
The Skorokhod problem in a time-dependent
interval

Krzysztof Burdzy∗, Weining Kang and Kavita Ramanan†
University of Washington and Carnegie Mellon University

Abstract: We consider the Skorokhod problem in a time-varying interval. We prove

existence and uniqueness for the solution. We also express the solution in terms of

an explicit formula. Moving boundaries may generate singularities when they touch.

We establish two sets of sufficient conditions on the moving boundaries that guarantee

that the variation of the local time of the associated reflected Brownian motion is,

respectively, finite and infinite. We also apply these results to study the semimartingale

property of a class of two-dimensional reflected Brownian motions.

AMS 2000 subject classifications: Primary 60G17, 60J55 ; Secondary 60J65 .

Keywords and phrases: reflected Brownian motion, semimartingale property, Sko-

rokhod problem, Skorokhod map, space-time Brownian motion.

1. Introduction

We consider the Skorokhod problem with two moving boundaries. Informally speaking, the
problem is concerned with reflecting or constraining a given path in a space-time region
defined by two moving boundaries. We will address several problems inspired by recent
related developments. First, we study the question of existence and uniqueness to a slight
generalization of the Skorokhod problem, which we refer to as the extended Skorokhod
problem. We show that the solution not only exists and is unique, but can be represented in
terms of an explicit and rather simple formula. Second, we prove some monotonicity relations
for solutions to the extended Skorokhod problem. Similar monotonicity properties are quite
obvious when there is only one reflecting boundary; they are not so obvious in our context.
In addition, we study the issue of whether the constraining process associated with reflected
Brownian motion has finite or infinite total variation. This issue arises when the two end
points of the time-varying interval are allowed to meet and is related to the question of
whether the reflected Brownian motion is a semimartingale. Finally, we apply our analysis
of one-dimensional reflected Brownian motion in a time-dependent interval to study the
behavior of the constraining process and, in particular, the semimartingale property of a
class of two-dimensional reflected Brownian motions in a fixed domain that were studied in
[4, 11, 17, 19, 24]. Reflecting Brownian motions in time-dependent domains arise in queueing
theory [13, 16], statistical physics [5, 22], control theory [10] and finance [9].

The present paper is related to several articles. First, the papers [14] and [15] present
an explicit formula for the Skorokhod mapping in the simpler setting of a constant interval
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[0, a]. Second, the works [2] and [3] contain an analysis of Brownian motion reflected on one
moving boundary. In particular, the second paper presents results on singularities at rough
boundary points. In the present paper, we analyze singularities due to the interaction of two
moving boundaries. In our context, a “singularity” means the infinite variation of the associ-
ated constraining process, which we henceforth refer to as the local time process (see Remark
4.2 for a discussion of this terminology). Finally, the paper [4] (see also [11, 24]) studied a
special case of two-dimensional reflected Brownian motion in “valley-shaped” domains, with
all reflection vectors parallel to the same straight line. We establish the somewhat surprising
result that this two-dimensional reflected Brownian motion is not a semimartingale, irre-
spective of the particular shape of the domain. In addition, we also provide new proofs of
some of the qualitative results of the papers [4, 24].

The rest of the paper is organized as follows. We start with a short section collecting
the notation used throughout the paper. Section 2 is devoted to the foundational results—
existence, uniqueness and an explicit formula for the so-called extended Skorokhod mapping.
Section 3 contains some “comparison” or “monotonicity” results. Finally, Sections 4.1 and
4.2 present theorems on the local time of reflected Brownian motion in a time-dependent
interval. These results are applied in Section 4.3 to study the local time of a class of two-
dimensional reflected Brownian motions.

1.1. Notation

We use D [0,∞) to denote the space of càdlàg functions (i.e., continuous on the right with
finite left limits) that are defined on [0,∞) and take values in (−∞,∞). The space of
right continuous functions whose left limits (at all points in (0,∞)) and values both lie in
[−∞,∞) (respectively, (−∞,∞]) will be denoted D− [0,∞) (respectively, D+ [0,∞)). Given
two functions f ∈ D− [0,∞), g ∈ D+ [0,∞), we will say f ≤ g (respectively, f < g) if
f(t) ≤ g(t) (respectively, f(t) < g(t)) for every t ∈ [0,∞). We let C [0,∞) represent the
subspace of continuous functions in D [0,∞). We denote the variation of a function f on
[t1, t2] by V[t1,t2](f). We denote by `(·) a generic function in D− [0,∞) and by r(·) a generic
function in D+ [0,∞), and assume that ` ≤ r.

Moreover, given a, b ∈ R, denote a∧ b .= min{a, b}, a∨ b .= max{a, b}, and a+ .
= a∨ 0. We

denote by IA the indicator function of a set A.
We also use the following abbreviations, whose meaning will be explained later: SP—

Skorokhod problem, SM—Skorokhod map, ESP—extended Skorokhod problem, ESM—extended
Skorokhod map, BM—Brownian motion, RBM—reflected Brownian motion.

2. Skorokhod and Extended Skorokhod Maps in a Time-Dependent Interval

The so-called Skorokhod Problem (SP) was introduced in [21] as a convenient tool for the
construction of reflected Brownian motion (RBM) in the time-independent domain [0,∞).
Specifically, given a function ψ ∈ D [0,∞), the SP on [0,∞) consists of identifying a non-
negative function φ such that the function η

.
= φ−ψ is non-decreasing and, roughly speaking,
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increases only at times t when φ(t) = 0. It was shown in [21] that there is a unique map-
ping that takes any given ψ ∈ C [0,∞) to the corresponding function φ (the extension to
ψ ∈ D [0,∞) is straightforward). Moreover, this mapping, which we shall refer to as the
Skorokhod map (SM) on [0,∞) and denote by Γ0, admits the explicit representation

Γ0(ψ)(t) = ψ(t) + sup
s∈[0,t]

[−ψ(s)]+ , ψ ∈ D [0,∞) . (2.1)

Given a Brownian motion (BM) B on R with B(0) = 0, and any x ≥ 0, the process
W = Γ0(x + B) defines RBM on [0,∞), starting at x. More generally, due to the Lipschitz
continuity of the map Γ0, standard Picard iteration techniques can be used to construct solu-
tions to stochastic differential equations with reflection on [0,∞), under the usual Lipschitz
assumptions on the drift and diffusion coefficients.

In a similar fashion, the generalizations of the SP given in Section 2.1 will be the basis for
the construction of 1-dimensional RBM in a time-dependent interval. We also establish some
basic properties of these generalizations in Section 2.1 and then provide an explicit formula
for the ESM in Section 2.2.

2.1. Basic Definitions and Properties

We first describe the SP on a time-varying interval [`(·), r(·)] (see, e.g., Appendix A of [13]).

Definition 2.1. (Skorokhod problem on [`(·), r(·)]) Suppose that ` ∈ D− [0,∞), r ∈
D+ [0,∞) and ` ≤ r. Given any ψ ∈ D [0,∞), a pair of functions (φ, η) ∈ D [0,∞)×D [0,∞)
is said to solve the SP on [`(·), r(·)] for ψ if and only if it satisfies the following properties:

1. For every t ∈ [0,∞), φ(t) = ψ(t) + η(t) ∈ [`(t), r(t)];
2. η = η` − ηr, where η` and ηr are non-decreasing functions such that

∫ ∞

0
I{φ(s)> `(s)}d η`(s) = 0,

∫ ∞

0
I{φ(s)< r(s)}d ηr(s) = 0. (2.2)

If (φ, η) is the unique solution to the SP on [`(·), r(·)] for ψ then we will write φ = Γ`,r(ψ),
and refer to Γ`,r as the associated SM. Moreover, the pair (η`, ηr) will be referred to as the
constraining processes associated with the SP.

Although Definition 2.1 is a natural extension of the SP to time-dependent domains in R

it is restrictive in that it only allows “constraining terms” η that are of bounded variation.
In particular, this implies that any RBM constructed via the associated SM is automatically
a semimartingale. For fixed domains in R

d, a generalization of the SP that allows for a
pathwise construction of RBMs that are not necessarily semimartingales was introduced in
[17] (see also [4] for a formulation in two dimensions). The following is the analog of these
generalizations for time-dependent domains in R.

Definition 2.2. (Extended Skorokhod problem on [`(·), r(·)]) Suppose that ` ∈ D− [0,∞),
r ∈ D+ [0,∞) and ` ≤ r. Given any ψ ∈ D [0,∞), a pair of functions (φ, η) ∈ D [0,∞) ×
D [0,∞) is said to solve the ESP on [`(·), r(·)] for ψ if and only if it satisfies the following
properties:

imsart ver. 2005/10/19 file: timevar17.tex date: March 8, 2008



/ 4

1. For every t ∈ [0,∞), φ(t) = ψ(t) + η(t) ∈ [`(t), r(t)];
2. For every 0 ≤ s < t <∞,

η(t) − η(s) ≥ 0, if φ(u) < r(u) for all u ∈ (s, t]

η(t) − η(s) ≤ 0 if φ(u) > `(u) for all u ∈ (s, t];

3. For every 0 ≤ t <∞,

η(t) − η(t−) ≥ 0 if φ(t) < r(t),

η(t) − η(t−) ≤ 0 if φ(t) > `(t),

where η(0−) is to be interpreted as 0.

If (φ, η) is the unique solution to the ESP on [`(·), r(·)] for ψ then we will write φ = Γ`,r(ψ),
and refer to Γ`,r as the associated extended Skorokhod map (ESM).

We conclude this section by establishing certain properties of SPs and ESPs (see Theorem
1.3 of [17] for analogs for time-independent multi-dimensional domains). The first property
describes in what sense the ESP is a generalization of the SP.

Proposition 2.3. Suppose we are given ` ∈ D− [0,∞), r ∈ D+ [0,∞) with ` ≤ r and
ψ ∈ D [0,∞). If (φ, η) solve the SP on [`(·), r(·)] for ψ, then (φ, η) solve the ESP on [`(·), r(·)]
for ψ. Conversely, if (φ, η) solve the ESP on [`(·), r(·)] for ψ and η has finite variation on
every bounded interval, then (φ, η) solve the SP for ψ.

Proof. The first statement follows from the easily verifiable fact that property 2 of Definition
2.1 implies properties 2 and 3 of Definition 2.2. For the converse, let (φ, η) be a solution to the
ESP on [`(·), r(·)] for ψ and suppose η has finite variation on every bounded interval. Then
the Lebesgue-Stieltjes measure dη is absolutely continuous with respect to the corresponding
total variation measure d|η|. Let γ be the Radon-Nikodỳm derivative dη/d|η| of dη with
respect to d|η|. Then γ is d|η|-measurable, γ(s) ∈ {−1, 1} for d|η| a.e. s ∈ [0,∞) and

η(t) =
∫

[0,t]
γ(s)d|η|(s).

Moreover, it is well-known (see, for example, Section X.4 of [7]) that for d|η| a.e. s ∈ [0,∞),

γ(s) = lim
n→∞

η(s+ εn) − η(s−)

|η|(s+ εn) − |η|(s−)
, (2.3)

where the sequence εn depends on s and is such that |η|(s + εn) − |η|(s−) > 0 and
εn → 0 as n → ∞. Now, for each t ≥ 0, define η`(t) =

∫
[0,t] I{γ(s)=1}d|η|(s) and ηr(t) =∫

[0,t] I{γ(s)=−1}d|η|(s). Since γ only takes the values 1 and −1 (d|η| a.e.), it is clear that
η = η` − ηr. We shall now show that η` satisfies the first complementary condition in (2.2).
It follows from the definition of η` that

∫ ∞

0
I{φ(s)> `(s)}d η`(s) =

∫ ∞

0
I{φ(s)> `(s)}I{γ(s)=1}d|η|(s).
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Suppose that there exists s ≥ 0 such that φ(s) > `(s), γ(s) = 1 and (2.3) holds. We will
show that this assumption leads to a contradiction. Since φ(s) > `(s), by the right continuity
of φ and `, there exists δ > 0 such that φ(u) > `(u) for all u ∈ [s, s + δ]. By properties
2 and 3 of Definition 2.2, we have η(u) − η(s−) ≤ 0 for each u ∈ [s, s + δ]. On the other
hand, since γ(s) = 1 and |η| is a non-decreasing function, for all sufficiently large n we have
from (2.3) that η(s+ εn)− η(s−) > 0. This leads to a contradiction. Hence φ(s) > `(s) and
γ(s) = 1 cannot hold simultaneously for d|η| a.e. s, which proves the first complementarity
condition in (2.2). The second complementary condition in (2.2) can be established in a
similar manner.

Corollary 2.4. Suppose that ` ∈ D− [0,∞), r ∈ D+ [0,∞) and inf t≥0(r(t) − `(t)) > 0. If
(φ, η) ∈ D [0,∞) × D [0,∞) solve the ESP on [`(·), r(·)] for some ψ ∈ D [0,∞), then (φ, η)
solve the SP on [`(·), r(·)] for ψ.

Proof. By Proposition 2.3, it suffices to show that η has bounded variation on every finite
time interval. Let τ0 = 0 and for n ∈ Z+, let τ2n+1 = inf{t ≥ τ2n : φ(t) = r(t)} and
τ2n+2 = inf{t ≥ τ2n+1 : φ(t) = `(t)}. For each n ∈ Z+, on the interval [τn, τn+1), φ will touch
exactly one of the boundaries ` and r. By properties 2 and 3 of the ESP, this implies that η
will be either non-decreasing or non-increasing, and hence in particular of bounded variation,
on each interval [τn, τn+1). Moreover, under the assumption inf t≥0(r(t) − `(t)) > 0 and the
fact that φ ∈ D [0,∞), it is easy to see that there are finitely many τn’s in each bounded
time interval. Thus η will have finite variation on each bounded time interval.

The following property is a simple, but extremely useful, closure property of the ESP.
Below, the abbreviation u.o.c. stands for uniformly on compacts, i.e., we say fn → f u.o.c.
if for every T <∞, sups∈[0,T ] |fn(s) − f(s)| → 0 as n→ ∞.

Proposition 2.5. (Closure Property) For each n ∈ N, let `n ∈ D− [0,∞), rn ∈ D+ [0,∞)
be such that `n ≤ rn, and let ψn ∈ D [0,∞). Suppose there exist ` ∈ D− [0,∞), r ∈ D+ [0,∞)
and ψ ∈ D [0,∞) such that ψn → ψ, `n → ` and rn → r u.o.c., as n → ∞. Moreover,
suppose that for each n ∈ N, (φn, ηn) solve the ESP on [`n(·), rn(·)] for ψn. If φn → φ u.o.c.,
as n→ ∞, then (φ, φ− ψ) solve the ESP on [`(·), r(·)] for ψ.

Proof. Let ψn, `n, rn, φn, ηn, n ∈ N, and ψ, `, r, φ be as in the statement of the proposition
and let η

.
= φ − ψ. By property 1 of Definition 2.2, ηn = φn − ψn and φn(t) ∈ [`n(t), rn(t)]

for all t ∈ [0,∞). Together with the assumed u.o.c. convergences of ψn, φn, `n and rn to
ψ, φ, ` and r, respectively, this implies ηn → η u.o.c., as n→ ∞, and φ(t) ∈ [`(t), r(t)] for all
t ∈ [0,∞). Thus (φ, η) satisfy property 1 of Definition 2.2.

Now, suppose that η(t−) > η(t) for some t. We will show that then φ(t) = r(t). Since
ηn → η u.o.c., we have ηn(t−) > ηn(t) for all sufficiently large n. By property 3 of Definition
2.2, this implies that φn(t) = rn(t) for all sufficiently large n. The convergences φn(t) → φ(t)
and rn(t) → r(t) then imply that φ(t) = r(t). An analogous argument shows that if η(t−) <
η(t) then φ(t) = `(t), thus showing that (φ, η) satisfy property 3 of Definition 2.2.
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In order to show that (φ, η) satisfy the remaining property 2 of Definition 2.2, fix 0 ≤ s <
t <∞ and suppose that

φ(u) < r(u) for u ∈ (s, t]. (2.4)

We want to show that then η(t) ≥ η(s). By the right continuity of η, it suffices to show that
η(t) ≥ η(s̃) for every s̃ ∈ (s, t]. Suppose, to the contrary, that η(t) < η(s̃) for some s̃ ∈ (s, t].
Since (φ, η) satisfy property 3, due to condition (2.4) we must have η(u) ≥ η(u−) for every
u ∈ [s̃, t]. In particular, this implies that B

.
= {η(u) : u ∈ [s̃, t]} ⊇ [η(t), η(s̃)]. Thus the set

B is uncountable, while the set A of all discontinuities of all functions `n, rn, ψn, φn, `, r, ψ
and φ is countable. Hence, there exists α ∈ [η(t), η(s̃)) \ {η(u) : u ∈ A}. Define u1

.
= inf{u ∈

(s̃, t) \ A : η(u) = α} and note that u1 > s̃ and

η(u) > η(u1) for all u ∈ [s̃, u1). (2.5)

In addition, the functions φ and r are continuous at u1. Therefore, by (2.4) we know that there
exists u− ∈ [s̃, u1) such that infu∈[u−,u1](r(u)− φ(u)) > 2ε, where ε

.
= (r(u1)− φ(u1))/4 > 0.

Since φn → φ and rn → r u.o.c., we know that for all sufficiently large n, infu∈[u−,u1](rn(u)−
φn(u)) > ε. Then property 2 of Definition 2.2 implies that ηn(u−) ≤ ηn(u1) for all sufficiently
large n. Passing to the limit, we obtain η(u−) ≤ η(u1), which contradicts (2.5). Thus, we
must have η(s) ≤ η(t) when (2.4) holds. An analogous argument can be used to show that
η(s) ≥ η(t) whenever φ(u) > `(u) for all u ∈ [s, t]. This completes the proof that (φ, η) solve
the ESP on [`(·), r(·)] for ψ.

2.2. An Explicit Formula for Solutions to the ESP on [`(·), r(·)]

The following theorem is our main result in this section.

Theorem 2.6. Suppose that ` ∈ D− [0,∞), r ∈ D+ [0,∞) and ` ≤ r. Then for each ψ ∈
D [0,∞), there exists a unique pair (φ, η) ∈ D [0,∞) × D [0,∞) that solves the ESP on
[`(·), r(·)] for ψ. Moreover, the ESM Γ`,r admits the following explicit representation:

Γ`,r(ψ) = ψ − Ξ`,r(ψ), (2.6)

where the mapping Ξ`,r : D [0,∞) 7→ D [0,∞) is defined as follows: for each t ∈ [0,∞),

Ξ`,r(ψ)(t)
.
= max

([
(ψ(0) − r(0))+ ∧ inf

u∈[0,t]
(ψ(u) − `(u))

]
,

sup
s∈[0,t]

[
(ψ(s) − r(s)) ∧ inf

u∈[s,t]
(ψ(u) − `(u))

])
.

(2.7)

Furthermore, the map (`, r, ψ) 7→ Γ`,r is a continuous map on D− [0,∞) × D+ [0,∞) ×
D [0,∞) (with respect to the topology of uniform convergence on compact sets). Lastly, if
inft≥0(r(t) − `(t)) > 0 then Γ`,r = Γ`,r.
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Remark 2.7. When r ≡ ∞ and ` ∈ D [0,∞), Definition 2.2 reduces to a one-dimensional
SP with time-varying domain [`(·),∞), and the right-hand side of (2.6) reduces to Γ`(ψ),
where the mapping Γ` : D [0,∞) 7→ D [0,∞) is given by

Γ`(ψ)(t)
.
= ψ(t) + sup

s∈[0,t]

[`(s) − ψ(s)]+ for t ∈ [0,∞). (2.8)

In this situation, the proof of (2.1) can be extended in a straightforward manner (see, for
example, Lemma 3.1 of [2]) to show that Γ` defines the unique solution to the associated SP.

The rest of this section is devoted to the proof of Theorem 2.6. For the case of time-
independent boundaries ` ≡ 0 and r ≡ a > 0, this result was established in Theorem 2.1
of [14] using a completely different argument from that used here. The proof of Theorem
2.6 presented in this paper thus provides, in particular, an alternative proof of Theorem 2.1
of [14] (see also [6], Section 14 of [23] and the discussion in [14] of related formulas in the
time-independent case).

For the rest of this section, we fix ` ∈ D− [0,∞) and r ∈ D+ [0,∞) such that ` ≤ r. We
first establish uniqueness of solutions to the ESP on [`(·), r(·)] in Proposition 2.8 —the proof
is a relatively straightforward modification of the standard proof for the SP on [0,∞) (see,
for example, Lemma 3.6.14 in [12] and also Lemma 3.1 of [2]).

Proposition 2.8. Given any ψ ∈ D [0,∞), there exists at most one φ ∈ D [0,∞) that
satisfies the ESP on [`(·), r(·)] for ψ.

Proof. Let (φ, η) and (φ′, η′) be two pairs of functions in D [0,∞) ×D [0,∞) that solve the
ESP on [`(·), r(·)] for ψ ∈ D [0,∞). It is easy to check that, for property 3 of Definition 2.2
to be satisfied when t = 0, we must have φ(0) = (ψ(0) ∧ r(0)) ∨ `(0). The same is true for
φ′, and so φ(0) = φ′(0).

Suppose that there exists T ≥ 0 such that φ(T ) > φ′(T ). Let

τ = sup{t ∈ [0, T ] : φ(t) ≤ φ′(t)}. (2.9)

Note that τ is well defined because φ(0) = φ′(0).
We now consider two cases.

Case 1. φ(τ) ≤ φ′(τ). In this case, for t ∈ (τ, T ], by the definition of τ and property 1 of
Definition 2.2, we have `(t) ≤ φ′(t) < φ(t) ≤ r(t). Since on (τ, T ], φ will not hit ` and φ̄′ will
not hit r, by property 2 of Definition 2.2, we see that η(T )− η(τ) ≤ 0 and η′(T )− η′(τ) ≥ 0.
Consequently,

0 < φ(T ) − φ′(T ) = η(T ) − η′(T ) ≤ η(τ) − η′(τ) = φ(τ) − φ′(τ),

which contradicts the case assumption.
Case 2. φ(τ) > φ′(τ). In this case τ > 0 because φ(0) = φ′(0). By the definition of τ it
follows that

φ(τ−) ≤ φ′(τ−). (2.10)
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In addition, the case assumption also implies that φ(τ) > `(τ) and φ′(τ) < r(τ). By property
3 of Definition 2.2, this implies that η(τ)−η(τ−) ≤ 0 and η′(τ)−η′(τ−) ≥ 0. When combined
with property 1 of Definition 2.2, this shows that

0 < φ(τ) − φ′(τ) = η(τ) − η′(τ) ≤ η(τ−) − η′(τ−) = φ(τ−) − φ′(τ−),

which contradicts (2.10).
We thus conclude that φ(T ) ≤ φ′(T ) for all T ≥ 0. Using an exactly analogous argument we

can show that φ′(T ) ≤ φ(T ) for all T ≥ 0. Hence φ(T ) = φ′(T ) and, therefore, η(T ) = η′(T )
for all T ≥ 0.

Next, in Proposition 2.9, we show that the ESM is given by the formula (2.6) when `, r and
ψ are piecewise constant. The proof will make use of the following family of mappings: given
` ∈ D− [0,∞) , r ∈ D+ [0,∞) with ` ≤ r, for t ∈ [0,∞), consider the mapping πt : R → R

with the property that πt(x) = x if x ∈ [`(t), r(t)], πt(x) ∈ {`(t), r(t)} if x 6∈ [`(t), r(t)] and

πt(x) − x ≥ 0 if πt(x) = `(t),
πt(x) − x ≤ 0 if πt(x) = r(t).

(2.11)

It is straightforward to deduce that, for every t ≥ 0, there exists a unique mapping with
these properties that is given explicitly by

πt(x) = x+ [`(t) − x]+ − [x− r(t)]+ = (x ∧ r(t)) ∨ `(t). (2.12)

Using property 3 of the ESP, it is easy to verify (see, e.g., Appendix B of [13]) that the ESM
Γ`,r must satisfy

Γ`,r(ψ)(0) = π0(ψ(0)), Γ`,r(φ)(t) = πt

(
Γ`,r(ψ)(t−) + ψ(t) − ψ(t−)

)
∀t > 0. (2.13)

Proposition 2.9. Suppose that `, r and ψ are three piecewise constant functions in D− [0,∞),
D+ [0,∞) and D [0,∞), respectively, each with a finite number of jumps and such that ` ≤ r.
Then for each ψ ∈ D [0,∞), the pair (ψ − Ξ`,r(ψ),−Ξ`,r(ψ)) is the unique solution to the
ESP on [`(·), r(·)], i.e., Γ`,r(ψ) = ψ − Ξ`,r(ψ).

Proof. Fix ψ, `, r as in the statement of the proposition, and let {πt, t ∈ [0,∞)} be the
associated family of mappings as defined in (2.12). Now, let J = {t1, t2, . . . , tn} be the union
of the times of jumps of `, r and ψ, suppose 0 < t1 < t2 < · · · < tn <∞, and set tn+1

.
= ∞.

Define φ
.
= ψ−Ξ`,r(ψ) and η

.
= φ−ψ. We will use induction to show that (φ, η) solve the ESP

on [`(·), r(·)] for ψ. When t = 0, it is straightforward to verify from (2.12) and the definition
of Ξ`,r that φ(0) = (ψ(0) ∧ r(0)) ∨ `(0) = π0(ψ(0)). When combined with (2.13), this shows
that (φ, η) solve the ESP (on [`(·), r(·)]) for ψ when t = 0. Since `, r, ψ are constant on [0, t1),
it immediately follows from the definition (2.7) of Ξ`,r that φ is also constant on [0, t1), and
so it follows that (φ, η) solve the ESP for ψ on [0, t1).

Now, suppose (φ, η) solve the ESP on [`(·), r(·)] for ψ over the time interval [0, tm) for
some m ∈ {1, . . . , n}. We first observe that, for any t ∈ [0,∞), Ξ`,r(ψ)(t) is the maximum
of the following three terms:
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1. (ψ(0) − r(0))+ ∧ infu∈[0,t)(ψ(u) − `(u)) ∧ (ψ(t) − `(t))

2. sups∈[0,t)

[
(ψ(s) − r(s)) ∧ infu∈[s,t)(ψ(u) − `(u)) ∧ (ψ(t) − `(t))

]
,

3. (ψ(t) − r(t)) ∧ (ψ(t) − `(t))

and therefore admits the representation

Ξ`,r(ψ)(t) = max [Ξ`,r(ψ)(t−), (ψ(t) − r(t))] ∧ (ψ(t) − `(t)).

Recalling the description of the map πt given in (2.12), we see that

φ(t) = ψ(t) − max (Ξ`,r(ψ)(t−), (ψ(t) − r(t))) ∧ (ψ(t) − `(t))

= min (ψ(t) − Ξ`,r(ψ)(t−), r(t)) ∨ `(t)
= πt(ψ(t) − Ξ`,r(ψ)(t−))

= πt(φ(t−) + ψ(t) − ψ(t−)).

Substituting t = tm, this yields the relation φ(tm) = πtm(φ(tm−) + ψ(tm) − ψ(tm−)). By
(2.13), this implies (φ, η) solve the ESP on [`(·), r(·)] for ψ during the interval [0, tm]. Once
again, since ψ, `, r, and therefore φ, are constant on [tm, tm+1) this implies that (φ, η) solve
the ESP on [`(·), r(·)] for ψ on [0, tm+1). By the induction argument and the uniqueness
result established in Proposition 2.8, we have the desired result.

A simple approximation argument can now be used to complete the proof of Theorem 2.6.

Proof of Theorem 2.6. Given ` ∈ D− [0,∞) , r ∈ D+ [0,∞) such that ` ≤ r, it is easy to see
that there exist sequences of functions `n ∈ D− [0,∞), n ∈ N, rn ∈ D+ [0,∞), n ∈ N, with
`n ≤ rn, that are piecewise constant with a finite number of jumps and such that `n → `,
rn → r u.o.c. as n→ ∞. Likewise, given ψn ∈ D [0,∞), there exists a sequence of piecewise
constant functions ψn with a finite number of jumps such that ψn → ψ u.o.c., as n → ∞.
For each n ∈ N, by Proposition 2.9, we know that Γ`n,rn

(ψn) = φn
.
= ψn − Ξ`n,rn

(ψn). Since
ψn − `n and ψn − rn converge u.o.c., as n→ ∞, to ψ − ` and ψ − r, respectively, and u.o.c.
convergence is preserved under the operations inf, sup, ∧, max, we then conclude, from
(2.7), that φn = ψn−Ξ`n,rn

(ψn) → ψ−Ξ`,r(ψ) u.o.c, as n→ ∞. In particular, it is clear that
Ξ`,r is a continuous map on D [0,∞) (with respect to the topology of u.o.c. convergence).
By the closure property (Proposition 2.5), (ψ − Ξ`,r(ψ),−Ξ`,r(ψ)) is a solution to the ESP
on [`(·), r(·)] for ψ. Uniqueness follows from Proposition 2.8. In particular, this shows that
the map (`, r, ψ) 7→ Γ`,r(ψ) is continuous with respect to the topology of u.o.c. convergence.
The last assertion of the theorem is a direct consequence of Corollary 2.4.

3. Comparison results

This section presents some “comparison” or “monotonicity” results. They are quite intu-
itive but their proofs require some technical arguments. Recall the definition of the pair
of constraining processes (η`, ηr) associated with an SP given in Definition 2.1. Section 3.1
establishes monotonicity of the individual constraining processes with respect to the domain
[`(·), r(·)] for a fixed ψ, while in Section 3.2, monotonicity of the constraining processes with
respect to the input ψ is established for a given time-varying domain [`(·), r(·)].
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3.1. Monotonicity with respect to the domain

The main result, Proposition 3.3, will be preceded by a few lemmas.

Lemma 3.1. Assume that `, ˜̀ ∈ D− [0,∞), r, r̃ ∈ D+ [0,∞), and ˜̀ = `, r ≤ r̃ and
inft≥0(r(t) − `(t)) > 0. Let Γ`,r and Γ˜̀,r̃ be the associated SMs on [`(·), r(·)] and [ ˜̀(·), r̃(·)],
respectively, and given ψ ∈ D [0,∞), let (η`, ηr) and (η˜̀, ηr̃) be the corresponding pairs of
constraining processes. Then, for every t ∈ [0,∞),

ηr(t) ≥ ηr̃(t) and η`(t) ≥ η˜̀(t). (3.1)

Proof. Let ˜̀, `, r, r̃ and ψ be as in the statement of the lemma. First note that by Theorem
2.6, the conditions on ˜̀, r̃, `, r guarantee that solutions to the SP on both [`, r] and [˜̀, r̃]
exist for all ψ ∈ D [0,∞) and so the pairs of constraining processes (η`, ηr) and (η˜̀, ηr̃) are
well-defined. Moreover, the explicit formula (2.6) of Theorem 2.6, when combined with the
decomposition η = Γ`,r(ψ) − ψ = η` − ηr (see Definition 2.1), shows that

ηr = η` + Ξ`,r(ψ) and ηr̃ = η˜̀ + Ξ˜̀,r̃(ψ), (3.2)

where Ξ is as defined in (2.7). For a fixed `, it is easily verified from the explicit formula (2.7)
that the map r 7→ Ξ`,r(ψ) is monotone non-increasing (with respect to the obvious ordering).
Since ` = ˜̀ and r ≤ r̃, this implies

Ξ˜̀,r̃(ψ) ≤ Ξ`,r(ψ) ∀ψ ∈ D [0,∞) . (3.3)

By (2.6), this is equivalent to the relation

Γ˜̀,r̃(ψ) ≥ Γ`,r(ψ) ∀ψ ∈ D [0,∞) . (3.4)

Combining (3.2) and (3.3), it follows that in order to show (3.1), it suffices to show that

η`(t) ≥ η˜̀(t) ∀ t ≥ 0. (3.5)

Since Γ`,r(ψ)(0) = π0(0) by (2.13) and `(0) < r(0), from the complementarity conditions
(2.2) it is clear that η`(0) = [`(0)−ψ(0)]+ with the analogous expressions for η ˜̀. Since ` = ˜̀,
this immediately implies (3.5), in fact with equality, for t = 0.

Now, let
t∗

.
= inf{s ≥ 0 : η`(s) < η˜̀(s)}.

We will argue by contradiction to show that t∗ = ∞. Indeed, suppose that t∗ <∞. Then

η`(t
∗−) ≥ η˜̀(t

∗−) (3.6)

and for all ε0 > 0 there exists ε ∈ (0, ε0) such that

η`(t
∗ + ε) < η˜̀(t

∗ + ε). (3.7)
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Invoking (2.13) and the inequality Γ ˜̀,r̃(ψ)(t∗−) ≥ Γ`,r(ψ)(t∗−) from (3.4), we obtain

η`(t
∗) − η`(t

∗−) = [`(t∗) − Γ`,r(ψ)(t∗−) − (ψ(t∗) − ψ(t∗−))]+

≥ [˜̀(t∗) − Γ˜̀,r̃(ψ)(t∗−) − (ψ(t∗) − ψ(t∗−))]+

= η˜̀(t∗) − η˜̀(t∗−).

When combined with (3.6), this implies that η`(t
∗) ≥ η˜̀(t∗). We now consider two cases. If

η`(t
∗) > η˜̀(t∗), then the right-continuity of η` and η˜̀ dictates that η`(t

∗ + ε) > η˜̀(t∗ + ε) for
every positive ε small enough, which contradicts (3.7). On the other hand, suppose η`(t

∗) =
η˜̀(t∗). When combined with (3.7) and the fact that η` is non-decreasing, this implies that for
every ε0 > 0, there exists ε ∈ (0, ε0) such that η˜̀(t∗) < η˜̀(t∗+ε). Due to the complementarity
condition (2.2) and the right-continuity of Γ ˜̀,r̃(ψ), this, in turn, implies that Γ ˜̀,r̃(ψ)(t∗) =
˜̀(t∗) = `(t∗). Since Γ˜̀,r̃(ψ) ≥ Γ`,r(ψ) ≥ `, this means that Γ`,r(ψ)(t∗) = Γ˜̀,r̃(ψ)(t∗) = `(t∗).

Along with the relation ˜̀(t∗) = `(t∗) < r(t∗) ≤ r̃(t∗), the right-continuity of `, r and r̃ and
the definition of the SP, it is easy to see that this implies that for all sufficiently small ε,
Γ˜̀,r̃(ψ)(t∗ + ε) (respectively, Γ`,r(ψ)(t∗ + ε)) is equal to Γ ˜̀(ψ∗)(ε) (respectively, Γ`(ψ

∗)(ε)),
where Γ` is as defined in (2.8) and

ψ∗(t) = `(t∗) + ψ(t∗ + t) − ψ(t∗) for t ≥ 0.

In particular, using (2.8), this shows that for all ε sufficiently small,

η˜̀(t∗ + ε) − η˜̀(t∗) = sups∈[0,ε]

[
˜̀(s) − `(t∗) − ψ(t∗ + s) + ψ(t∗)

]

= sups∈[0,ε] [`(s) − `(t∗) − ψ(t∗ + s) + ψ(t∗)]
= η`(t

∗ + ε) − η`(t
∗).

Since we are considering the case η`(t
∗) = η˜̀(t∗), this once again contradicts (3.7). Thus we

have shown that t∗ = ∞, and hence that (3.5) holds.

Corollary 3.2. Assume that `, ˜̀∈ D− [0,∞), r, r̃ ∈ D+ [0,∞), ˜̀≤ `, r = r̃ and inft≥0(r(t)−
`(t)) > 0. Let Γ`,r and Γ˜̀,r̃ be the associated SMs on [`(·), r(·)] and [ ˜̀(·), r̃(·)], respectively,
and given ψ ∈ D [0,∞), let (η`, ηr) and (η˜̀, ηr̃) be the corresponding pairs of constraining
processes. Then, for every t ∈ [0,∞),

ηr(t) ≥ ηr̃(t) and η`(t) ≥ η˜̀(t).

Proof. The corollary follows from Lemma 3.1 by multiplying all functions by −1.

Proposition 3.3. Assume that `, ˜̀ ∈ D− [0,∞), r, r̃ ∈ D+ [0,∞), ˜̀ ≤ `, r ≤ r̃ and
inft≥0(r(t) − `(t)) > 0. Let Γ`,r and Γ˜̀,r̃ be the associated SMs on [`(·), r(·)] and [ ˜̀(·), r̃(·)],
respectively, and given ψ ∈ D [0,∞), let (η`, ηr) and (η˜̀, ηr̃) be the corresponding pairs of
constraining processes. Then, for every t ∈ [0,∞),

ηr(t) ≥ ηr̃(t) and η`(t) ≥ η˜̀(t).
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Proof. Let Γ`,r̃ be the SM on [`(·), r̃(·)], and given ψ ∈ D [0,∞), let (η∗` , η
∗
r̃) be the corre-

sponding vector of constraining processes. Since r ≤ r̃ and inf t≥0(r̃(t)− `(t)) > 0 by Lemma
3.1, we know that

ηr(t) ≥ η∗r̃(t) and η`(t) ≥ η∗` (t).

Similarly, when Γ`,r̃ and Γ˜̀,r̃ are considered, by Corollary 3.2 we obtain

η∗r̃(t) ≥ ηr̃(t) and η∗` (t) ≥ η˜̀(t).

When combined, these inequalities yield the desired result.

3.2. Monotonicity with respect to input trajectories

Given a fixed time-dependent domain [`(·), r(·)], in Proposition 3.4 we first establish the
monotonicity of Γ`,r(ψ) and the net constraining term Γ`,r(ψ) − ψ with respect to input
trajectories ψ. For the case when [`(·), r(·)] = [0, a] for some a > 0, this result was established
as Theorem 1.7 of [15]. Here, we use a simpler argument involving approximations to prove
the more general result.

Proposition 3.4. Given `, r ∈ D [0,∞) with ` ≤ r, c0, c
′
0 ∈ R and ψ, ψ′ ∈ D [0,∞),

suppose (φ, η) and (φ′, η′) solve the ESP on [`(·), r(·)] for c0 + ψ and c′0 + ψ′, respectively.
If ψ = ψ′ + ν for some non-decreasing function ν ∈ D [0,∞) with ν(0) = 0, then for each
t ≥ 0, the following two relations hold:

1. [−[c0 − c′0]
+ − ν(t)] ∨ [−(r(t) − `(t))] ≤ φ′(t) − φ(t) ≤ [c′0 − c0]

+ ∧ [r(t) − `(t)];
2. η(t) − [c′0 − c0]

+ ≤ η′(t) ≤ η(t) + ν + [c0 − c′0]
+.

Proof. We first establish property 1 under the additional assumption that the functions
`, r, ψ, ψ′ and ν stated in the proposition are piecewise constant with a finite number of
jumps. Since φ(t), φ′(t) lie in [`(t), r(t)] for every t ∈ [0,∞), in order to show the first
property it suffices to show that

−[c0 − c′0]
+ − ν(t) ≤ φ′(t) − φ(t) ≤ [c′0 − c0]

+. (3.8)

Let t0 = 0 and let t1 < t2 < . . . < tm be the ordered jump times of all the functions `, r, ψ, ψ′

and ν. Recall the family of (time-dependent) projection operators πt, t ≥ 0, defined in (2.12).
Using the explicit expression for πt, a simple case-by-case verification shows that for every
t ≥ 0 and x, y ∈ R,

−[y − x]+ ≤ πt(x) − πt(y) ≤ [x− y]+. (3.9)

By (2.13) and the piecewise constant nature of the functions, it follows that φ(t) = φ(0) =
π0(c0) and φ′(t) = φ′(0) = π0(c

′
0) for t ∈ [0, t1). When combined with (3.9), this shows

that (3.8) holds for t ∈ [0, t1). Now suppose that (3.8) holds for t ∈ [0, tk−1) for some
k ∈ {2, . . . ,m}. Then, by (2.13) we know that for t ∈ [tk−1, tk),

φ(t) = πtk (φ (tk−1) + ψ (tk) − ψ (tk−1)) , φ′(t) = πtk (φ′ (tk−1) + ψ′ (tk) − ψ′ (tk−1)) . (3.10)
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Another application of (3.9), along with the relation −[z]+ = [−z] ∧ 0 and the fact that
ψ = ψ′ + ν, implies that

0∧[φ′(tk−1)−φ(tk−1)+ν(tk−1)−ν(tk)] ≤ φ′(tk)−φ(tk) ≤ [φ′(tk−1)−φ(tk−1)+ν(tk−1)−ν(tk)]+.
The function ν is non-decreasing and non-negative and by the induction assumption, the
first inequality in (3.8) holds for t = tk−1. Therefore

−[c0 − c′0]
+ − ν(tk) ≤ φ′(tk) − φ(tk) ≤ [c′0 − c0]

+.

Since φ and η are constant on [tk, tk+1), we have shown that (3.8) holds for t ∈ [0, tk+1) and,
by induction, for t ∈ [0,∞) when all the relevant functions are piecewise constant.

For the general case, let `n ∈ D− [0,∞) , rn ∈ D+ [0,∞), n ∈ N, be sequences of piecewise
constant functions with a finite number of jumps such that `n ≤ rn for every n ∈ N and
`n → ` and rn → r u.o.c., as n→ ∞. Moreover, let ψn, ψ

′
n, νn ∈ D [0,∞), n ∈ N, be sequences

of piecewise constant functions with a finite number of jumps such that νn is non-decreasing
and ψn = ψ′

n +νn and ψn → ψ, ψ′
n → ψ′ u.o.c., as n→ ∞ (see the proof of Lemma 3.3 in [19]

for an explicit construction that shows such sequences exist). Moreover, let φn = Γ`,r(c0+ψn)
and φ′

n = Γ`,r(c
′
0 +ψ′

n). Then the continuity of the map ψ 7→ Γ`,r(ψ) established in Theorem
2.6 shows that φn → φ and φ′

n → φ′ u.o.c., as n → ∞. Furthermore, the arguments in the
previous paragraph show that for every n ∈ N and t ∈ [0,∞), (3.8) holds with φ, η replaced
by φn and νn, respectively. Taking limits as n→ ∞, we obtain property 1.

The second property can be deduced from the first using the basic relation

η′ − η = φ′ − φ− (c′0 − c0) − (ψ′ − ψ) = φ′ − φ− (c′0 − c0) + ν.

Next, we establish monotonicity of the individual constraining processes η` and ηr with
respect to input trajectories ψ.

Proposition 3.5. Given ` ∈ D− [0,∞), r ∈ D+ [0,∞) satisfying inf t≥0(r(t) − `(t)) > 0,
c0, c

′
0 ∈ R and ψ, ψ′ ∈ D [0,∞) with ψ(0) = ψ′(0), suppose (φ, η) and (φ′, η′) solve the SP

on [`(·), r(·)] for c0 + ψ and c′0 + ψ′, respectively. Moreover, suppose (η`, ηr) and (η′`, η
′
r) are

the corresponding constraining processes. If there exists a non-decreasing function ν with
ν(0) = 0 such that ψ = ψ′ + ν, then for each t ≥ 0, the following two relations hold:

1. η`(t) − [c′0 − c0]
+ ≤ η′`(t) ≤ η`(t) + ν(t) + [c0 − c′0]

+;
2. η′r(t) − [c′0 − c0]

+ ≤ ηr(t) ≤ η′r(t) + ν(t) + [c0 − c′0]
+.

Proof. Fix t ∈ [0,∞). Define

α
.
= inf{t > 0 : η`(t) + ν(t) + [c0 − c′0]

+ < η′`(t) or ηr(t) + [c′0 − c0]
+ < η′r(t)},

where α = ∞ if the infimum is over the empty set. Then it follows that for each s ∈ [0, α),
the following two inequalities hold:

η′`(s) ≤ η`(s) + ν(s) + [c0 − c′0]
+, (3.11)

η′r(s) ≤ ηr(s) + [c′0 − c0]
+. (3.12)
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Suppose α <∞. Then we claim and prove below that the following relations are satisfied:

η′`(α) ≤ η`(α) + ν(α) + [c0 − c′0]
+, (3.13)

η′r(α) ≤ ηr(α) + [c′0 − c0]
+. (3.14)

It is easy to see from (3.11), (3.12) and the non-decreasing property of η` and ηr that if
η′` (respectively, η′r) is continuous, then (3.13) (respectively, (3.14)) holds. Thus the claim
holds if both η′` and η′r are continuous. We now prove the claim under the assumption that
η′`(α) − η′`(α−) > 0. First note that by the complementarity condition in (2.2) we have
φ′(α) = `(α) and η′r is continuous at α, and hence (3.14) holds. It follows that

η′`(α) = η′`(α−) + ψ′(α−) − φ′(α−) − ψ′(α) + `(α)

= −c′0 + η′r(α−) − ψ′(α) + `(α)

= −c′0 + η′r(α−) − ψ(α) + ν(α) + `(α). (3.15)

Since ηr(α−) = c0 + ψ(α−) + η`(α−) − φ(α−), adding and subtracting ηr(α−) to the right
hand side of (3.15), we obtain

η′`(α) = −c′0 + c0 + η′r(α−) − ψ(α) + ψ(α−) + ν(α) + `(α) + η`(α−) − φ(α−) − ηr(α−).

¿From (3.12) we infer that η′r(α−) ≤ ηr(α−) + [c′0 − c0]
+, and so

η′`(α) ≤ −c′0 + c0 + [c′0 − c0]
+ − ψ(α) + ψ(α−) + ν(α) + `(α)

+η`(α−) − φ(α−). (3.16)

On the other hand, using the relations φ(α) ≥ `(α) and ηr(α) − ηr(α−) ≥ 0, we have

η`(α) = η`(α−) + φ(α) − φ(α−) + ψ(α−) − ψ(α) (3.17)

+ηr(α) − ηr(α−)

≥ η`(α−) + `(α) − φ(α−) + ψ(α−) − ψ(α).

By combining (3.16) and (3.17), we see that (3.13) also holds, and the claim follows. A similar
argument shows that (3.13) and (3.14) are also satisfied when η′r(α) − η′r(α−) > 0.

Next, note from the definition of α that there exists a sequence of constants {sn} with
sn ↓ 0 as n→ ∞ such that one of the following statements must be true:

(i) η′`(α + sn) > η`(α+ sn) + ν(α+ sn) + [c0 − c′0]
+ for all n ∈ N;

(ii) η′r(α + sn) > ηr(α+ sn) + [c′0 − c0]
+ for all n ∈ N.

First, suppose Case (i) holds. Then, taking the limit as n → ∞, by the right-continuity of
η`, η

′
` and ν, we have η′`(α) ≥ η`(α) + ν(α) + [c0 − c′0]

+. Together with (3.13), this implies

η′`(α) = η`(α) + ν(α) + [c0 − c′0]
+. (3.18)

Since η` and ν are non-decreasing, we have from Case (i) and (3.18) that η′`(α+sn) > η′`(α) for
each n ∈ N. By the complementarity condition in (2.2), this implies φ′(α) = `(α). Together
with (3.14), (3.18) and the relation ψ = ψ′ + ν, this implies

φ(α) − `(α) = φ(α) − φ′(α) = c0 − c′0 + ν(α) + η`(α) − η′`(α) − ηr(α) + η′r(α)

≤ c0 − c′0 − [c0 − c′0]
+ + [c′0 − c0]

+ = 0.
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Since φ(·) ∈ [`(·), r(·)], this implies φ(α) = `(α).
Consider the shift operator Tα : D [0,∞) 7→ D [0,∞) defined by Tαf(s) = f(α+ s)− f(α)

for s ∈ [0,∞). By uniqueness of solutions to the SP, it is easy to see that (φ(α + ·), Tαη)
solve the SP for φ(α) + Tαψ with the associated pair of constraining processes (Tαη`, Tαηr),
and likewise for (φ′(α+ ·), Tαη

′). Now, by the right continuity of φ, φ′ and r and the fact that
φ(α) = φ′(α) = `(α) < r(α), there exists ε > 0 such that for each s ∈ [0, ε], φ(α+s) < r(α+s)
and φ′(α+ s) < r(α+ s). The complementarity condition (2.2) implies that Tαη = Tαη` and
Tαη

′ = Tαη
′
` on the interval [0, ε]. An application of property (ii) of Proposition 3.4, with

c0 = c′0 = `(α) and Tαψ, Tαψ
′, `(α + ·), r(α + ·) and Tαν in place of ψ, ψ′, `, r and ν, shows

that for each s ∈ [0, ε], Tαη
′
`(s) ≤ Tαη`(s)+Tαν(s). Together with (3.18), this shows that for

each s ∈ [0, ε],
η′`(α + s) ≤ η`(α + s) + ν(α+ s) + [c0 − c′0]

+,

which contradicts Case (i). Hence Case (ii) should hold. In this case, a similar argument
can be used to show that φ′(α) = φ′(α) = r(α), and arguments analogous to those used
above can then be applied to arrive at a contradiction to Case (ii). Thus α = ∞ or, in
other words, the second inequality in property 1 and the first inequality in property 2 of the
proposition hold. The first inequality in property 1 and the second inequality in property 2
of the proposition can be proved in a similar way with β instead of α, where

β = inf{t > 0 : η′r(t) + ν(t) + [c0 − c′0]
+ < ηr(t) or η′`(t) + [c′0 − c0]

+ < η`(t)}.

4. Variation of the Local Time of RBM

Throughout this section, let B be a one-dimensional standard BM starting from 0 and
defined on some filtered probability space (Ω, F , {Ft}, P). Also, let E denote expectation
with respect to P.

Definition 4.1. Given ` ∈ D− [0,∞) and r ∈ D+ [0,∞) with ` ≤ r, we define RBM W on
[`(·), r(·)] starting at x ∈ R by

W = Γ`,r(x+B).

Moreover, let Y be the unique process such that, each ω ∈ Ω, (W (ω, ·), Y (ω, ·)) solves the
ESP on [`(·), r(·)] for x+B(ω, ·). We will refer to Y as the local time of W (on the boundary
of [`(·), r(·)]).
Remark 4.2. A natural alternative definition for the local time of W on the boundary of
[`(·), r(·)] is

Ŷ (t)
.
= lim

ε→0

1

2ε

∫ t

0
I[`(s),`(s)+ε]∪[r(s)−ε,r(s)](W (s)) ds ∀t ∈ [0,∞).

When ` ≡ 0 and r ≡ ∞, so that W is “classical” reflected Brownian motion, it is well-
known (see, e.g., Definition 3.6.13 and Theorem 3.6.17 of [12]) that Y = Ŷ . However, this no

imsart ver. 2005/10/19 file: timevar17.tex date: March 8, 2008



/ 16

longer holds in general when ` and r are time-varying. Indeed, when ` is a Brownian path
independent of B (and r ≡ ∞) it follows from Section 3 of [5] that Y = 2Ŷ . Therefore, as
observed in Remark 3.1 of [5], by pieceing together a function that looks Brownian on some
intervals and flat on others, it is possible to construct ` such that the associated Ŷ and Y are
not constant multiples of each other. In this article we will always refer to the constraining
process Y as the local time.

Due to uniqueness of solutions to the ESP, it is easy to see that Γ`,r(ψ)(t) depends only on
{`(u), r(u), ψ(u), u ∈ [0, t]}. Thus, W is adapted to the filtration generated by B. Moreover,
W admits the unique decomposition W (t) = x + B(t) + Y (t) for t ≥ 0 for x + B(ω, ·). We
will refer to Y as the local time of W on the (time-dependent) boundary of [`(·), r(·)]. From
Corollary 2.4, it immediately follows that Y a.s. has finite variation on every time interval
[t1, t2] such that inft∈[t1,t2](r(t) − `(t)) > 0.

For the rest of this section, fix ` ∈ D− [0,∞), r ∈ D+ [0,∞) such that ` ≤ r, define

τ
.
= inf{t > 0 : r(t) = `(t) or r(t−) = `(t−)},

and assume that τ ∈ (0,∞). In Sections 4.1 and 4.2 we identify some necessary and some
sufficient conditions for Y to have P-a.s. finite variation on [0, τ ]. Recall that the variation
of a function f on [t1, t2] is denoted by V[t1,t2](f). We apply these results in Section 4.3 to
analyze the local time of a class of two-dimensional RBMs in a fixed domain.

4.1. A Lower Bound

We show that the local time of RBM on [0, τ ] has infinite variation for some ` and r by
comparing the space-time domain {(t, x) : `(t) < x < r(t)} to a “comb domain.”

Let K ′ denote a subset of Z, for example, K ′ may be the sequence of all negative integers,
or all positive integers. We denote by K the subset of K ′ consisting of all elements of K ′

except the largest element of K ′, assuming one exists.

Theorem 4.3. Suppose that there exists a set K ′ and a sequence {sk}k∈K′ that is strictly
increasing, takes values in [0, τ ] and, for some constant c1 ∈ (−∞,∞) and all k ∈ K,
satisfies

min(r(sk+1) − `(sk),−`(sk+1) + r(sk))

(sk+1 − sk)1/2
≤ c1. (4.1)

If ∑

k∈K

(sk+1 − sk)
1/2 = ∞ (4.2)

then V[0,τ ]Y = ∞, a.s.

Remark 4.4. The constant c1 in the statement of Theorem 4.3 does not have to be positive.
Intuitively speaking, the smaller c1, the more the variation accumulated by Y . Examples of
domains that satisfy the assumptions of the theorem are provided below the proof.
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Proof of Theorem 4.3. Let ∆Bk = B(sk+1) −B(sk), c2 = 1 ∨ c1. We define an event Ak by

Ak = {∆Bk ∈ (2c2(sk+1 − sk)
1/2, 3c2(sk+1 − sk)

1/2)}

if r(sk+1) − `(sk) ≤ −`(sk+1) + r(sk), and we let

Ak = {∆Bk ∈ (−3c2(sk+1 − sk)
1/2,−2c2(sk+1 − sk)

1/2)}

if r(sk+1) − `(sk) > −`(sk+1) + r(sk). By Brownian scaling, there exists p1 > 0 such that
P(Ak) > p1 for all k ∈ K. This implies that

E [|∆Bk|IAk
] ≥ p12c2(sk+1 − sk)

1/2,

and so, in view of (4.2), we have
∑

k∈K

E [|∆Bk|IAk
] = ∞.

We also have |∆Bk|IAk
≤ 3c2(sk+1 − sk)

1/2 ≤ 3c2τ
1/2, a.s., for every k. The random variables

|∆Bk|IAk
are independent. Hence, by the “three series theorem” ([8], Ch. 1, (7.4)), we have

a.s., ∑

k∈K

|∆Bk|IAk
= ∞. (4.3)

Suppose that the event Ak occurs and consider the case when r(sk+1)−`(sk) ≤ −`(sk+1)+
r(sk). We also have W (sk) ≥ `(sk) and W (sk+1) ≤ r(sk+1). Together with (4.1) and the case
assumption, this implies W (sk+1) − W (sk) ≤ c1(sk+1 − sk)

1/2. Since B(sk+1) − B(sk) ≥
2c2(sk+1 − sk)

1/2 by the case assumption and the definition of Ak, we must have Y (sk+1) −
Y (sk) ≤ −c2(sk+1 − sk)

1/2. It follows that V[sk,sk+1]Y ≥ c2(sk+1 − sk)
1/2 ≥ (1/3)|∆Bk|. A

completely analogous argument shows that the same bound holds in the case when r(sk+1)−
`(sk) ≥ −`(sk+1) + r(sk). This estimate and (4.3) imply that, a.s.,

V[0,τ ]Y ≥
∑

k∈K

V[sk,sk+1]Y ≥
∑

k∈K

(1/3)|∆Bk|IAk
= ∞.

Example 4.5. Suppose ` and r are such that ` ≤ r, τ > 0 and, for some k0 ≤ 1/2τ ,
`(τ − 1/2k) ≥ 0 and r(τ − 1/(2k + 1)) ≤ 0 for k ≥ k0. Then, with sk

.
= τ − 1/k for

k ≥ 2k0, it is easy to see that assumption (4.1) is satisfied with c1 = 0 and, because∑
k 1/(k(k + 1))1/2 = ∞, (4.2) is also satisfied. By Theorem 4.3, the variation of the local

time on [0, τ ] is infinite a.s.

Example 4.6. Consider ` and r such that `(0) < r(0) and f
.
= r − ` is a non-increasing

function. Let the sequence {sk} be defined in the following way. We let s0
.
= 0, and for k ≥ 1,

we let sk+1
.
= sk + f 2(sk). Then (sk+1 − sk)

1/2 = f(sk) and it is easily shown that (4.1) is
satisfied with c1 = 1. Indeed, for any k ∈ N, if r(sk+1) ≤ r(sk) then

r(sk+1) − `(sk) ≤ r(sk) − `(sk) = f(sk) = (sk+1 − sk)
1/2;
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while if r(sk+1) > r(sk) then since f is nondecreasing,

r(sk) − `(sk+1) < r(sk+1) − `(sk+1) = f(sk+1) ≤ f(sk) = (sk+1 − sk)
1/2.

When combined, this shows that (4.1) is satisfied with c1 = 1. By Theorem 4.3 it follows
that the variation of the local time is infinite on [0, τ ] a.s., provided

∑
k≥0 f(sk) = ∞.

Note that the number of intervals [sk, sk+1] inside [τ − 2−j, τ − 2−j−1] is bounded below
by 2−j−2/f 2(τ − 2−j). The contribution of each one of these intervals to the sum

∑
k f(sk) is

bounded below by f(τ − 2−j−1). Hence, the contribution from all these intervals is bounded
below by 2−j−2f(τ − 2−j−1)/f 2(τ − 2−j). It follows that if for some j0,

∑

j>j0

2−j−2f(τ − 2−j−1)/f 2(τ − 2−j) = ∞ (4.4)

then the variation of the local time is infinite on [0, τ ] a.s.
As a specific example, consider the case when f(τ − t) = tα for some α > 0. If α ≥ 1 then

(4.4) is true and the variation of the local time is infinite on [0, τ ] a.s.

Example 4.7. This is a modification of the previous example. Suppose that ` and r are
such that `(0) = r(0) and f

.
= r − ` is a non-decreasing function on some interval [0, τ1],

with τ1 ∈ (0, τ). Assume that for some 0 < c3, c4 < ∞, we have c3 < f(t)/f(2t) < c4 for all
t ∈ (0, τ1/2). Let {sk}k∈K′ be the usual ordering of all points of the form 2−j +mf 2(2−j), for
m = 0, . . . , b2−j/f 2(2−j)c − 1, and j > j1, where j1 is chosen so that sk < τ1 for all k ∈ K ′.
Now, fix sk of the form 2−j +mf 2(2−j) for some j > j1. Then (sk+1 − sk)

1/2 ≥ f(2−j) and if
`(sk) ≤ `(sk+1) then since f is nondecreasing, then

r(sk) − `(sk+1) ≤ r(sk) − `(sk) = f(sk) ≤ f(2−j+1);

while if `(sk) > `(sk+1) then since f is nondecreasing, then

r(sk+1) − `(sk) < r(sk+1) − `(sk+1) = f(sk+1) ≤ f(2−j+1).

This immediately implies that (4.1) is satisfied with c1
.
= 1/c3. Similarly, this also implies

that the condition (4.2) is satisfied if
∑

j>j1 2−j/f(2−j) = ∞. Hence, if f(t) = tα for some
α ≥ 1 and t ∈ [0, τ1] then the variation of the local time is infinite on [0, τ ] a.s.

4.2. An Upper Bound

Our upper bound will be based on the comparison of the space-time domain Ḋ
.
= {(t, x) :

`(t) < x < r(t)} with a family of “parabolic boxes.”

Theorem 4.8. Suppose that there exists a sequence {sk}k∈Z that is strictly increasing and
is such that limk→−∞ sk = 0, and limk→∞ sk = τ . Suppose that there exist a constant c1 <∞
and sequences {ak}k∈Z and {bk}k∈Z, such that {(t, x) : sk < t < sk+1, ak < x < bk} ⊂ Ḋ, and

(1/c1)(sk+1 − sk)
1/2 < bk − ak < c1(sk+1 − sk)

1/2 (4.5)
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for every k ∈ Z. Further, given mk
.
= (ak + bk)/2, define

dk
.
= r(sk) − `(sk) = |r(sk) −mk| + |`(sk) −mk|,

d′k
.
= |`(sk+1) −mk| ∨ |`(sk+1−) −mk| + |r(sk+1) −mk| ∨ |r(sk+1−) −mk|,

and suppose that ∑

k∈Z

dk <∞ and
∑

k∈Z

d′k <∞. (4.6)

Then E

[
V[0,τ ]Y

]
<∞.

Proof. We first observe that, as a consequence of the first inequality in (4.5), the fact that
bk − ak ≤ r(sk) − `(sk) and the first relation in (4.6), we have

∑

k∈Z

(sk+1 − sk)
1/2 <∞. (4.7)

Now, let ∆k
.
= bk − ak. For some fixed k ∈ Z, we will estimate the expected amount of local

time generated on an interval [sk, sk+1]. First, choose ε0 ∈ (0, sk+1 − sk) such that for all
ε ∈ (0, ε0),

|`(sk+1 − ε) −mk| + |r(sk+1 − ε) −mk| ≤ 2d′k. (4.8)

Let T1
.
= sk, and for ε ∈ (0, ε0), define

U1
.
= inf{t ≥ T1 : W (t) = mk} ∧ (sk+1 − ε),

Tj
.
= inf{t ≥ Uj−1 : |W (t) −mk| ≥ ∆k/4} ∧ (sk+1 − ε), j ≥ 2,

Uj
.
= inf{t ≥ Tj : W (t) = mk} ∧ (sk+1 − ε), j ≥ 2.

For each j ≥ 2, W is away from the upper and lower boundaries on [Uj−1, Tj], and so we
have

V[Uj−1,Tj ]Y = 0 for all j ≥ 2. (4.9)

We now consider intervals of the form [Tj, Uj], j ∈ N. The elementary relation Y = W −B
yields the bound

|Y (Uj) − Y (Tj)| ≤ |W (Uj) −W (Tj)| + sup
t∈[Tj ,Uj ]

|B(t) −B(Tj)| (4.10)

for every j ∈ N. Since |B(t) − B(Tj)|, t ≥ Tj, is a submartingale, by Doob’s L2 inequality,
there exists c2 <∞ such that

E

[
sup

t∈[Tj ,Uj ]

|B(t) −B(Tj)|
]

≤ c2
(
E

[
|B(Uj) −B(Tj)|2

])1/2

≤ c2(sk+1 − sk)
1/2. (4.11)

For every j ≥ 1 such that Uj < sk+1−ε, the right-continuity of W ensures that W (Uj) = mk.
Likewise, for every j ≥ 2 such that Tj < sk+1 − ε, we have |W (Tj) −mk| = ∆/4 because,
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as is easy to see, W is continuous at Tj. Indeed, the latter assertion follows because B is
continuous, W (t) ∈ [mk − ∆k/4,mk + ∆k/4] ⊂ (`(t), r(t)) for every t ∈ [Tj, Uj] and, by
equations (2.12) and (2.13), at any jump time t of W , either `(t−) = W (t−), `(t) = W (t)
or r(t−) = W (t−), r(t) = W (t). The last two statements, when combined with the triangle
inequality, the fact that W (s) ∈ [`(s), r(s)] for every s, and the relation (4.8), show that

|W (U1) −W (T1)| ≤ I{U1=sk+1−ε}|W (U1) −mk| + |mk −W (T1)|
≤ 2d′k + dk (4.12)

and, for j ≥ 2, since Uj = Tj if Tj = sk+1 − ε, we have

|W (Uj) −W (Tj)| = I{Tj<sk+1−ε}|W (Uj) −W (Tj)|
≤ I{Tj<sk+1−ε}[I{Uj=sk+1−ε}|W (Uj) −mk| + |mk −W (Tj)|]
≤ I{Tj<sk+1−ε}[2d

′
k + ∆k/4]. (4.13)

In turn, together with (4.10) and (4.11), this implies that

E[|Y (U1) − Y (T1)|] ≤ 2d′k + dk + c2(sk+1 − sk)
1/2 (4.14)

and, for j ≥ 2, again using the fact that Uj = Tj if Tj = sk+1 − ε,

E[|Y (Uj) − Y (Tj)|] ≤
(
2d′k + ∆k/4 + c2(sk+1 − sk)

1/2
)

E[I{Tj<sk+1−ε}]

≤
(
2d′k + c3(sk+1 − sk)

1/2
)

E[I{Tj<sk+1−ε}], (4.15)

where the last inequality holds with c3 = c2 + c1/4 due to (4.5).
Now, if Tj < sk+1 − ε then the process B must have had an oscillation of size ∆k/4 or

larger inside the interval [Uj−1, Tj]. However, ∆k/4 ≥ (sk+1 − sk)
1/2/4c1 by the inequality

(4.5), and so it can be deduced from Brownian scaling and the Kolmogorov-Čentsov theorem
that the expected number of oscillations of B of size (sk+1 − sk)

1/2/4c1 on the time interval
[sk, sk+1] is bounded by a constant c4 <∞. In other words,

∑

j≥2

E

[
I{Tj<sk+1−ε}

]
= E


∑

j≥2

I{Tj<sk+1−ε}


 ≤ c4. (4.16)

Summing (4.15) over j ≥ 2, adding (4.14) and using (4.16), we obtain

∑

j≥1

E [|Y (Uj) − Y (Tj)|] ≤ dk + c5d
′
k + c5(sk+1 − sk)

1/2, (4.17)

where c5
.
= (c3c4 + c2) ∨ (2 + 2c4).

Since W touches at most one boundary on each interval [Tj, Uj], j ∈ N, Y is monotone on
each such interval. Thus

E

[
V[sk,sk+1−ε]Y

]
≤
∑

j≥1

E [|Y (Uj) − Y (Tj)|] ≤ dk + c5d
′
k + c5(sk+1 − sk)

1/2.
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By taking the limit as ε → 0 and using the fact that variation is monotone, we conclude
that

E

[
V[sk,sk+1)Y

]
≤ dk + c5d

′
k + c5(sk+1 − sk)

1/2. (4.18)

The process Y may have a jump at time sk+1, whose size can be bounded, using the relation
Y = W − B, the triangle inequality, the continuity of the paths of B and the fact that
W (s) ∈ [`(s), r(s)] for all s, as follows:

|Y (sk+1) − Y (sk+1−)| ≤ |W (sk+1) −W (sk+1−)|
≤ |W (sk+1) −mk| + |W (sk+1−) −mk| ≤ 2d′k.

Together with (4.18), this implies that

E

[
V[sk,sk+1]Y

]
≤ dk + (c5 + 2)d′k + c5(sk+1 − sk)

1/2.

Summing over k and using (4.7) and (4.6), we obtain

E

[
V[0,τ ]Y

]
≤
∑

k∈Z

(
dk + (c5 + 2)d′k + c5(sk+1 − sk)

1/2
)
<∞.

Example 4.9. Our first example is elementary. Let −`(t) = r(t) = tα for t ∈ [0, τ/4] and
−`(t) = r(t) = (τ−t)α for t ∈ [3τ/4, τ ], where α > 0. We assume that ` and r are continuous
on [0, τ ] and r(t) > `(t) for t ∈ (0, τ). Let f

.
= r − `. Let {sk}k∈Z be the usual ordering of

all points belonging to two families: (i) all points of the form 2−j + mf 2(2−j), for m =
0, . . . , b2−j/f 2(2−j)c − 1, and j > j1, where j1 is the smallest integer such that 2−j1 < τ/4,
and (ii) all points of the form τ − 2−j −mf 2(τ − 2−j), for m = 0, . . . , [2−j/f 2(τ − 2−j)]− 1,
and j > j1. We let ak be the smallest real number and bk the largest real number such that
{(t, x) : sk < t < sk+1, ak < x < bk} ⊂ Ḋ. To verify that (4.5) holds, it suffices to consider
the case when sk, sk+1 are in the family (i). For j > j1 and sk of the form 2−j +mf 2(2−j)
for some m = 0, . . . b2−j/f 2(2−jc − 1, we have

f 2(2−j) ≤ sk+1 − sk ≤ 2f 2(2−j).

On the other hand, since f is nondecreasing,

bk − ak = inf
t∈(sk,sk+1)

f(t) = f(sk) =
f(sk)

f(2−j)
f(2−j),

and

1 =
f(2−j)

f(2−j)
≤ f(sk)

f(2−j)
≤ f(2−j+1)

f(2−j)
= 2α.

Thus (4.5) holds with c1
.
= max{2α,

√
2}.
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Recall the notation from the proof of Theorem 4.8. Consider an interval [sk, sk+1] ⊂
[2−j, 2−j+2]. Then dk ∨ d′k ≤ c1f(2−j). The sum over all k in the indicated range gives us

∑

k:[sk,sk+1]⊂[2−j ,2−j+2]

(dk ∨ d′k) ≤ c22
−jf(2−j)/f 2(2−j).

Summing over j > j1 yields a finite number provided α < 1. A similar analysis applies in the
interval [3τ/4, τ ], and so assumption (4.6) of Theorem 4.8 is satisfied if α < 1. We conclude

that if α < 1 then E

[
V[0,τ ]Y

]
<∞.

Example 4.10. We present a stronger version of the last example, in which we relax the
assumption of symmetry between ` and r, but impose a little more regularity of the paths `
and r. Let f

.
= r − `, f(t) = tα for t ∈ [0, τ/4] and f(t) = (τ − t)α for t ∈ [3τ/4, τ ], where

α > 0. We assume that r(t) > `(t) for t ∈ (0, τ). The crucial assumption in this example is
that both ` and r are Hölder continuous with some exponent β > 1/2, i.e., for some c1 <∞
and all t1, t2 ∈ [0, τ ], we have |`(t1) − `(t2)| ≤ c1|t1 − t2|β, and a similar formula holds for r.

We proceed as in the previous example. Let {sk}k∈Z be the usual ordering of all points be-
longing to two families: (i) all points of the form 2−j+mf 2(2−j), form = 0, . . . , [2−j/f 2(2−j)]−
1, and j > j1, where j1 is the smallest integer such that 2−j1 < τ/4, and (ii) all points of
the form τ − 2−j − mf 2(τ − 2−j), for m = 0, . . . , [2−j/f 2(τ − 2−j)] − 1, and j > j1. We
let ak be the smallest real number, and we let bk be the largest real number such that
{(t, x) : sk < t < sk+1, ak < x < bk} ⊂ Ḋ.

We will verify (4.5). We will consider only the case when sk, sk+1 are in the family (i). For
j > j1 and sk of the form 2−j +mf 2(2−j) for some m = 0, . . . b2−j/f 2(2−jc − 1, we have

f 2(2−j) ≤ sk+1 − sk ≤ 2f 2(2−j).

It follows from this and the Hölder continuity of ` and r with exponent β > 1/2 that

bk − ak = inf
t∈(sk,sk+1)

r(t) − sup
t∈(sk,sk+1)

`(t)

≤ r(sk) + sup
t∈(sk,sk+1)

|r(t) − r(sk)| − `(sk) + sup
t∈(sk,sk+1)

|`(t) − `(sk)|

≤ f(sk) + 2c1|sk − sk+1|β
≤ c2f(2−j) + 2c1|sk − sk+1|β
≤ c2|sk − sk+1|1/2 + 2c1|sk − sk+1|β
≤ c3|sk − sk+1|1/2.
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Similarly, for large k,

bk − ak = inf
t∈(sk,sk+1)

r(t) − sup
t∈(sk,sk+1)

`(t)

≥ r(sk) − sup
t∈(sk,sk+1)

|r(t) − r(sk)| − `(sk) − sup
t∈(sk,sk+1)

|`(t) − `(sk)|

≥ f(sk) − 2c1|sk − sk+1|β
≥ f(2−j) − 2c1|sk − sk+1|β
≥

√
2|sk − sk+1|1/2 − 2c1|sk − sk+1|β

≥ c4|sk − sk+1|1/2.

A similar calculation shows that dk ∨ d′k ≤ cf(2−j) for k and j such that [sk, sk+1] ⊂
[2−j, 2−j+2].

The rest of the analysis proceeds as in the previous example. The sum over all k in the
indicated range gives us

∑

k:[sk,sk+1]⊂[2−j ,2−j+2]

(dk ∨ d′k) ≤ c22
−jf(2−j)/f 2(2−j).

Summing over j > j1 yields a finite number provided α < 1. A similar analysis applies in
the interval [3τ/4, τ ], and so the assumption (4.6) of Theorem 4.8 is satisfied if α < 1. We

conclude that if α < 1 then E

[
V[0,τ ]Y

]
<∞.

We see that within the family of functions f(·) that decay towards the endpoints of [0, τ ]
as tα, our results are sharp, by comparing the present example with Examples 4.6 and 4.7.

Remark 4.11. Note that the parameters α and β in Example 4.10 can be such that 1/2 <
β < α < 1. Consider a function ` that is Hölder continuous with exponent β but it is not
Hölder continuous with exponent β + ε on any interval [0, s], for any ε > 0 and any s > 0.
A typical trajectory of a fractional Brownian motion with appropriate exponent provides
an example of such a function. By making a linear transformation, we may assume that
`(0) = `(τ) = 0. Let f(t) = tα for t ∈ [0, τ/4] and f(t) = (τ − t)α for t ∈ [3τ/4, τ ], f(t)
is continuous on [0, τ ] and f(t) > 0 for t ∈ (0, τ). Let r

.
= ` + f . Then ` and r satisfy the

assumptions of the present example, and so E

[
V[0,τ ]Y

]
<∞. Note that neither ` nor r need

be monotone, and both functions can oscillate between positive and negative values. Their
local oscillations near 0 may be comparable in absolute value to tβ, a function much larger
than f(t) = tα.

4.3. Analysis of a class of 2-dimensional RBMs

We now apply the results obtained in the last two sections to analyze a class of “valley-
shaped” two-dimensional RBMs studied in [4], [11] and [24] (see also [18, 19] to see how
RBMs in this class arise as diffusion approximations of a class of queueing networks), which
provided one of the sources of motivation for the current work.
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We begin by recalling the setup from [4] and rephrase some of the results from that paper
in our terminology. The domain D ⊂ R

2 is described by two continuous, real-valued functions
L and R defined on [0,∞) that satisfy L(0) = R(0) = 0 and L(y) < R(y) for all y > 0 Let
D be given by

D ≡ {(x, y) ∈ R
2 : y ≥ 0, L(y) ≤ x ≤ R(y)}.

Let ∂D1 = {(x, y) ∈ ∂D : x = L(y)} and ∂D2 = {(x, y) ∈ ∂D : x = R(y)}. The paper [4] was
concerned with the two-dimensional RBM Z = (Z1, Z2) in D, with the vectors of reflection
horizontal on ∂D1 and ∂D2, and an additional vertical direction of reflection at 0 that ensures
the RBM stays withinD (see [4] for details). From the Skorokhod-type lemma proved in [4], it
follows that Z2 is a one-dimensional RBM on [0,∞) and Z1 is the ESM applied to a standard
1-dimensional BM B in the domain with time-dependent boundaries `(t) = L(Z2(t)) and
r(t) = R(Z2(t)). By Definition 2.2, Z1 admits the decomposition Z1 = B + Y where Y is
(pathwise) the local time or the constraining process associated with the ESP on [`(·), r(·)].

We first study the total variation of the local time Y on a single excursion of the RBM
(Z1, Z2) from the origin. Let [τ1, τ2] be an excursion interval for Z2, i.e., τ1 < τ2, Z

2(τ1) =
Z2(τ2) = 0, and Z2(t) > 0 for t ∈ (τ1, τ2). The following result was established in Theorem
3 of [4] – we provide an alternative proof of this result.

Proposition 4.12. Suppose that there exist ε > 0 and γ > 2 such that R(y) − L(y) ≤ yγ

for y ∈ [0, ε]. Then
V[τ1,τ2]Y = ∞ a.s.

On the other hand, suppose that there exist ε > 0 and γ < 2 such that R(y) − L(y) ≥ yγ

for y ∈ [0, ε], and R and L are Lipschitz. Then

V[τ1,τ2]Y <∞ a.s.

Proof. We start with the first case. Let γ1 < 1/2 be such that γ · γ1 > 1. Path properties
at endpoints of an excursion of (1-dimensional reflected) Brownian motion from 0 are well
known to be the same as those of the 3-dimensional Bessel process, see, e.g., [1]. Hence, it
follows from Theorem 3.3 (i) of [20] that

lim sup
t↓τ1

Z2(t− τ1)

(t− τ1)γ1
= 0.

By the case assumption, this implies that

lim sup
t↓τ1

R(Z2(t− τ1)) − L(Z2(t− τ1))

(t− τ1)γ1γ
≤ lim sup

t↓τ1

(
Z2(t− τ1)

(t− τ1)γ1

)γ

= 0.

If we set τ
.
= τ2 − τ1, `(t)

.
= L(Z2(t− τ1)), r(t)

.
= R(Z2(t− τ1)) and f(t)

.
= r(t) − `(t), then

we see that f(t) ≤ tγ1γ for t sufficiently close to 0, where γ1γ > 1. Arguing as in Example
4.7, it is possible to verify the assumptions of Theorem 4.3 in this case, and so it follows that
the variation of local time accumulated by Z1 on the interval [τ1, τ2] is infinite a.s.
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Next, suppose that γ < 2, there exists ε > 0 such that R(y)−L(y) ≥ yγ for y ∈ [0, ε], and
the functions L and R are Lipschitz. Let γ2 > 1/2 be such that γ2γ < 1. We use Theorem
3.3 (ii) of [20] to see that

lim inf
t↓τ1

Z2(t− τ1)

(t− τ1)γ2
= ∞.

It follows that

lim inf
t↓τ1

R(Z2(t− τ1)) − L(Z2(t− τ1))

(t− τ1)γ2γ
≥ lim inf

t↓τ1

(
Z2(t− τ1)

(t− τ1)γ2

)γ

= ∞.

Using the notation introduced above, f(t) ≥ tγ2γ for t sufficiently close to 0, where γ2γ < 1.
We would like to apply Theorem 4.8. We proceed with the construction of boxes as in
Example 4.10. The only new subtle point in the argument is the verification of (4.6). In
Example 4.10, we used the fact that ` and r were Hölder continuous with exponent β > 1/2.
Now, we use the fact that for any β1 ∈ (0, 1/2), Brownian motion is Hölder continuous with
exponent β1, a.s., and that the same applies to the trajectories of the 3-dimensional Bessel
process (because Brownian excursions from 0 have the same local path properties). Since L
and R are assumed to be Lipschitz, we conclude that ` and r are Hölder continuous with
some exponent β1 > γ2γ/2. This suffices to prove that the inequalities in (4.6) hold. A similar
analysis applies at the other endpoint of the excursion, i.e., close to τ2. We conclude that
the variation of the local time accumulated by Z1 on the interval [τ1, τ2] is finite a.s.

We now consider a somewhat different, and perhaps more natural, question of whether Z is
a semimartingale. A surprising fact is that for any functions R and L such that R(0) = L(0),
the amount of local time accumulated on the boundary is infinite. The rate of growth of
R − L in a neighborhood of 0 turns out to be irrelevant for this question. Our argument is
based exclusively on the scaling properties of Brownian motion. The proof will use excursion
theory; see [1] for a review of the relevant definitions and facts.

Proposition 4.13. Suppose Z(0) = 0. Then for every T > 0,

V[0,T ]Y = ∞, a.s.

Consequently, the process Z starting from 0 is not a semimartingale.

Proof. Let [sk, tk], k ≥ 1, be the collection of all excursion intervals of Z2 from 0. In other
words, we have Z2(sk) = Z2(tk) = 0 and Z2(t) > 0 for t ∈ (sk, tk). Let {σ(t), t ≥ 0} be the
local time of Z2 at 0. Then the family {(σ(sk), {Z2(t), t ∈ [sk, tk]})}k≥1 is a Poisson point
process on the space [0,∞) × U , where U is the space of excursions. The intensity of the
Poisson point process is the product of Lebesgue measure and an excursion law H.

Note that we have Z1 = B + Y and B is independent of Z2. Let uk ∈ [sk, tk] be the time
when Z2 attains its maximum on the interval [sk, tk]. Given sk and tk, the process {(B(t)−
B(uk), Z

2(t) − Z2(uk)), t ∈ [uk, tk]} is independent of all processes {(B(t) − B(uj), Z
2(t) −

Z2(uj)), t ∈ [uj, tj]}, j 6= k.

imsart ver. 2005/10/19 file: timevar17.tex date: March 8, 2008



/ 26

Given tk − sk = a, the distribution of a−1(tk − uk) is independent of a, by scaling. Given
tk − sk = a, the distribution of a−1/2(B(tk) − B(uk)) is otherwise independent of tk and sk,
and of Z1(uk). By Brownian scaling, there exists c0 > 0 such that

P(B(tk) −B(uk) > c0a
1/2 | tk − sk = a) ≥ 1/4,

and
P(B(tk) −B(uk) < −c0a1/2 | tk − sk = a) ≥ 1/4.

Using independence from Z1(uk),

P(Z1(uk) +B(tk) −B(uk) > c0a
1/2 | tk − sk = a, Z1(uk) > 0) ≥ 1/4,

and
P(Z1(uk) +B(tk) −B(uk) < −c0a1/2 | tk − sk = a, Z1(uk) < 0) ≥ 1/4.

Combining the two cases, we obtain

P(|Z1(uk) +B(tk) −B(uk)| > c0a
1/2 | tk − sk = a) ≥ 1/4.

Note that Y (uk) − Y (tk) = Z1(uk) +B(tk) −B(uk) since Z(tk) = 0. Thus,

P(|Y (uk) − Y (tk)| > c0a
1/2 | tk − sk = a) ≥ 1/4,

which implies that
P(V[uk,tk]Y > c0a

1/2 | tk − sk = a) ≥ 1/4. (4.19)

Recall that H is the excursion law for excursions of Z2 from 0 and let ζ be the lifetime of
an excursion. Then H(ζ ∈ da) = c1a

−3/2 (see [1]). It follows from excursion theory that the
number of excursions starting at a point sk ≤ σ−1(1) and such that tk − sk ∈ (2−j−1, 2−j]

has the Poisson distribution with average c1
∫ 2−j

2−j−1 a−3/2da = c22
j/2. By (4.19), the number

of such excursions with the property that V[uk,tk]Y > c02
−(j+1)/2 is minorized by the Poisson

distribution with average (1/4)c22
j/2. Hence

∑
sk≤σ−1(1),tk−sk∈(2−j−1,2−j ] V[uk,tk]Y is minorized

by a random variable which is the product of c02
−(j+1)/2 and a Poisson random variable

with average (1/4)c22
j/2. By excursion theory, the sums

∑
sk≤σ−1(1),tk−sk∈(2−j−1,2−j ] V[uk,tk]Y

are independent for different j. Now it is elementary to check that, a.s.,

V[0,σ−1(1)]Y ≥
∑

j≥1

∑

k:sk≤σ−1(1),tk−sk∈(2−j−1,2−j ]

V[uk,tk]Y = ∞.

The same argument shows that V[0,σ−1(t)]Y = ∞, a.s., for every t > 0. Thus V[0,s]Y = ∞,
a.s., for every s > 0.

It is intuitively clear from the first part of the proof that Z1 is not a semimartingale. A
subtle technical difficulty is that it is not obvious that the Doob decomposition of Z1 and
the Skorokhod representation have to be identical. We shall show that this is indeed the case
in the following paragraph.
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Suppose that Z1 is a semimartingale with the decomposition Z1 = B̃ + Ỹ . Fix i,m ∈ N

and define a sequence of stopping times as follows. Let T i,m
1

.
= inf{t ≥ 0 : Z2 = 2−i},

Si,m
1

.
= inf{t ≥ T i,m

1 : Z2 = 2−m}, and recursively define, for each n ≥ 2, T i,m
n

.
= inf{t ≥

Si,m
n−1 : Z2 = 2−i} and Si,m

n = inf{t ≥ T i,m
n : Z2 = 2−m}. On each interval [T i,m

n , Si,m
n ], Z1 is a

semimartingale with decomposition B̃+Ỹ . On the other hand, since inf t∈[T i,m
n ,Si,m

n ]R(Z2(t))−
L(Z2(t)) > 0, by the last assertion of Theorem 2.6 and uniqueness of the Doob decomposition
for Z1, it follows that a.s. Ỹ (t)− Ỹ (s) = Y (t)− Y (s) for all s, t ∈ [T i,m

n , Si,m
n ]. In particular,

this implies that, a.s.,
∑∞

n=1 V[T i,m
n ,Si,m

n ]Y =
∑∞

n=1 V[T i,m
n ,Si,m

n ]Ỹ . Letting m → ∞, and then
i→ ∞, we have almost surely, for each T > 0,

V[0,σ−1(T )]Ỹ ≥ lim
i→∞

lim
m→∞

∞∑

n=1

V[T i,m
n ∧σ−1(T ),Si,m

n ∧σ−1(T )]Ỹ

= lim
i→∞

lim
m→∞

∞∑

n=1

V[T i,m
n ∧σ−1(T ),Si,m

n ∧σ−1(T )]Y

≥
∑

j≥1

∑

k:sk≤σ−1(T ),tk−sk∈(2−j−1,2−j ]

V[uk,tk]Y.

The first part of the proof now shows that the last term equals infinity. We conclude that
Z1, and therefore Z, is not a semimartingale.
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