.2,
while (G3) (for g not depending on q) follows trivially from (G2). Hence,
(G2) is the only remaining property to be proved. In view of (G4) it is
sufficient to verify it only for y = 1.

The function g(·, 1) is strictly increasing because its gradient is strictly
positive by item 3 of Lemma 6.2. To show the strict convexity of g(·, 1), select
u1 and u2, distinct elements of (−∞, 0)M , denote by u3 their midpoint, and,
for i = 1, 2, 3, set vi ,

∂g
∂u

(ui, 1), xi , g(ui, 1). Since each vi ∈ (0,∞)M , we
can represent it as the product vi = ziwi of zi ∈ (0,∞) and wi ∈ SM . By
Lemma 6.2,

〈ui, wi〉 − f(wi, xi) = sup
w∈SM

[〈ui, w〉 − f(w, xi)] = 0,(6.11)

1 = zi
∂f

∂x
(wi, xi).(6.12)

Since (ui)i=1,2,3 are distinct, so are (xi, vi)i=1,2,3 and, hence, by (6.12), so are
(xi, wi)i=1,2,3. As f(v, ·) is strictly concave on R, we deduce from (6.11) that

f(w3, x3) = 〈u3, w3〉 =
1

2
((〈u1, w3〉 − f(w3, x1)) + (〈u2, w3〉 − f(w3, x2)))

+
1

2
(f(w3, x1) + f(w3, x2)) < f(w3,

1

2
(x1 + x2)).
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Since f(w3, ·) is strictly increasing on R, we deduce that x3 < (x1 + x2)/2,
implying the strict convexity of g(·, 1).

The assertion (3.8) of (G2)(a) follows from the monotonicity of g(·, 1)
and the fact that, by Lemmas 6.1 and 6.2, for any x ∈ R one can find
u ∈ (−∞, 0)M such that x = g(u, 1).

For the proof of (G2)(b) and (G2)(c) we shall argue by contradiction.
Let (un)n≥1 be a sequence in (−∞, 0)M converging to a boundary point of
(−∞, 0)M . Denote xn , g(un, 1), vn , ∂g

∂u
(un, 1), n ≥ 1, and, contrary to

(3.9), assume that the sequence (vn)n≥1 is bounded. Then, by the convexity of
g(·, 1) and the boundedness of (un)n≥1, the sequence (xn)n≥1 is also bounded.
Hence, by passing to a subsequence, we can assume that the sequences (vn)n≥1
and (xn)n≥1 converge to finite limits v̂ ∈ RM

+ and x̂ ∈ R, respectively. From
Lemma 6.2 we deduce that

(6.13) un =
∂f

∂v
(vn, xn), 1 =

∂f

∂x
(vn, xn), n ≥ 1.

If v̂ ∈ (0,∞)M , then

lim
n→∞

un = lim
n→∞

∂f

∂v
(vn, xn) =

∂f

∂v
(v̂, x̂) ∈ (−∞, 0)M ,

contradicting our choice of (un)n≥1. If, on the other hand, v̂ ∈ ∂RM
+ , then,

by (3.2) and (3.3),
lim
n→∞

f(vn, x) = 0, x ∈ R.

Since the functions f(vn, ·) are concave, their pointwise convergence to 0
implies the convergence to 0 of its derivatives, uniformly on compact sets in
R, see Theorem 25.7 in [24]. It follows that

lim
n→∞

∂f

∂x
(vn, xn) = 0,

contradicting the second equality in (6.13). This finishes the proof of (G2)(b).
Let now (un)n≥1 be a sequence in (−∞, 0)M satisfying the conditions

(3.10) and (3.11) of (G2)(c). Denote xn , g(un, 1), n ≥ 1 and, contrary to
(3.12), assume that

lim sup
n→∞

g(un, 1) = lim sup
n→∞

xn > −∞.

As g(·, 1) is an increasing function on (−∞, 0)M , (3.10) implies the bounded-
ness of the sequence (xn)n≥1 from above. Hence, by passing, if necessary, to
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a subsequence, we can assume that it converges to x̂ ∈ R. Define a sequence
(wn)n≥1 in SM by

wn =
∂g

∂u
(un, yn) = yn

∂g

∂u
(un, 1),

for appropriate normalizing constants yn, n ≥ 1. By passing to a sub-
sequence, we can assume that (wn)n≥1 converges to ŵ ∈ cl SM . From
Lemma 6.2 we deduce that

un =
∂f

∂v
(wn, xn), n ≥ 1.

If ŵ ∈ SM , then

lim
n→∞

un = lim
n→∞

∂f

∂v
(wn, xn) =

∂f

∂v
(ŵ, x̂) ∈ (−∞, 0)M ,

contradicting (3.11). If ŵ ∈ ∂ SM , then, by (3.3) and Lemma 6.2,

lim
n→∞

〈un, wn〉 = lim
n→∞

f(wn, xn) = 0,

contradicting (3.10). This finishes the proof of (G2)(c) and, with it, the proof
of the lemma.

Lemma 6.4. Let g = g(u, y) : (−∞, 0)M × (0,∞) → R be in G1. Then
there is a continuously differentiable function f = f(v, x) : (0,∞)M ×R→
(−∞, 0) such that the minimax relations (6.1) and (6.2) hold and have unique
saddle points.

Proof. We follow the same path as in the proof of Lemma 6.1. To use the
results of Section 37 in [24] we need to define the values of g = g(u, y) at the
boundary of the original domain by an appropriate closure operation. For
u ∈ (−∞, 0)M we set, by continuity, g(u, 0) , 0. Then for y ≥ 0 we define,
by lower semi-continuity,

(6.14) g(u, y) , lim
ε→0

inf
z∈B(u,ε)

g(z, y), u ∈ ∂ (−∞, 0]M ,

where B(u, ε) is the ball of the radius ε centered at u:

B(u, ε) , {z ∈ (−∞, 0)M : |u− z| ≤ ε}.
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Note that in (6.14) the value of the limit may be infinite.
As in the proof of Lemma 6.1 we deduce the existence of a saddle function

f = f(v, x) defined on (C × intD) ∪ (D × intC), where

C , {v ∈ RM : f(v, x) <∞ for all x ∈ R}
= {v ∈ RM : sup

u∈(−∞,0]M
[〈v, u〉 − g(u, y)] <∞ for some y ∈ R+},

D , {x ∈ R : f(v, x) > −∞ for all v ∈ RM}
= {x ∈ R : inf

y∈R+

[xy − g(u, y)] > −∞ for some u ∈ (−∞, 0]M},

such that, for any (v, x) ∈ (C × intD) ∪ (D × intC),

f(v, x) = sup
u∈(−∞,0]M

inf
y∈R+

[〈v, u〉+ xy − g(u, y)],

= inf
y∈R+

sup
u∈(−∞,0]M

[〈v, u〉+ xy − g(u, y)],
(6.15)

and, for any (u, y) ∈ (−∞, 0)M × (0,∞),

g(u, y) = sup
v∈C

inf
x∈intD

[〈v, u〉+ xy − f(v, x)]

= inf
x∈D

sup
v∈intC

[〈v, u〉+ xy − f(v, x)].
(6.16)

As g(u, y) = yg(u, 1), and, by (G2)(c), for any x ∈ R there is u ∈
(−∞, 0)M such that x ≥ g(u, 1), we have

D = R.

Choosing y = 0 in the second description of C above, we obtain

sup
u∈(−∞,0]M

[〈u, v〉 − g(u, 0)] = sup
u∈(−∞,0]M

[〈u, v〉] <∞ iff v ∈ RM
+ .

If v 6∈ RM
+ , then there is u0 ∈ (−∞, 0)M such that 〈u0, v〉 > 0. By (G2)(c),

for any y > 0,
lim
n→∞

g(nu0, y) = −∞,

and, therefore,

sup
u∈(−∞,0]M

[〈u, v〉 − g(u, y)] ≥ lim sup
n→∞

[〈nu0, v〉 − g(nu0, y)] =∞.
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It follows that
C = RM

+ .

For u ∈ (−∞, 0)M and y > 0 we have ∇g(u, y) ∈ (0,∞)M ×R, implying
that (v, x) , ∇g(u, y) is the unique saddle point of (6.16). In particular, we
deduce that the minimax identities (6.1) and (6.16) have the same unique
saddle points.

Let now v ∈ (0,∞)M and x ∈ R. As (v, x) belongs to the interior of the
effective domain of f , the minimax values in (6.15) are attained on a closed
convex set of saddle points belonging to the subdifferential of f evaluated at
(v, x), see Corollary 37.5.3 in [24]. We are going to show that this set is a
singleton in (−∞, 0)M × (0,∞).

Let (û, ŷ) be a saddle point. Then

(û, ŷ) ∈ dom g ⊂ (−∞, 0]M ×R+,

and

f(v, x) = xŷ + 〈û, v〉 − g(û, ŷ) = xŷ + sup
u∈(−∞,0]M

[〈u, v〉 − g(u, ŷ)]

= 〈û, v〉+ inf
y∈R+

[xy − g(û, y)].

As g(u, y) = yg(u, 1), we deduce that

f(v, x) = 〈û, v〉 ,(6.17)

x = g(û, 1),(6.18)

〈û, v〉 − xŷ = sup
u∈(−∞,0]M

[〈u, v〉 − ŷg(u, 1)].(6.19)

By (6.18) and (G2)(a), û 6= 0, and then, by (6.19), ŷ > 0. The attainabil-
ity of the upper bound in (6.19) at û implies that the subdifferential ∂g(û, 1)
is well-defined and v ∈ ŷ∂g(û, 1). From (G2)(b) we deduce that g(·, 1) is not
subdifferentiable on the boundary of (−∞, 0]M and, therefore, û ∈ (−∞, 0)M .
As g(·, 1) is strictly convex on (−∞, 0)M , (6.18) defines û uniquely, and, as
g(·, 1) is differentiable on (−∞, 0)M , ŷ is uniquely determined by the equality

v = ŷ
∂g

∂u
(û, 1).

The uniqueness of the saddle points (û, ŷ) implies the continuous differ-
entiability of f on (0,∞)M ×R. Finally, from (6.17) we deduce that f < 0
on (0,∞)M ×R.
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Lemma 6.5. Let g and f be as in Lemma 6.4. Then f satisfies the positive
homogeneity condition (3.2) and, for (v, x) ∈ (0,∞)M × R and (u, y) ∈
(−∞, 0)M × (0,∞), the assertions of Lemma 6.2 hold.

Proof. The positive homogeneity property (3.2) for f is a consequence of the
corresponding feature (3.13) for g. The remaining assertions follow by the
same arguments as in the proof of Lemma 6.2.

Lemma 6.6. Let g and f be as in Lemma 6.4. Then f satisfies (F2).

Proof. Fix x ∈ R. The positive homogeneity with respect to v was already
established in Lemma 6.5. By item 4 of Lemma 6.2, ∂f

∂v
< 0, implying that

the function f(·, x) is strictly decreasing.
Let (wi)i=1,2 be distinct points in SM , w3 be their midpoint, and, for

i = 1, 2, 3, denote ui ,
∂f
∂v

(wi, x) and yi ,
∂f
∂x

(wi, x). By the characterizations
of saddle points in Lemma 6.2, for i = 1, 2, 3, we have

f(wi, x) = 〈ui, wi〉 , x = g(ui, 1), and wi = yi
∂g

∂u
(ui, 1).

From the last equality we deduce that the points (ui)i=1,2,3 are distinct. The
uniqueness of saddle points for (6.2) then implies 〈u3, wi〉 < 〈ui, wi〉, for
i = 1, 2, and, therefore,

f(w3, x) = 〈u3, w3〉 =
1

2
(〈u3, w1〉+ 〈u3, w2〉)

<
1

2
(〈u1, w1〉+ 〈u2, w2〉) =

1

2
(f(w1, x) + f(w2, x)),

proving the strict convexity of f(·, x) on SM .
Let now (wn)n≥1 be a sequence in SM converging to w ∈ ∂ SM . From

(G2)(c) for any ε > 0 we deduce the existence of u(ε) ∈ (−∞, 0)M such that
g(u(ε), 1) ≤ x and

−ε ≤ 〈u(ε), w〉 = lim
n→∞

〈u(ε), wn〉 .

From the construction of f in (6.2) we deduce f(v, x) ≥ 〈u(ε), v〉 for any
v ∈ (0,∞)M . It follows that

lim inf
n→∞

f(wn, x) ≥ lim
n→∞

〈u(ε), wn〉 ≥ −ε,

proving (3.3).
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Lemma 6.7. Let g and f be as in Lemma 6.4. Then f satisfies (F4).

Proof. Fix v ∈ (0,∞)M . As, by item 4 of Lemma 6.2, ∂f
∂x
> 0, the function

f(v, ·) is strictly increasing.
Let (xi)i=1,2 be distinct elements of R, x3 , 1

2
(x1+x2), and ui ,

∂f
∂v

(v, xi),
i = 1, 2, 3. From Lemma 6.5 we deduce

g(ui, 1) = xi, f(v, xi) = 〈ui, v〉 , i = 1, 2, 3.

It follows that (ui)i=1,2,3 are distinct, and, hence, by the strict convexity of
g(·, 1),

g(
1

2
(u1 + u2), 1) <

1

2
(g(u1, 1) + g(u2, 1)) =

1

2
(x1 + x2) = x3.

From the uniqueness of saddle points in (6.2) we deduce that if g(u, 1) < x
then f(v, x) > 〈u, v〉. It follows that

f(v, x3) >

〈
1

2
(u1 + u2), v

〉
=

1

2
(f(v, x1) + f(v, x2)),

proving the strict concavity of f(v, ·).
For any ε > 0 we can clearly find u(ε) ∈ (−∞, 0)M such that 〈u(ε), v〉 ≥

−ε. Denoting x(ε) , g(u(ε), 1) we deduce

lim
x→∞

f(v, x) > f(v, x(ε)) ≥ 〈u(ε), v〉 ≥ −ε,

proving (3.4).

After these preparations we are ready to complete the proof of Theo-
rem 3.3. From this moment, the functions f and g will depend on the “aux-
iliary” variable q ∈ RJ .

Proof of Theorem 3.3. If f = f(v, x, q) ∈ F1, then, by Lemmas 6.1 and 6.3,
the function

g(u, y, q) , sup
v∈(0,∞)M

inf
x∈R

[〈v, u〉+ xy − f(v, x, q)]

satisfies (G2) and (G4) and is differentiable with respect to u and y. More-
over, the concavity of f(v, ·, ·) implies the convexity of g(·, y, ·). Conversely,
if g = g(u, y, q) ∈ G1, then, by Lemmas 6.4–6.7, the function

f(v, x, q) , sup
u∈(−∞,0)M

inf
y∈(0,∞)

[〈u, v〉+ xy − g(u, y, q)]
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satisfies (F2) and (F4) and is differentiable with respect to v and x. Moreover,
as g is convex with respect to (u, q), f is concave with respect to (x, q).

The rest of the proof, namely, the equivalence of the differentiability of
f and g with respect to q and the relation (3.19), follows from the envelope
theorem for saddle functions, Theorem A.1, given in Appendix A. Finally,
we recall that for saddle functions the existence of derivatives implies the
continuity of derivatives, see Theorem 35.8 and Corollary 35.7.1 in [24].

6.2 Proof of Theorem 3.4

As in the proof of Theorem 3.3 we begin with several lemmas, where we omit
the dependence on q.

Lemma 6.8. Let f = f(v, x) and g = g(u, y) be as in Lemma 6.1. Then the
following assertions are equivalent:

1. f is twice continuously differentiable and for all v ∈ (0,∞)M and x ∈ R
its Hessian matrix K(v, x) = (Kkl(v, x))1≤k,l≤M+1 has full rank.

2. g is twice continuously differentiable and for all u ∈ (−∞, 0)M and
y ∈ (0,∞) its Hessian matrix L(u, y) = (Lkl(u, y))1≤k,l≤M+1 has full
rank.

Moreover, if (v, x) ∈ (0,∞)M × R and (u, y) ∈ (−∞, 0)M × (0,∞) are
conjugate saddle points in the sense of Lemma 6.2, then L(u, y) is inverse to
K(v, x).

Proof. The asserted equivalence is a well-known fact in the theory of saddle
functions and is a direct consequence of the characterization of the gradients
of the conjugate functions f and g given in Lemma 6.2 and the Implicit
Function Theorem.

In the following statement we shall make the relationship between the
Hessian matrices of f and g more explicit by taking into account the positive
homogeneity property (3.13) of g.

Lemma 6.9. Let f and g be as in Lemma 6.1. Then the following assertions
are equivalent:
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1. f is twice continuously differentiable and for all v ∈ (0,∞)M and x ∈ R

(6.20)
∂2f

∂x2
(v, x) < 0

and the Hessian matrix K(v, x) of f has full rank.

2. f is twice continuously differentiable and for all v ∈ (0,∞)M and x ∈ R
the inequality (6.20) holds and the matrix
(6.21)

Ãkl(v, x) ,

(
∂2f

∂vk∂vl
− 1

∂2f
∂x2

∂2f

∂vk∂x

∂2f

∂vl∂x

)
(v, x), 1 ≤ k, l ≤M,

has full rank.

3. g is twice continuously differentiable and for all u ∈ (−∞, 0)M and
y ∈ (0,∞) the matrix

(6.22) B̃kl(u, y) ,
∂2g

∂uk∂ul
(u, y), 1 ≤ k, l ≤M,

has full rank.

Moreover, if (v, x) ∈ (0,∞)M × R and (u, y) ∈ (−∞, 0)M × (0,∞) are

conjugate saddle points in the sense of Lemma 6.2, then B̃(u, y) is the inverse

of Ã(v, x).

Proof. 1 ⇐⇒ 2. From (6.20) and the construction of the matrix Ã(v, x)
in (6.21) we deduce that for a ∈ RM and b ∈ R the equation

K(v, x)

(
a
b

)
= 0

is equivalent to

b = − 1
∂2f
∂x2

(v, x)

M∑
m=1

∂2f

∂vm∂x
(v, x)am

and
Ã(v, x)a = 0.

It follows that under (6.22) the matrices K(v, x) and Ã(v, x) can have full
rank only simultaneously.
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1 ⇐⇒ 3. We fix arguments (u, y) and (v, x) satisfying the conjugacy

relations of Lemma 6.2. From the definition of B̃ = B̃(u, y) in (6.22) we
deduce that the Hessian matrix of g at (u, y) has the representation

L(u, y) =

(
B̃(u, y) ∂g

∂u
(u, 1)

( ∂g
∂u

(u, 1))
T

0

)
=

(
B̃ 1

y
v

1
y
vT 0

)
.

To simplify notations we shall also represent the Hessian matrix of f at
(v, x) as

K(v, x) =

(
M p
pT z

)
,

where M is the Hessian matrix of f(·, x) at v, p , ( ∂2f
∂vm∂x

(v, x))m=1,...,M is

the vector-column of mixed derivatives, and z , ∂2f
∂x2

(v, x). Observe that the

matrix Ã = Ã(v, x) defined in (6.21) is given by

(6.23) Ã = M − 1

z
ppT .

As B̃ is a symmetric positive semi-definite matrix and 1
y
v 6= 0, the full

rank of B̃ implies the full rank of L(u, y). Hence, by Lemma 6.8, under
the conditions of either item 1 or item 3, the Hessian matrices K(v, x) and
L(u, y) have full rank and are inverse to each other. Denoting by I the M×M
identity matrix we deduce

B̃M +
1

y
vpT = I,

B̃p+
1

y
vz = 0.

(6.24)

If z < 0, that is, (6.20) holds, then, by (6.23) and (6.24), B̃Ã = I. Hence,

B̃ is the inverse of Ã and, in particular, it has full rank, proving 1 =⇒ 3.
Conversely, if B̃ has full rank, then z = ∂2f

∂x2
(v, x) 6= 0. Indeed, otherwise

from the second equality in (6.24) we obtain p = 0 contradicting the full rank
of K(v, x). Since, f(v, ·) is concave, we deduce z < 0, proving 3 =⇒ 1.

Proof of Theorem 3.4. If (v, x, q) ∈ A and (u, y, q) ∈ B satisfy the equivalent
relations of items 1–4 of Theorem 3.3, then the matrices A and B defined in
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(3.5) and (3.14) and the matrices Ã and B̃ defined in (6.21) and (6.22) are
related by

Akl =
vkvl

y
Ãkl, Bkl =

y

vkvl
B̃kl, 1 ≤ k, l ≤M.

Lemma 6.9 then implies (3.24) as well as the other assertions of the theorem
except those involving the second derivatives with respect to q.

Assume first that f ∈ F2. We have to show that g is two-times con-
tinuously differentiable and (3.25) and (3.26) hold. For a ∈ RM define the
function h : (0,∞)M × (−∞, 0)M ×RJ → RM by

h(v, u, q) , (
∂f

∂v
(v, g(u, 1, q), q)− u) + a(

∂f

∂x
(v, g(u, 1, q), q)− 1).

From Theorem 3.3 we deduce, for any (u, y, q) ∈ B,

h(
∂g

∂u
(u, y, q), u, q) = 0.

Fix (u0, y0, q0) ∈ B, denote v0 , ∂g
∂u

(u0, y0, q0), x0 , g(u0, 1, q0), and
choose

am , −
(

∂2f

∂vm∂x
/
∂2f

∂x2

)
(v0, x0, q0), m = 1, . . . ,M.

Direct computations show that, for m, l = 1, . . . ,M and j = 1, . . . , J ,

∂hm

∂vl
(v0, u0, q0) = Ãml(v0, x0, q0) =

y0
vm0 v

l
0

Aml(v0, x0, q0),

∂hm

∂qj
(v0, u0, q0) =

y0
vm0

Cmj(v0, x0, q0).

By the Implicit Function Theorem the function ∂g
∂u

= ∂g
∂u

(u, y, q) is continu-
ously differentiable with respect to q in a neighborhood of (u0, y0, q0) and the
relation (3.25) holds at this point.

To prove the existence of the continuous second derivatives of g with
respect to q and the remaining identity (3.26) we denote

bj , (
∂2f

∂x∂qj
/
∂2f

∂x2
)(v0, x0, q0), j = 1, . . . , J.
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From Theorem 3.3 we deduce, for any (u, y, q) ∈ B,

∂g

∂q
(u, y, q) + by =− ∂f

∂q
(
∂g

∂u
(u, y, q), g(u, 1, q), q)

+ b
∂f

∂x
(
∂g

∂u
(u, y, q), g(u, 1, q), q).

This implies the two-times continuous differentiability of g with respect to
q. Moreover, direct computations show that the differentiation of the above
identity with respect to q at (u0, y0, q0) yields (3.26) at this point.

Assume now that g ∈ G2. To complete the proof we have to show that
f has continuous second derivatives involving q. By Theorem 3.3, for any
(v, x, q) ∈ A we have the equalities

∂g

∂u
(
∂f

∂v
(v, x, q),

∂f

∂x
(v, x, q), q)− v = 0,

∂g

∂y
(
∂f

∂v
(v, x, q),

∂f

∂x
(v, x, q), q)− x = g(

∂f

∂v
(v, x, q), 1, q)− x = 0,

∂f

∂q
(v, x, q) +

∂g

∂q
(
∂f

∂v
(v, x, q),

∂f

∂x
(v, x, q), q) = 0.

By Lemmas 6.8 and 6.9, the full rank of the matrix B(u, y, q) implies the
full rank of the Hessian matrix of g(·, ·, q) at (u, y). An application of the
Implicit Function Theorem to the first two equalities above then leads to
the continuous differentiability of ∂f

∂v
and ∂f

∂x
with respect to q. By the third

identity, this implies the existence and the continuity of ∂2f
∂qi∂qj

.

A An envelope theorem for saddle functions

In the proof of Theorem 3.3 we used the following version of the folklore
“envelope” theorem for saddle functions. As usual, riC denotes the relative
interior of a convex set C.

Theorem A.1. Let C be a convex set in Rn, D be a convex set in Rm, E
be a convex open set in Rl, f = f(x, y, z) : C × D × E → R be a function
convex with respect to x and concave with respect to (y, z), and let z0 ∈ E.
Denote

g(z) , sup
y∈D

inf
x∈C

f(x, y, z), z ∈ E,
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and assume that the maximin value g(z0) is attained at a unique x0 ∈ riC
and some (not necessarily unique) y0 ∈ D and the function f(x0, y0, ·) is
differentiable at z0.

Then the function g : E → R∪{−∞} is concave, differentiable at z0 (in
particular, finite in a neighborhood of z0) and

∇g(z0) =
∂f

∂z
(x0, y0, z0).

Remark A.2. Theorem 5 in Milgrom and Segal [20] is the closest result to
ours we could find in the literature. There, the convexity assumptions on f
are replaced by compactness requirements on C and D.

The proof of Theorem A.1 relies on two lemmas of independent interest,
which were used in the proof of Theorem 4.1. The first lemma is essentially
known, see, for example, Corollary 3 in [20].

Lemma A.3. Let f = f(x, y) : Rn×Rm → R∪{−∞} be a concave function
and let y0 ∈ Rm. Denote

g(y) , sup
x∈Rn

f(x, y), y ∈ Rm,

and assume that the upper bound g(y0) is attained at some (not necessarily
unique) x0 ∈ Rn and the function f(x0, ·) is differentiable at y0.

Then the function g : Rm → R ∪ {−∞} is concave, differentiable at y0
and

(A.1) ∇g(y0) =
∂f

∂y
(x0, y0).

Proof. The concavity of g follows from the concavity of f with respect to
both arguments. As g(y0) = f(x0, y0) < ∞, this concavity property implies
that g <∞. Since g ≥ f(x0, ·), the function g is finite in a neighborhood of
y0. It follows that ∂g(y0), the subdifferential of g at y0, is not empty.

If y∗ ∈ ∂g(y0), then

g(y) ≤ g(y0) + 〈y∗, y − y0〉 , y ∈ Rm.

As f(x0, y) ≤ g(y), y ∈ Rm, and f(x0, y0) = g(y0), it follows that

f(x0, y) ≤ f(x0, y0) + 〈y∗, y − y0〉 , y ∈ Rm.

Hence, y∗ belongs to the subdifferential of f(x0, ·) at y0, and, therefore,
y∗ = ∂f

∂y
(x0, y0). It follows that y∗ is the only element of ∂g(y0), proving

the differentiability of g at y0 and the identity (A.1).
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Lemma A.4. Let C be a convex set in Rn, D be a convex open set in Rm,
f = f(x, y) : C ×D → R be a function concave with respect to x and convex
with respect to y, and let y0 ∈ D. Define the function

g(y) , sup
x∈C

f(x, y), y ∈ D,

and assume that the upper bound g(y0) is attained at a unique x0 ∈ riC and
the function f(x0, ·) is differentiable at y0.

Then the function g : D → R ∪ {∞} is convex, differentiable at y0, and
the identity (A.1) holds.

Remark A.5. The proof of Lemma A.4 will follow from the well-known anal-
ogous result in convex optimization, where the assumption of concavity in x
is replaced by the requirement that C is compact, see, for example, Corollary
4.45 in Hiriart-Urruty and Lemaréchal [17].

Proof. The convexity of g is straightforward. Let ε > 0 be such that

C(ε) , {x ∈ C : |x− x0| ≤ ε} ⊂ riC.

If (yn)n≥1 is a sequence in D converging to y0, then the concave functions
f(·, yn), n ≥ 1, converge to f(·, y0) uniformly on compact subsets of C. Since
x0 is the unique point of maximum for f(·, y0), there is n0 > 0 such that
for every n ≥ n0 the concave function f(·, yn) attains its maximum at some
point xn ∈ C(ε). This argument implies the existence of δ > 0 such that

g(y) = sup
x∈C(ε)

f(x, y) <∞, y ∈ D, |y − y0| < δ.

As C(ε) is a compact set, the result now follows from the well-known fact in
convex optimization mentioned in Remark A.5.

Proof of Theorem A.1. The function h = h(y, z) : D×E → R∪{−∞} given
by

h(y, z) , inf
x∈C

f(x, y, z), y ∈ D, z ∈ E,

is clearly concave. By Lemma A.4 the function h(y0, ·) is differentiable at z0
and ∂h

∂z
(y0, z0) = ∂f

∂z
(x0, y0, z0). An application of Lemma A.3 completes the

proof.

Acknowledgments. We thank Andreas Hamel for references on the max-
rule for subdifferentials used in Appendix A.
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