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We consider the following queuing system which arises as a model of a wireless link
shared by multiple users+ There is a finite numberN of input flows served by a
server+ The system operates in discrete timet 5 0,1,2, + + + + Each input flow can be
described as an irreducible countable Markov chain; waiting customers of each
flow are placed in a queue+ The sequence of serverstates m~t !, t 5 0,1,2, + + + , is a
Markov chain with finite number of statesM+When the server is in statem, it can
serveµi

m customers of flowi ~in one time slot!+
The scheduling discipline is a rule that in each time slot chooses the flow to

serve based on the server state and the state of the queues+ Our main result is that a
simple online scheduling discipline,Modified Largest Weighted Delay First, along
with its generalizations, is throughput optimal; namely, it ensures that the queues
are stable as long as the vector of average arrival rates is within the system maxi-
mum stability region+
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1. INTRODUCTION

We consider a model motivated by the problem of scheduling transmissions of mul-
tiple data users~flows! sharing the same wireless channel~server!+The unique “wire-
less” feature of this problem is the fact that the capacity~service rate! of the channel
varies with time randomly andasynchronouslyfor different users+ The variations of
the channel capacity are due to different, random interference levels observed by
different users and due tofast fadingof the signal received by a user+We will refer
to this problem as thevariable channel scheduling problem.

The variable channel problem arises, for example, in the 3G CDMA High Data
Rate~HDR! system@6# + ~See also@27# for a background on CDMA wireless sys-
tems+! In HDR, multiple mobile users in a cell share the same CDMA wireless
channel+ On the downlink~the link from the cell base station to users!, time is di-
vided into fixed-size~1+67-ms! time slots+This slot size is short enough so that~each
user’s! channel quality stays approximately constant within one or even a few con-
secutive time slots+ ~To be more precise, this is true only for relatively low mobile
user velocities; see@27# +! In each time slot, data can be transmitted to only one user+
Each user constantly reports to the base station its “instantaneous” channel capacity
~i+e+, the rate at which data can be transmitted if this user is scheduled for transmis-
sion in the current time slot!+

In the HDR system~and in the generic variable channel model as well!, a sched-
uling algorithm can take advantage of channel variations by giving some form of
priority to users with~temporarily! better channels+ Since channel capacities of dif-
ferent users vary in time in an asynchronous manner, the quality of service~QoS! of
all users can be improved, as compared to scheduling schemes which do not take
channel conditions into account+A scheduling rule providingproportional fairness
in the achieved long-term throughput of different users was proposed and analyzed
in @25# + ~See also@26# +!

The QoS of a data user can be defined in different ways+ If data users arereal-
time users, then the packet delays of each flow need to be kept below a certain
threshold+ This means that the primary goal of a scheduling algorithm is to keep all
queuesstable~i+e+, to be able to handle all the offered traffic without queues “blow-
ing up”!+

In this article, we consider the generic variable channel scheduling model+ Our
main result is that a simple online scheduling discipline, modified largest weighted
delay first (M-LWDF), is throughput optimal; namely it ensures that the queues are
stable as long as the vector of average arrival rates is within the system’smaximum
stability region+

In a time slott, the M-LWDF discipline serves the flowj for which

gj @Wj ~t !#
bµj ~t ! (1)

is maximal, whereWj ~t ! is the head-of-the-line packet delay for flowj, µj ~t ! is the
server capacity for flowj at timet, andb and thegj ’s are arbitrary positive constants+
~The name M-LWDF is because this discipline is a generalization of the LWDF
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discipline@1,22# +! Moreover, as we discuss in Section 4, our result actually holds for
a quite wideclassof disciplines~of which M-LWDF is a member! and a more
general class of models+ In particular, the throughput optimality holds if instead of
maximizing~1!, the scheduling rule maximizes

gj @Vj ~t !#
bµj ~t !, (2)

whereVj ~t ! 5 hj
~W! Wj ~t ! 1 hj

~Q! Qj ~t !+ Here, hj
~W!

$ 0 andhj
~Q!

$ 0 are arbitrary
parameters for flowj, not equal to zero simultaneously and possibly dependent onj+

Our main stability results are closely related to the series of results on the sta-
bility of MaxWeight-typescheduling algorithms in queuing networks and in input-
buffered crossbar switches+ The first results of this type were obtained by Tassiulas
and Ephremides@23,24# in the context of wireless systems+ For the switch schedul-
ing stability results, see@15,17# and a recent paper@10# + In the context of interactive
parallel server systems and systems with randomly varying connectivity,MaxWeight-
type stability results were obtained in@3,5# + ~See also@4# , which is a recent exten-
sion of@3# +!

The underlying intuition behind the stability of a MaxWeight-type algorithm is
the fact that it minimizes the drift of a Lyapunov function of the form(j @Vj ~t !#

b11+
Most of the algorithms studied before are for the caseb 51 andVj ~t ! 5 Qj ~t !+As far
as we are aware, @17# was the first in which the stability result for a MaxWeight-type
rule using flow delaysWj ~t ! ~as opposed to queue lengthsQj ~t !! was derived+ ~A
similar result was formulated but not proved in@14# +!

The main contribution of this article is that we show that a MaxWeight-type
algorithm retains stability properties even if the “weight” of an individual queuej
has a form as general as@Vj ~t !#

b + Such a generalization is important because the
additional parametersb, hj

~W! , andhj
~Q! allow for a more flexible control of queue

lengths and delay distributions, to satisfy a variety of QoS constraints+ For example,
if we are interested in giving tight delay bounds to a flowj with a low arrival rate,
then the “weight” for flowj should be based more on head-of-the-line packet delay
than on queue length~i+e+, hj

~W! should be large relative tohj
~Q! !+Conversely, if flow

j has a high arrival rate and we want to bound its buffer space requirements, thenhj
~Q!

should be large relative tohj
~W!+

To prove our stability results,we use thefluid limit technique@7–9,19,20# + ~For
a MaxWeight-type rule, the technique was also used in@10# in a “switch” model
context+! Use of this technique makes the above-described generalization very nat-
ural+ Roughly speaking, in the “fluid limit” and after some initial period of time,
Qj ~t ! andWj ~t ! stay proportional to each other; thus, MaxWeight algorithms using
Qj ~t !,Wj ~t !, or a linear combinationVj ~t ! are in some sense “indistinguishable” in
the fluid limit+

It is shown recently in@21# , which analyzes a more general~described in Sec-
tion 4+2! version of our model, that, in addition to throughput optimality,MaxWeight-
type rules have certain asymptotic optimality properties when the system is heavily
loaded+
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Practical implications of using M-LWDF to provide QoS for real-time data
users are addressed in@2# + In particular,we show in@2# that the M-LWDF discipline,
with “appropriately” chosen parametersgi , provides good QoS defined in terms of
the probabilities of packet delays exceeding predefined thresholds+

The rest of the article is organized as follows+ In Section 2, we introduce the
formal variable channel schedulingqueuing model+ Necessary and sufficient sta-
bility conditions are derived and the system stability region is defined in Section 3+
In Section 4, we introduce the M-LWDF scheduling rule and formulate our main
result—Theorem 3, which states that M-LWDF~along with a wide class of rules
generalizing it! is throughput optimal+ The proof of Theorem 3 is presented in
Section 5+

2. VARIABLE CHANNEL SCHEDULING MODEL

Consider the following queuing system+ There is a finite numberN of input flows,
indexed byi 5 1,2, + + + ,N, served by aserver+ Each input flow consists of discrete
customers+ ~One customer models one byte or bit of data!+ The system operates in
discrete timet 5 0,1,2, + + + + By convention, we will

~a! identify an~integer! time t, with the unit time interval@t, t 11!, which will
sometimes be referred to as thetime slot t

~b! assume that all processes we consider are constant within each time slot+

There is a finite set$1, + + + ,M % of serverstates+ This set itself we also denote by
M ~as well as its cardinality!+Associated with each statem[ M is a fixed vector of
service rates~µ1

m, + + + ,µN
m!,where allµi

mare nonnegative integers+The meaning ofµi
m

is as follows+ If in time slot t the server is in statemand the service~in this time slot!
is given exclusively to queuei , then µi

m type i customers are served from those
present at timet ~or the entire queuei content att, whichever is less!+We assume
that,within each type, customers are served in the order of their arrival in the system+

The random server state processm 5 m~t!, t 5 0,1,2, + + + is assumed to be an
irreducible~see@12# ! discrete-time Markov chain with the~finite! state spaceM+
The ~unique! stationary distribution of this Markov chain we denote byp 5
~p1, + + + ,pM !+ Note that, due to irreducibility, pm . 0 for all m [ M+

We make a nondegeneracy assumption that for each flowi , there is at least one
server statem[ M such thatµi

m. 0+ ~Otherwise,we would have flows which simply
can never be served+!

Denote byAi ~t ! the number of typei customers that arrived at timet, and
assume by convention that these customers are immediately available for service+
We assume that each input processAi is an irreducible positive recurrent~see@12# !
Markov chain with countable state space and that the input processes are mutually
independent+ ~This condition can be relaxed as follows+ The aggregate arrival pro-
cessA 5 $~A1~t !, + + + ,AN~t !!, t 5 1,2, + + + % can be described by a finite number of
regenerative processes@12# with finite mean regeneration cycles+! Let us denote by
l i , i 5 1, + + + ,N, the mean arrival rate for flowi ~i+e+, the mean number of typei
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customers arriving in one time slot!+ The vector of mean arrival rates is denoted by
l 5{ ~l1, + + + ,lN !+

The random process describing the behavior of the entire system is~S5 S~t !,
t 5 0,1,2, + + +!, where

S~t ! 5 $~Ui1~t !, + + + ,UiQi ~t !~t !!, i 5 1, + + + ,N; m~t !%,

Qi ~t ! is the typei queue length at timet, andUik~t ! is the current sojourn time, or
delay, of thekth typei customer present in the system at timet+ ~Within each type,
the customers are numbered in the order of their arrival+!

A mappingH which takes a system stateS~t ! in a time slot into a fixed proba-
bility distributionH~S~t !! on the set of queuesN will be called ascheduling rule, or
aqueuing discipline+With a fixed disciplineH, the queue to serve at timet is chosen
randomly according to the distributionH~S~t !!+ So, the numberDi ~t ! of type i cus-
tomers served in the time slott is equal to min$Qi ~t !,µi

m~t ! % if queuei is chosen for
service and equal to zero otherwise+ According to our conventions, for each timet,

Qi ~t 1 1! 5 Qi ~t ! 2 Di ~t ! 1 Ai11~t !, ∀ i+

Our assumptions imply that with any scheduling rule,Sis a discrete-time count-
able Markov chain+ By stabilityof the Markov chainS~and stability of the system!
we mean the following property:The set of positive recurrent states is nonempty and
it contains a finite subset which is reached with probability one~within finite time!
from any initial state+ Stability implies the existence of a stationary probability dis-
tribution+ ~If all positive recurrent states are connected, the stationary distribution is
unique+!

We conclude this section with some basic notation we use throughout the arti-
cle+ Vector inequalities are understood componentwise; {z} and [z] denote the inte-
ger part and the “ceiling” of a real numberz, respectively+We say that a functionf ~t !
of a real variablet is RCLL if it is right-continuous and has left limit in every point
t of its domain+ The abbreviation “u+o+c+” in a convergence statement means that the
convergence is uniform on any fixed compact subset of the corresponding function
domain+We denote byN 5 $1,2, + + + % the set of positive natural numbers+

3. NECESSARY AND SUFFICIENT STABILITY CONDITIONS.
STABILITY REGION

Suppose a stochastic matrixf 5 ~fmi,m [ M, i 5 1, + + + ,N! is fixed, which means
thatfmi $ 0 for allmandi , and(i fmi 51 for everym+Consider astatic service split
~SSS! scheduling rule, parameterized by the matrixf+When the server is in statem,
the SSS rule chooses for service queuei with probabilityfmi+ ~The wordstaticin the
name of the rule reflects the fact that scheduling decisions depend only on the server
state+! Clearly, the vectorv5 ~v1, + + + , vN ! 5 v~f!, where

vi 5 ( pmfmi µi
m
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gives the long-term average service rates allocated to different flows+ This observa-
tion makes the following simple~and quite standard! result very intuitive+

Theorem 1: For the existence of a scheduling rule H under which the system is
stable, condition (3) is necessary

l # v~f! for some stochastic matrixf (3)

and condition (4) is sufficient

l , v~f! for some stochastic matrixf+ (4)

Proof: The necessity of condition~3! is almost obvious+ Consider a ruleH under
which the system is stable and consider the Markov chainS in a stationary regime+
~Such a stationary regime exists, but is not necessarily unique+! We will denote by
Hi ~s! the probability with which the SSS rule chooses for service the queuei when
S~t ! 5 s+ Then, for any i ~and arbitrary fixed time slott !, we can write

l i 5 EAi ~t ! 5 EDi ~t ! 5 (
m

pmE~Di ~t !6m~t ! 5 m!

# (
m

pm(
s

P~S~t ! 5 s6m~t ! 5 m!Hi ~s!µi
m

5 (
m

pmfmi µi
m,

where

fmi 5{ (
s

P~S~t ! 5 s6m~t ! 5 m!Hi ~s!+

Obviously, we have(i fmi 5 1 for eachm+ The necessity of~3! is proved+
Sufficiency of condition~4! is almost obvious as well+ The SSS rule associated

with any matrixf satisfying~4! makes the system stable+ Indeed, the rates at which
service is provided to different flowsi is a random process “modulated” by the
underlying~ergodic! Markov chainm, independent of the aggregate arrival pro-
cessA+ Moreover, the average service ratevi ~f! available to each flowi is strictly
greater than its average arrival ratel i + If the Markov chain of interest would be

$~Q1~t !, + + + ,QN ~t !!;m~t !%, t 5 0,1,2, + + +

~viz+ its states would track queue lengths only!, then, for example,maxi Qi ~t ! can be
used as a Lyapunov function to show the stability via standard “drift” criteria, such
as those in@18# +However, the states of our Markov chainSinclude customer sojourn
times as well+ To accommodate this, the stability proof for the SSS rule~assuming
~4!! can be obtained, for example, as a much simplified version of the proof of
M-LWDF rule stability~Theorem 3!, which is the main result of this article+ Since
such a proof requires a fair amount of preliminaries, introduced later in the article,
we present its details in the Appendix for the interested reader+ ~We also note that
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Theorem 3 itself implies sufficiency of~4!+ It is, however, more intuitive, simple,
and standard to demonstrate this fact via the SSS rule or a similar static rule+ That is
why we discuss the SSS rule here+! n

The set of all~average arrival rate! vectorsl satisfying condition~4! is usually
called the systemmaximum stability region, or juststability region+

An SSS rule associated with stochastic matrixf* will be calledmaximalif the
vectorv~f*! is not dominated byv~f! for any other stochastic matrixf+ ~We say
that vectorv ~1! is dominated by vectorv ~2! if vi

~1!
# vi

~2! for all i and the strict
inequalityvi

~1! , vi
~2! holds for at least onei +! The following theorem provides a

useful characterization of maximal SSS rules+

Theorem 2: Consider a maximal SSS rule associated with a stochastic matrixf*.
Suppose, in addition, that all components ofv*5 v~f*! are strictly positive. Then,
there exists a set of strictly positive constantsai , i 51,2, + + + ,N, such that for any m
and i,

fmi
* . 0 implies i[ arg max

j
aj µj

m+ (5)

The theorem says that a maximal SSS rule always chooses for service at any
time t a queuei for whichai µi

m~t ! is maximal+ ~It does not say what to do in case of
a tie+!

Proof: Consider the following linear program:

max
L, $fmi %

L

subject to

(
m51

M

pmµi
mfmi $ Lvi*, i 5 1, + + + ,N, (6)

(
i51

N

fmi 5 1, m [ M, 0 # fmi # 1, m [ M, i 5 1, + + + ,N+ (7)

From the definition ofv*,we know thatL 51 andf 5 f* solve this linear program,
with constraints~6! satisfied as equalities+ Then, by the Kuhn–Tucker theorem~see,
e+g+, @13# !, there exists a set of nonnegative Lagrange multipliersa0,a1, + + + ,aN such
thatL 51 andf 5 f* also solve the following linear program~with the same value
of the maximum!:

max
L, $fmi %

a0L 1 (
i51

N

aiS(
m51

M

pmµi
mfmi 2 Lvi*D (8)
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subject to

(
i51

N

fmi 5 1, 0 # fmi # 1, ∀m, i+ (9)

It is easy to verify that allai must be strictly positive anda051+Then, rewriting
~8! as

max
L, $fmi %

L 2 L (
i51

N

ai vi*1 (
m51

M

pm (
i51

N

ai µi
mfmi ,

we see that condition~5! must hold, because otherwise the maximum would not be
achieved byf 5 f*+ n

4. THE MODIFIED LARGEST WEIGHTED DELAY FIRST DISCIPLINE

4.1. Main Result

The following natural question arises+ Is there a scheduling rule which~unlike SSS!
does not use a priori information about the input ratesl i and the stationary distri-
butionp of the server state, and yet ensures system stability as long as the necessary
and sufficient stability condition~4! is satisfied+ Theorem 3 shows that the answer
is yes+

Let us call the value

Wi ~t ! 5{ Ui1~t !

~with Wi ~t ! 5 0 if Qi ~t ! 5 0 by convention! thedelayof flow i at timet+
Let a set of positive constantsg1, + + + ,gN and a positive constantb . 0 be fixed+

We define modified largest weighted delay first~M-LWDF ! to be the scheduling
rule that chooses for service in time slott a singlequeue

i [ arg max
j

gj µj
m~t !~Wj ~t !!

b+

~The “ties” are broken arbitrarily; for example, in favor of the largest indexi +!
An analogous rule, which we will call modified largest weighted~unfinished!

work first ~M-LWWF !, chooses a single queue

i [ arg max
j

gj µj
m~t !~Qj ~t !!

b+

Theorem 3: Let an arbitrary set of positive constantsg1, + + + ,gN and b . 0 be
fixed. Then, either of the two scheduling rules, M-LWDF or M-LWWF, are through-
put optimal; namely, they make the system stable as long as condition (4) holds (i.e.,
as long as the arrival rate vectorl is within the system stability region).

As mentioned in Section 1, our proof of Theorem 3 uses thefluid limit tech-
nique+ This technique allows us to “derive” the stability of M-LWDF from the sta-
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bility of M-LWWF using the fact that their fluid limits are in a certain sense
indistinguishable+

4.2. Generalizations

It will be clear from the proof of Theorem 3 that this result can be significantly
generalized+ First, the ~virtually unchanged! proof allows us to show throughput
optimality of the following “mixed” M-LWDF0M-LWWF rule:

Serve queue

i [ arg max
j

gj µj
m~t !~Vj ~t !!

b,

where Vj 5 hj
~W! Wj 1 hj

~Q! Qj, andhj
~W! and hj

~Q! are nonnegative constants
that satisfyhj

~W! 1 hj
~Q! . 0.

In addition, the model assumption that only one queue may be served at a time can
be relaxed as follows+ For each server statem, there is an associated finiteset K~m!
of service rate decisions+ Associated with each decisionk [ K~m! is a service rate
vector

~µ1
m~k!, + + + ,µ1

m~k!!+

If the decisionk is chosen when the server is in statem, thenµj
m~k! customers from

each queuej ~or the entire queuej contentQj ~t ! if it is less thanµj
m~k!! are served

within one time slot+Again, a slightly adjusted proof of Theorem 3 allows us to prove
that the following MaxWeight-type rule is throughput optimal:

Choose a service rate decision

k [ arg max
k[K~m~t !!

(
j

gj µj
m~t !~k!~Vj ~t !!

b+

In the latter general form, our result includes as special cases the throughput opti-
mality results in both the “switch scheduling” model setting@15,17# ~and related
ones in@3,14# ! and the variable channel scheduling setting, which is the main focus
of this article+

5. PROOF OF THEOREM 3

Throughout the proof, we consider a system with a fixed set of parameters such that
condition ~4! holds+ It needs to be proved that this system is stable under both
M-LWDF and M-LWWF rules+

To simplify notation, the proof will be for the caseb 51+ The generalization of
the proof for arbitraryb . 0 is trivial: The quadratic Lyapunov function in~36!
needs to be replaced by the power law function
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L~ y! 5
1

11 b (
1

N

gi yi
11b ;

in the formulations of Lemmas 2 and 6, qi ~t !, qj ~t !, wi ~t !, and wj ~t ! need to be
replaced byqi ~t !

b, qj ~t !
b, wi ~t !

b , andwj ~t !
b , respectively; corresponding minor

adjustments need to be made throughout the proofs+

5.1. Preliminaries

Let us define the norm of the stateS~t ! as follows:

7S7 5{ (
i

N

Qi ~t ! 1 (
i

N

Wi ~t !+

Let S~n! denote a processSwith an initial condition such that7S~n!~0!75 n+ In the
analysis to follow, all variables associated with a processS~n! will be supplied with
the upper index~n!+

The following theorem follows from the state-dependent Lyapunov-type stabil-
ity criteria for countable Markov chains, obtained first by Malyshev and Menshikov
@16# +

Theorem 4: Suppose that there existe . 0 and an integer T. 0 such that for any
sequence of processes$S~n!, n 5 1,2, + + + %, we have

lim sup
nr`

EF 1

n
7S~n! ~nT!7G # 12 e+ (10)

Then, S is stable.

It was shown by Rybko and Stolyar@19# that a stability condition of the type
~10! naturally leads to a fluid-limit approach to the stability problem of queu-
ing systems+ This approach was further developed by Dai@8# , Chen@7# , Stolyar
@20# , and Dai and Meyn@9# + As the form of~10! suggests, the approach studies
a fluid processs~t ! obtained as a limit of the sequence of scaled processes
~10n!S~n!~nt!, t $ 0+ At the heart of the approach in its standard form is a proof
that anys~t ! starting from any initial state with norm7s~0!7 5 1 reaches zero
in finite time T and stays there+ It is sufficient, however, to show that for some
e . 0, 7s~T !7 # 1 2 e, which is what we are going to do in this article+ ~In many
cases of interest, a still weaker condition is sufficient: It is enough to verify that
anys~t ! is such that inft$07s~t !7 , 1, as shown in@20# + This is true in our case as
well, as could be shown with a little extra work+! In our setting, we need to define
what the scaling~10n!S~n!~nt! means+ In order for this scaling to make sense, we
will need an alternative definition of the process+

To this end, let us define the following random functions associated with the
processS~n!~t !+ Let Fi

~n!~t ! be the total number of typei customers that arrived by
time t $ 0, including the customers present at time 0, and let ZFi

~n!~t ! be the number
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of type i customers that were served by timet $ 0+ Obviously, ZFi
~n!~0! 5 0 for all i +

As in @19# and@20# , we “encode” the initial state of the system; in particular, we
extend the definition ofFi

~n!~t ! to the negative intervalt [ @2n,0! by assuming that
the customers present in the system in its initial stateS~n!~0! arrived in the past at
some of the time instants2~n21!,2~n2 2!, + + + ,0, according to their delays in the
stateS~0!+ By this convention, Fi

~n!~2n! 5 0 for all i andn and(i51
N Fi

~n!~0! 5 n+
Also, denote byGm

~n!~t ! the total number of time slots before timet ~i+e+, among the
slots 0,1, + + + , t 2 1!, when the server was in statem, and by ZGmi

~n!~t ! the number of
time slots before timet when the server state wasmand the server was allocated to
serve queuei + Let us also denote

Ui
~n!~t ! 5{ t 2 Wi

~n!~t !, t $ 0, i 5 1,2, + + + ,N+

Then, the following relations obviously hold:

Qi
~n!~t ! [ Fi

~n!~t ! 2 ZFi
~n!~t !, t $ 0, i 5 1,2, + + + ,N, (11)

Ui
~n!~t ! # t, t $ 0,

Ui
~n!~t ! 5 inf $s# t : Fi

~n!~s! . ZFi
~n!~t !%, t $ 0+ (12)

It is clear that the processS~n! 5 ~S~n!~t !, t $ 0! is a projection of the process
X ~n! 5 ~F ~n!, ZF ~n!,G~n!, ZG~n!,Q~n!,W ~n!,U ~n! !, where

F ~n! 5 ~Fi
~n!~t !, t $ 2n, i 5 1,2, + + + ,N!,

ZF ~n! 5 ~ ZFi
~n!~t !, t $ 0, i 5 1,2, + + + ,N!,

G~n! 5 ~Gm
~n!~t !, t $ 0, m [ M !,

ZG~n! 5 ~ ZGmi
~n!~t !, t $ 0, m [ M, i 5 1,2, + + + ,N!,

Q~n! 5 ~Qi
~n!~t !, t $ 0, i 5 1,2, + + + ,N!,

U ~n! 5 ~Ui
~n!~t !, t $ 0, i 5 1,2, + + + ,N!,

W ~n! 5 ~Wi
~n!~t !, t $ 0, i 5 1,2, + + + ,N!+

In other words, a sample path ofX ~n! uniquely defines the sample path ofS~n! +
Let us also adopt the convention

Y~t ! 5 Y~ {t } ! for Y5 S~n!,Fi
~n! , ZFi

~n! ,Gm
~n! , ZGmi

~n! ,Qi
~n! ,Ui

~n! ,Wi
~n! ,

with t $ 2n for Y5 Fi
~n! andt $ 0 for all other functions+ This convention allows

us to view the above functions as continuous-time processes defined for allt $ 0 ~or
t $ 2n!, but having constant values in each interval@t, t 1 1!+
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Now, consider the scaled processx ~n! 5 ~ f ~n!, Zf ~n!, g~n!, [g~n!,q~n!,u~n!,w~n! !,where

f ~n! 5 ~ fi
~n!~t !, t $ 21, i 5 1,2, + + + ,N!,

Zf ~n! 5 ~ Zfi
~n!~t !, t $ 0, i 5 1,2, + + + ,N!,

g~n! 5 ~gm
~n!~t !, t $ 0, m [ M !,

[g~n! 5 ~ [gmi
~n!~t !, t $ 0, m [ M, i 5 1,2, + + + ,N!,

q~n! 5 ~qi
~n!~t !, t $ 0, i 5 1,2, + + + ,N!,

u~n! 5 ~ui
~n!~t !, t $ 0, i 5 1,2, + + + ,N!,

w~n! 5 ~wi
~n!~t !, t $ 0, i 5 1,2, + + + ,N!,

and the scaling is defined as

z~n! ~t ! 5
1

n
Z~n! ~nt!+

From ~11!, we get

qi
~n!~t ! [ fi

~n!~t ! 2 Zfi
~n!~t !, t $ 0, i 5 1,2, + + + ,N+ (13)

The following lemma establishes convergence to a fluid process and is a variant
of Theorem 4+1 in @8# + The lemma is a list of basic convergence properties of the
scaled sequences$x ~n! % which we need for future reference+ Although the lemma
statement is quite long, the properties it describes are rather simple because they
follow almost directly from the structure of the model and the strong law of large
numbers for the input flow and server state processes+

Lemma 1: Consider our system under any scheduling rule such that, within each
type i, the customers are served in the order of their arrival in the system. The
following statements hold with probability1. For any sequence of processes$X ~n!,
n [ N %, there exists a subsequence$X ~k!, k [ K # N % such that as kr `, the
scaled subsequence$x ~k!, k [ K% has the following convergence properties for each
i [ $1, + + + ,N% and m[ M:

~ fi
~k!~t !, t $ 21! n ~ fi ~t !, t $ 21!, (14)

~ fi
~k!~t !, t $ 0! r ~ fi ~t !, t $ 0! u+o+c+ , (15)

~ Zfi
~k!~t !, t $ 0! r ~ Zfi ~t !, t $ 0! u+o+c+ , (16)

~qi
~k!~t !, t $ 0! r ~qi ~t !, t $ 0! u+o+c+ , (17)

~gm
~k!~t !, t $ 0! r ~gm~t !, t $ 0! u+o+c+ , (18)

~ [gmi
~k!~t !, t $ 0! r ~ [gmi~t !, t $ 0! u+o+c+ , (19)

~ui
~k!~t !, t $ 0! n ~ui ~t !, t $ 0!, (20)

~wi
~k!~t !, t $ 0! n ~wi ~t !, t $ 0!, (21)
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where the functions fi are RCLL nonnegative nondecreasing in@21,`!, the func-
tions fi , Zfi , gm, and [gmi are nonnegative nondecreasing Lipschitz-continuous in
@0,`!, functions qi are continuous in@0,`!, functions ui are nondecreasing RCLL
in @0,`!, functions wi are nonnegative RCLL in@0,`!, and “n” signifies conver-
gence at every continuity point of the corresponding limit function. The limiting set
of functions

x 5 ~ f, Zf, g, [g,q,u,w!

also satisfies the following properties for all i[ $1, + + + ,N% and m[ M:

(
i51

N

fi ~0! # 1, (22)

fi ~t ! 2 fi ~0! 5 l i t, t $ 0, (23)

Zfi ~0! 5 0, (24)

Zfi ~t ! # fi ~t !, t $ 0, (25)

gm~t ! 5 pmt, t $ 0, (26)

qi ~t ! 5 fi ~t ! 2 Zfi ~t !, t $ 0, (27)

[gmi~0! 5 0, (28)

(
i51

N

[gmi~t ! 5 gm~t !; (29)

for any interval@t1, t2# , @0,`!,

Zfi ~t2! 2 Zfi ~t1! # (
m[M

µi
m~ [gmi~t2! 2 [gmi~t1!!; (30)

if qi ~t ! . 0 for t [ @t1, t2# , @0,`!, then

Zfi ~t2! 2 Zfi ~t1! 5 (
m[M

µi
m~ [gmi~t2! 2 [gmi~t1!!, (31)

ui ~t ! 5 t 2 wi ~t !; (32)

for any fixed t1 . 0, the conditions ui ~t1! . 0 and Zfi ~t1! . fi ~0! are equivalent and if
they hold, then in the interval@t1,`!,

l i wi ~t ! 5 qi ~t !, (33)

which, in particular, implies that wi and ui are Lipschitz-continuous in@t1,`!.

Remark: The sets of functionsx are~“fluid” ! limits of the sequences of scaled paths
$x ~k! % +As such, its components have the usual natural interpretations+ For example,
fi ~t ! and Zfi ~t ! are the amounts of typei “fluid” that arrived into the system and are
served by the system by the~scaled! time t, respectively, andqi ~t ! 5 fi ~t ! 2 Zfi ~t ! is
the amount of unserved typei at timet; gm~t ! is the total~scaled! time before time
t when the server state wasm; [gmi~t ! is the total~scaled! time before timet when the
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server state wasmand queuei was chosen for service+Property~23! then means that
after time 0, the fluid of each type arrives at the constant ratel i ; this is generally not
true for the interval@21,0# because the fluid arrival processesfi ~t ! in this interval
simply code sojourn times of the customers present at time 0, and these initial so-
journ times can be distributed in a “bad” way+ Inequality~30! simply means that the
amount of fluid served in any interval cannot exceed the “potential” amount which
could be served if the server would never incur idleness while serving queuei ~the
idleness is incurred when queuei is served in a slot at the rateµi

m, but there are less
thanµi

m customers in the queue!; inequality ~31! means that if the amount of un-
served fluidqi ~t ! in some~scaled! interval is bounded away from zero, then the
actual amount of fluid served in this interval is exactly equal to the potential amount
of service+ The property containing~33! is also simple, but is particularly important
for our analysis: It says that if by some fixed~scaled! time t1, the amount of typei
fluid served is greater than its initial amount~in particular, all of the “initial fluid” is
“gone” by timet1!, then for allt $ t1, the strict linear relationl i wi ~t ! 5 qi ~t ! exists
between the amount of fluidqi ~t ! and the “head-of-the-line” fluid delaywi ~t !+ It is
this relation which will allow us to, roughly speaking,make a “transition” from the
stability of M-LWWF to the stability of M-LWDF by showing that the fluid limit
under M-LWDF is in a certain sense indistinguishable from that under M-LWWF,
after the system “gets rid” of all the initial fluid+

Proof of Lemma 1: It follows from the strong law of large numbers that, with
probability 1 for everyi ,

~ fi
~n!~t ! 2 fi

~n!~0!, t $ 0! r ~l i t, t $ 0! u+o+c+

To prove~15!, ~22!, and~23!, it suffices to choose a subsequence$x ~k! % such that for
every i, lim fi

~k!~0! exists, and denote the limit byfi ~0!+ Since allfi
~k! andui

~k! are
nondecreasing, we can always choose a further subsequence such that~14! and~20!
hold+ Then, ~21! follows from ~20!+

Properties~18! and~26! follow from the ergodicity of the server state process+
Also, for any fixed 0# t1 # t2, for every i, m, and anyn, we have~using the

notationµ* 5{ maxm, j µj
m!

Zfi
~n!~t2! 2 Zfi

~n!~t1! # (
m[M

µi
mS [gmi

~n!~t2! 2 [gmi
~n!~t1! 1

1

n
D # µ*St2 2 t1 1

1

n
D+

From this inequality, we deduce the existence of a subsequence~of the subsequence
already chosen! such that the convergences~16! and~19! take place and~30! holds+

Relations~24!, ~25!, ~28!, ~29!, and~32! follow from the corresponding rela-
tions which trivially hold for the prelimit functions~for any indexn [ N !+ The
convergence~17! and identity~27! trivially follow from identity ~13!+

Suppose thatqi ~t ! . 0 for t [ @t1, t2# , @0,`!+ Let us fix d [
~0,mint[@t1, t2# qi ~t !!+ The Lipschitz continuity ofqi ~{!, along with u+o+c+ con-
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vergence ofqi
~k! to qi , implies that ~with probability 1! the sequence$X ~k! % is

such that for all sufficiently largek, the following inequalities hold:

min
t[@{t1k} , t2k11#

Qi
~k!~t ! . dk . max

m
µi

m+

The latter property implies that if the queuei was chosen for service anywhere in the
interval@{t1k} , t2k11# when the server state wasm, then exactlyµi

m typei custom-
ers were served+ So, we must have

6 ZFi
~k!~kt2! 2 ZFi

~k!~kt1! 2 (
m[M

µi
m~ ZGmi

~k!~kt2! 2 ZGmi
~k!~kt1!!6 # 2 max

m
µi

m+

Multiplying the last inequality by 10k and taking the limitk r `, we obtain~31!+
Property~33! easily follows from the fact that in the interval@0,`!, the scaled

input flow functionfi
~k!~{! converges u+o+c+ to the strictly increasing linear function

fi ~0! 1 l i t+We omit details+ n

Since some of the component functions included inx ~viz+ fi ~{!, Zfi ~{!, gm~{!,
[gmi~{!, andqi ~{!! are Lipschitz in@0,`!, they are absolutely continuous+ Therefore,

at almost all pointst [ @0,`! ~with respect to Lebesgue measure!, the derivatives of
all those functions exist+We will call such pointsregular+

In the rest of this article,when we consider a fixed limiting set of functionsx, as
defined in Lemma 1, we always assume that a sequence of prelimit paths$x ~k! % ,
which “defines it” ~viz+ the convergence properties of Lemma 1 hold!, is fixed as
well, along with the corresponding sequence of unscaled paths$X ~k! % +

5.2. Proof of Theorem 3 for the M-LWWF Discipline

The meaning of the following auxiliary lemma is that if relation~34! holds at some
~scaled! time t, then by virtue of the M-LWWF scheduling rule, in some neighbor-
hood of pointt, flow i cannot be served+

Lemma 2: Consider the system with the M-LWWF discipline. With probability1, a
limiting set of functions x, as defined in Lemma 1, satisfies the following additional
property. If

gi µi
mqi ~t ! , max

j
gj µj

mqj ~t ! (34)

for some regular point t$ 0, for some i and m, then

[gmi
' ~t ! 5 0+ (35)

Proof: Let us pick aj at which the maximum in inequality~34! is attained+ In a
similar manner to the proof of property~31! ~in Lemma 1!, we can fix a small
positived1 . 0 such that, for all sufficiently largek, for the unscaled pathX ~k! we
must have
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max
z[@~t2d1!k, ~t1d1!k#

gi µi
mQi

~k!~z! , min
z[@~t2d1!k, ~t1d1!k#

gj µj
mQj

~k!~z!+

~If t 5 0, then the time interval should be@0,d1k# +! This means that in the interval
@~t 2 d1!k 1 1, ~t 1 d1!k 2 1# , queuei cannot be served in any time slot when the
server is in statembecause it would contradict the M-LWWF scheduling rule+ Thus,
for all sufficiently largek, we must have

[gi
~k!St 1

d1

2 D2 [gi
~k!St 2

d1

2 D 5 0,

which implies [gi ~t 1 d102! 2 [gi ~t 2 d102! 5 0, and we are done+ n

Let us introduce a quadratic Lyapunov function

L~ y! 5
1

2 (
1

N

gi yi
2 (36)

for a vectory 5 ~ y1, + + + , yN !+
The following lemma embodies the key idea behind MaxWeight-type sched-

uling rules: They try to maximize the rate of decrease of the Lyapunov function
L~q~t !!+ So, roughly speaking, since there exists at least one scheduling rule~e+g+,
an SSS rule withf such thatl , v~f!! under whichL~q~t !! has a negative drift
~when L~q~t !! . 0!, the drift of L~q~t !! under M-LWWF has to be negative as
well+

Lemma 3: Consider a system with the M-LWWF discipline. For anyd1 . 0, there
existsd2 . 0 such that the following holds. With probability1, a limiting set of
functions x, as defined in Lemma 1, satisfies the following additional properties:

L~q~t !!, t $ 0, is an absolutely continuous function,

L~q~0!! #
1

2 (
1

N

gi , (37)

and at any regular point t,

L~q~t !! $ d1 implies
d

dt
L~q~t !! # 2d2+ (38)

Proof: Let us pick a fixed stochastic matrixf such thatl i , vi ~f! for all i + ~The
existence of such a matrix is condition~4!+!

For any regulart $ 0 such thatL~q~t !! . 0, the derivative ofL~q~t !! can be
written

d

dt
L~q~t !! 5 (

i51

N

gi qi ~t !~l i 2 Zfi '~t !! (39)

5 (
i51

N

gi qi ~t !~l i 2 vi ~f!! 1 (
i51

N

gi qi ~t !vi ~f! 2 (
i51

N

gi qi ~t !vi ~ Zf!, (40)
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where

Zfmi~t ! 5{
[gmi
' ~t !

pm

,

and we use the fact~following from property~31!! that

Zfi '~t ! 5 (
m

µi
m [gmi
' ~t ! if qi ~t ! . 0+

Let us choosed3 . 0 such thatL~ y! $ d1 implies maxi yi $ d3+ Then, the first sum
in ~40! is bounded as follows:

(
i51

N

gi qi ~t !~l i 2 vi ~f!! # 2Smin
i

giDd3 min
i

~vi ~f! 2 l i ! 5{ 2d2+

It remains to show that

K~ Zf~t !,q~t !! $ K~f,q~t !!, (41)

whereK~j, y! denotes the function of a stochasticM 3Nmatrixj and a nonnegative
N-dimensional vectory, defined as

K~j, y! 5{ (
i51

N

gi yi vi ~j! 5 (
i

gi yi (
m

pmjmi µi
m 5 (

m

pm(
i

jmi gi µi
myi +

It is easy to see that for any nonnegative vectory, a stochastic matrixj maxi-
mizesK~j, y! if and only if the following condition holds for everyi and m: If
gi µi

myi , maxj gj µj
myj , then

jmi 5 0+ (42)

However, property~35! shows that~42! is satisfied fory5 q~t ! andj 5 Zf~t !+ This
proves~41! and the lemma+ n

Lemma 4: Consider a system with the M-LWWF discipline. For anyd . 0, there
exists T. 0 such that with probability1, a limiting set of functions x, as defined in
Lemma 1, satisfies the following additional property:

L~q~t !! # d, t $ T+ (43)

The proof follows from Lemma 3+

Proof of Theorem 3 for M-LWWF: According to Lemmas 1–4, for any fixed
e1 . 0 we can always choose a large enough integerT. 0 such that for any sequence
of random processes$X ~n! % , there exists a subsequence$X ~k! % such that with prob-
ability 1, the convergence to a limiting set of functionsx takes place and,moreover,

(
i

qi ~T ! # e1+ (44)
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If we recall thatT is large, then it follows from~44! that

Zfi ~T ! 5 fi ~T ! 2 qi ~T ! . fi ~0!, ∀ i, (45)

implying ~by ~33!! that

wi ~T ! 5
qi ~T !

l i

, ∀ i+ (46)

This, in turn, implies~sincee1 is small! that

(
i

qi ~T ! 1 (
i

wi ~T ! # S11
1

Smin
i

l iDDe1 5{ 12 e , 1+

Therefore, with probability 1,

lim sup
nr`

1

n
7S~n! ~nT!7 # 12 e+ (47)

Since

7S~n! ~nT!7 # n 1 (
i

@Fi
~n!~nT! 2 Fi

~n!~0!# 1 N @n 1 nT# ,

our input process assumptions easily imply that the sequence$~10n!7S~n!~nT!7% is
uniformly integrable+ This, along with ~47!, verifies condition~10!+ The proof is
complete+ n

The following supplemental statement about the M-LWWF discipline will play
an important role in the stability proof for the M-LWDF discipline+

Consider ageneralizedsystem with a given disciplineH+ The generalization is
to assume that some time slots are unavailable for service of any queue+ In each
available for service time slot, the scheduling rule isH+ In a generalized system, let
Gm

~n!~t ! denote the number ofavailable for servicetime slots~by time t ! when the
server is in statem+ ~Such a generalized system arises later, when we want to study
the service dynamics of asubsetof queues+ To do that, we will view the time slots
allocated to any other queue as unavailable for service of the subset of queues on
which we focus+!

Lemma 5: Let positive constants K0 and K1 be fixed. Consider a sequence of
fixed sample paths$X ~k! % of the generalized system under M-LWWF such that as
k r `, all properties described in Lemmas 1 and 2 hold with the following
modifications:

Property (22) is replaced by

(
i51

N

fi ~0! # K0 , `, (48)
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property (26) is replaced by

gm~t ! 5 pmt 2 hm~t !, t $ 0, (49)

where each function hm is nondecreasing Lipschitz-continuous, hm~0! 5 0, and

(
m

lim
tr`

hm~t ! # K1+

Then, the function L~q~t !! has the upper bound C, `, which depends only on K0
and K1:

L~q~t !! # C, t $ 0+ (50)

Proof: The idea of the proof is simple: the total “amount” of~scaled! time when
service is unavailable to the queues is finite, bounded above byK1+ During the “rest
of the time,” when the service is available, the Lyapunov functionL~q~t !! cannot
increase, due to the “reasons” presented in the proof of Lemma 3+However,we need
to apply this idea in a continuous time setting, which requires some care with the
estimates+We now proceed with the details+

We will use the notationOL~t ! 5{ L~q~t !!+ Let us choosed . 0 small enough so
that the following holds for regular pointst+ If gm

' ~t ! $ pm 2 d for eachm, then
~d0dt! OL~t ! , 0+ ~The existence of such ad is easily obtained using the argument and
the estimates used in the proof of Lemma 3+! Note that(m hm

' ~t ! # d impliesgm
' ~t ! $

pm 2 d for eachm+
Let us denote byL the Lebesgue measure and byL thes-algebra of Lebesgue-

measurable subsets of@0,`!+ Consider the subset

B 5{ Ht [ @0,`! : t is regular,(
m

hm
' ~t ! . dJ +

It is easy to check thatB [ L and

L~B! #
K1

d
+

Define the measuren onL as follows:

n~A! 5{ L~A ù B!+

Notice thatn~@0,`!! 5 L~B!+
For future reference, we note that for some fixed positivec1 and c2 and all

regulart,

OL'~t ! # c1 1 c2 OL~t !, (51)

which follows from the estimate

OL'~t ! 5 (
i

gi qi ~t !qi
'~t ! # ~maxl i ! (

i

gi qi ~t ! # ~maxl i ! (
i

gi @11 ~qi ~t !!
2# +
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We see that the derivativeOL'~t ! is bounded above as in~51! at regular points
t [ B, and it is negative at regular pointst [ @0,`!\B+We can write

OL~t ! # OL~0! 1E
@0, t #ùB

OL'~ y!L~dy! 5 OL~0! 1E
0

t

OL'~ y!n~dy!

# OL~0! 1 c1n~@0, t # ! 1 c2E
0

t

OL~ y!n~dy!

# OL~0! 1 c1n~@0,`!! 1 c2E
0

t

OL~ y!n~dy!+

Applying Gronwall’s inequality@11, p+ 498# , we obtain

OL~t ! # @ OL~0! 1 c1n~@0,`!!# exp$c2n~@0,`!!%

and, finally,

OL~t ! # FK0 1
c1 K1

d
GexpH c2 K1

d
J , t $ 0,

which proves the lemma+ n

5.3. Proof of Theorem 3 for the M-LWDF Discipline

The following lemma describes the key property of the M-LWDF discipline which
is analogous to the M-LWWF property described in Lemma 2+

Lemma 6: Consider a system with the M-LWDF discipline. With probability1, a
limiting set of functions x, as defined in Lemma 1, satisfies the following additional
property. If in some interval@t1, t2# , 0 # t1 , t2 , `, for some fixed m and fixed i
and j we have

sup
t1#t#t2

gi µi
mwi ~t ! , inf

t1#t#t2
gj µj

mwj ~t !, (52)

then

[gmi~t2! 2 [gmi~t1! 5 0+ (53)

Proof: The proof is analogous to the proof of Lemma 2+ ~The only additional dif-
ficulty is the fact that the functionswi ~{! may not be continuous+! Note that condition
~52! implies thatµj

m . 0+ We will consider only the nontrivial case whenµi
m . 0+

~The caseµi
m 5 0 is treated analogously to and simpler than this case+! Let us fix

positive constantsa andd such that

sup
t1#t#t2

gi µi
mwi ~t ! , a 2 d , a 1 d , inf

t1#t#t2
gj µj

mwj ~t !+ (54)
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Then, for all t [ @t1, t2# , we have

ui ~t ! . t 2
a 2 d

gi µi
m

and

uj ~t ! , t 2
a 1 d

gj µj
m +

Since for eachi , ui ~{! and allui
~k!~{! are nondecreasing and we have the convergence

ui
~k!~t !r ui ~t ! for everyt whereui is continuous,we see that for all sufficiently large

k and for allt [ @t1, t2# ,

ui
~k!~t ! . t 2

a

gi µi
m

and

uj
~k!~t ! , t 2

a

gj µj
m+

From the latter two inequalities, we see that

gi µi
mwi

~k!~t ! , a , gj µj
mwj

~k!~t !, t [ @t1, t2# +

Just as in the proof of Lemma 2, we observe that the latter property implies that for
all largek,

[gmi
~k!St2 2

1

k
D2 [gmi

~k!St1 1
1

k
D 5 0

because the corresponding unscaled pathX ~k! is such that queuei may not be served
in any time slot in the interval@kt111, kt221# when the server is in statem+ ~Other-
wise, we would get a violation of the M-LWDF scheduling rule+! Taking the limit
k r ` completes the proof+ n

The following lemma shows that under M-LWDF, all fluid limits x are such that
after some fixed timeTN , all of the “initial fluid” is served~and, therefore, the linear
relationqi ~t ! 5 l i wi ~t ! holds! for all t $ TN and all queuesi +

Lemma 7: Consider a system with the M-LWDF discipline. There exists TN . 0such
that with probability1, a limiting set of functions x, as defined in Lemma 1, satisfies
the following additional property:

Zfi ~TN ! . fi ~0!, i 5 1, + + + ,N+
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To illustrate the intuition behind the formal proof, we present the following
informal discussion+ Suppose we consider the system with two flowsi 5 1,2 and
assume that by some fixed timeT1 $ 0, we have Zf1~T1! . f1~0! ~i+e+, all of the initial
fluid of type 1 has been served!+ Consider a fixed sufficiently large timeT2+ Let us
show why the assumption that the initial type 2 fluid is not served by timeT2, namely

Zf2~T2! # f2~0!, (55)

leads to a contradiction+ We observe that, first, the flow 2 delayw2~t ! $ t for all
t [ @T1,T2# + Second, the amount of time unavailable to flow 1 in@T1,T2# is
bounded above: f2~0! # 1+ Then, according to Lemma 5, q1~t !—and therefore
w1~t ! 5 q1~t !0l1—is bounded above in@T1,T2# by a constant independent of
T2+ Therefore, during most of the interval@T1,T2#, the ratio of the waiting times
w2~t !0w1~t ! is very large+ This means that~during most of the interval@T1,T2# ! as
long as the server statem is such that flow 2 can be served at strictly positive rate
µ2

m, the M-LWDF rule must choose for service queue 2 over queue 1+ This means
that the amount of time when queue 2 is served is of the order ofT2, which is
large+ However, then all of initial type 2 fluid, the amount of which is upper
bounded by 1, must be served by timeT2—a contradiction to assumption~55!+

Proof of Lemma 7: Let us fix an arbitrarye2 . 0+We have

fi ~e2! 5 fi ~0! 1 l i e2 . fi ~0!, ∀ i,

and

(
i

qi ~e2! # (
i

fi ~e2! # K1 5{ 11 S(
i

l iDe2+

We will show the existence ofTN such that

Zfi ~TN ! $ fi ~e2!, i 5 1, + + + ,N+ (56)

The proof of~56! is by induction+
Induction Base. There exists T1 . 0 such that for at least one i,

Zfi ~T1! $ fi ~e2!+

Let us setT1 5{ e2 1 K10p*, wherep* is the sum of the stationary probabilitiespm

over server statesmsuch thatµj
m . 0 for at least onej+ Suppose the statement of the

induction base,with thisT1, does not hold+ Then, for all sufficiently largek,we must
have

(
i

@ Zfi
~k!~T1! 2 Zfi

~k!~e2!# $ p *~T1 2 e2! 1 o~1! 5 K1 1 o~1!,

whereo~1! is a term vanishing ask r `+ Taking thek r ` limit , we obtain

(
i

@ Zfi ~T1! 2 Zfi ~e2!# $ K1,
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which means~see the definition ofK1! that (i Zfi ~T1! $ (i fi ~e2! and, therefore,
Zfi ~T1! $ fi ~e2! for at least onei + This contradiction proves the induction base+

Induction Step. Suppose that there exists Tl . 0, 1# l , N such that for at least
one subset Nl , $1, + + + ,N% of cardinality l, we have

Zfj ~Tl ! $ fj ~e2! (57)

for all j [ Nl. Then, there exists Tl11 $ Tl such that (57) holds for all j within at least
one subset Nl11 of cardinality l1 1.

We will prove the induction step forl 51+ ~The generalization for arbitraryl is
straightforward+! Thus, we need to prove the existence ofT2 $ T1 such that for at
least two different flowsi andr, ~57! holds for j 5 i, r, with T1 being the constant
from the induction base statement+

Let us fix i for which

Zfi ~t ! $ fi ~e2!, t $ T1,

according to the induction base+ Suppose

Zfj ~T1! , fj ~e2! for all j Þ i+ (58)

We observe that

(
jÞi

~ fj ~e2! 2 Zfj ~T1!! # K1,

whereK1 is as defined earlier, and

qi ~T1! # K0 5{ 11 l i T1+

Suppose that a constantT2 . T1 is fixed such that

Zfr ~T2! , fr ~e2! for all r Þ i+ (59)

~Below,we provide a choice ofT2 such that assumption~59! leads to a contradiction+!
Let us view each unscaled pathX ~k! after timekT1 as a generalized system

~described just above Lemma 5! with the single input flow of typei and with time
slots allocated to any other flow being unavailable to flowi + ~By convention, only
the slots in which at least one customer of at least one flowr Þ i was actually served
are considered unavailable to flowi +! Then, for the scaled generalized system, start-
ing at timeT1, we have

hm~t ! 5 (
rÞi

@ [gmr~t ! 2 [gmr~T1!# # K1, T1 # t # T2, m [ M+ (60)

Sincex is such that the simple linear relationl i wi ~t ! 5 qi ~t ! holds for flowi for all
t $ T1, the generalized system with the M-LWDF discipline satisfies all of the prop-

QUEUING SYSTEM AND ASYNCHRONOUS RATES 213



erties of the generalized system with the M-LWWF discipline~including Lemma 5!,
with eachgi replaced bygi 0l i + Thus, from Lemma 5, we have

1

2S gi

l i
Dqi

2~t ! # C,

where the left-hand side is the “L~q~t !!” for the generalized system andC$ 0 is the
constant defined in Lemma 5, depending only on the constantsK0 andK1 specified
in this proof+ From the last display we have the estimate

qi ~t ! # C1 5{ ! 2Cl i

gi

, t [ @T1,T2# + (61)

Note thatC1 does not depend on the choice ofT2+
From this point, we “switch back” to interpretingX ~k! as a path of the original

system+ Let us denote byM~i ! the subset of elementsm [ M such thatµj
m . 0 for

at least one flowj Þ i and denotep*~i ! 5{ (m[M~i ! pm+ Let us chooseT2
'. T1 large

enough so that for any pair ofj Þ i andm [ M such thatµj
m . 0, we have

gi µi
mC1

l i

, gj µj
m~T2

'2 e2!+ (62)

Finally, let us chooseT2 . T2
' large enough so that

p *~i !~T2 2 T2
'! . K1+

Our choice ofT2
' in ~62! guarantees that for all sufficiently largek, the unscaled path

X ~k! must be~according to the M-LWDF rule! such that in the interval@kT2
' , kT2# , in

every time slot in which the state of the server belongs to the setM~i !, one of the
flows r Þ i is chosen for service+ This observation implies that in thekr` limit for
the corresponding scaled paths, we must have

(
rÞi

@ [gmr~T2! 2 [gmr~T1!# $ p *~i !~T2 2 T2
'! . K1+

This is a contradiction to~60!, which shows that, for the T2 chosen above, ~59!
cannot hold, and, therefore,

Zfr ~T2! $ fr ~e2! (63)

for at least oner Þ i +
We have proved claim~63!, assuming condition~58!+ However, the opposite of

condition~58! means that, trivially, ~63! holds for somer Þ i and anyT2 $ T1+ Thus,
~63! holds for the chosenT2 regardless of condition~58!+

Our choice ofT2 depended oni + However, since there is only a finite number of
possible values ofi , we can chooseT2 so that~63! holds for somer Þ i no matter
what i is+ The proof of the induction step is complete+ n
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Proof of Theorem 3 for M-LWDF: We proved the existence ofTN . 0 such that
for any sequence of random processes$X ~n! % , there exists a subsequence$X ~k! % such
that with probability 1, the convergence to a limiting set of functionsx takes place,
and, moreover, x is such that the linear relation exists for alli :

l i wi ~t ! 5 qi ~t !, t $ TN +

This fact, along with Lemma 6,means that with probability 1 in the interval@TN ,`!
the setx also satisfies all the properties described in Lemmas 2–4 if only in their
formulations we replacegi by gi 0l i , replace~37! by the condition

L~q~TN !! #
1

2 (
1

N

gi ~11 l i TN !2,

and move the time origin toTN + Therefore, for anye1 . 0, there existsT $ TN such
that with probability 1, x satisfies the condition

(
i

qi ~T ! # e1+

The rest is exactly as in the proof of the theorem for M-LWWF+ The only difference
is that we obtain~46! directly from the property~33! and Lemma 7, not from~45!+

6. CONCLUSIONS

We consider the variable channel scheduling queuing model which naturally arises
in wireless communications+We show that a wide class of online scheduling rules,
including the M-LWDF and M-LWWF rules~and their generalizations!, are through-
put optimal~i+e+, they make all queues stable as long as the flow arrival rates are
within the system stability region!+One of the main contributions of this work is that
we show that the throughput optimality of MaxWeight-type scheduling rules is pre-
served when flow waiting times are used as queue state variables in place of~or in
conjunction with! the queue lengths+

We believe that the class of scheduling algorithms we study in this article can be
efficiently used in applications to provide flexible control of quality of service to
multiple data flows—in particular flows sharing a time-varying wireless link+
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APPENDIX

Details of the Proof of Sufficiency in Theorem 1

Lemma 1 holds for any scheduling rule, including the SSS rule associated with the matrixf+
For this rule, with probability 1, a limiting set of functionsx is such that

[gmi~t ! 5 fmi gm~t ! 5 fmi pmt, t $ 0+

From this and the argument analogous to that used in~39! and~40!, we see that at any regular
point t $ 0, conditionqi ~t ! . 0 implies

qi
'~t ! 5 l i 2 Zfi '~t ! 5 l i 2 vi ~f! , 0+

Therefore, q~t ! [ 0 for all t $ maxi 10~vi ~f! 2 l i !+ The rest of the proof is the same as in the
proof of Theorem 3 for the M-LWWF rule, which follows Lemma 4 in Section 5+2+ n
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