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Abstract

We consider the exponential decay rate of the stationary tail probabilities of re$ected Brownian
motion X in the N -dimensional orthant RN

+ having drift b, covariance matrix A, and constraint
matrix D. Suppose that the Skorokhod or re$ection mapping associated with the matrix D is
well-de4ned and Lipschitz continuous on the space of continuous functions. Under the stability
condition D−1b¡ 0, it is known that the exponential decay rate has a variational representation
V (x). This representation is di9cult to analyze, in part because there is no analytical theory asso-
ciated with it. In this paper, we obtain a new representation for V (x) in terms of a time-reversed
optimal control problem. Speci4cally, we show that V (x) is equal to the minimum cost incurred
to reach the origin when starting at the point x, where the constrained dynamics are described
in terms of another constraint matrix <D, and the cost is quadratic in the control as well as the
“local time” or constraining term. The equivalence of these representations in fact holds under
the milder assumption that the matrices D and <D satisfy what is known as the completely-S
condition. We then use the time-reversed representation to identify the minimizing large devia-
tion trajectories for a class of RBMs having product form distributions. In particular, we show
that the large deviation trajectories associated with product form RBMs that approximate open
single-class networks or multi-class feedforward networks do not cycle. c© 2001 Published by
Elsevier Science B.V.
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1. Introduction

1.1. Background

A (b; A; D) re$ected Brownian motion (RBM) X in the N -dimensional orthant RN
+

behaves like an N -dimensional Brownian motion with constant drift b and covari-
ance matrix A in the interior of the orthant, and is instantaneously constrained at the
boundary, being pushed along the direction dj (the jth column of D) when on the
relative interior of the face {x∈RN

+ : xj = 0}. Apart from being of general theoretical
interest, the study of RBMs in the orthant has also been motivated by the fact that
they arise frequently as diLusion or heavy tra9c approximations to queueing networks
(see Kushner, 2001; Williams, 1996). For example, heavy tra9c approximations of
single-class open queueing networks can be characterized by RBMs whose constraint
matrices satisfy what we refer to as the Harrison–Reiman condition, which is Con-
dition 2:2 below (Reiman, 1984), and likewise multi-class feedforward networks can
be approximated by RBMs whose constraint matrices satisfy Condition 2:3 (Peterson,
1991). Stationary distributions of these approximating RBMs have been the focus of
much work because they serve as estimates for the stationary measures of the corre-
sponding queueing networks, and are generally easier to compute. Several authors have
obtained explicit analytical expressions for the stationary distributions of RBMs in two
dimensions (Harrison et al., 1985; Williams, 1985). However, in higher dimensions
the only general result available is for RBMs whose stationary densities have an ex-
ponential product form. More precisely, Harrison and Williams showed that a certain
skew symmetry condition on A and D was necessary and su9cient for any (b; A; D)
RBM with a completely-S matrix D satisfying D−1b¡ 0 to have a product form sta-
tionary distribution (Harrison and Williams, 1987a, Theorem 9:2; Dai and Harrison,
1992, Proposition 9). Some product form RBMs serve as tractable approximations to
certain queueing networks with rather complicated non-product form stationary distri-
butions. In general, however, explicit solutions for the stationary distributions of even
the approximating RBMs are hard to obtain, and one often has to resort to numerical
approximations. Dai and Harrison developed one such approximation algorithm and
demonstrated its e9cacy in solving certain examples (Dai and Harrison, 1992). How-
ever, in general the convergence of their approximations depends crucially on a certain
reference density which is hard to choose appropriately without any a priori knowledge
of the stationary distribution of the RBM.

In this context, the exponential decay rate of the stationary distribution of an RBM is
of interest for two reasons. Firstly, a knowledge of the tail behavior of the distribution
can lead to better convergence properties for the numerical algorithms proposed in Dai
and Harrison (1992). Secondly, since heavy tra9c and large deviation limits are often
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interchangeable (the proof for open feedforward networks and single-class queueing
networks can be found in Majewski, 1998a, 2000), the large deviation behavior of the
RBM approximates the large deviation behavior of the associated queueing network.
The latter is of interest because it characterizes the probability of crucial rare events
such as buLer over$ow or large delays in the network.

In this paper, we analyze the function V (·) de4ned below by the variational problem
(1). As shown in Section 2.2, V (·) characterizes the exponential decay rate of the tails
of the stationary distribution 
 of a (b; A; D) RBM under suitable conditions on the
data (b; A; D). Roughly speaking, for Borel subsets B ⊂ RN

+ that are su9ciently regular
(e.g., B is the closure of its interior),

−1
n

log 
(nB)n→∞→ V (B) where V (B) := inf
x∈B

V (x):

Let AC([0;∞) :RN ) be the space of absolutely continuous functions on [0;∞) taking
values in RN . De4ne

V (x) := inf
 ∈AC([0;∞) : RN ) :  (0)=0

inf
�∈�( ) : �x¡∞

∫ �x

0
L( ̇ (s)) ds; (1)

where

L(�) := 1
2(� − b)′A−1(� − b); (2)

�x
:= inf{t¿ 0 :�(t) = x}; (3)

and where �( ) is the set of images of  under the Skorokhod Map (SM) that is
associated with D. The Skorokhod Map (which is also referred to as the re$ection
map in this context) is a key tool in the construction and analysis of RBM. The
de4nition of the SM and some of its main properties are summarized in Section 2.1.

In two dimensions, the simplicity of the geometry allows the variational problem
V (·) and the associated minimizing trajectories to be calculated explicitly (Avram et
al., 2000; KieLer, 1995; O’Connell, 1998; Paschalidis, 1996). In dimensions greater
than two, one has to allow for the possibility that minimizing trajectories may cycle,
i.e., the trajectories may have a decomposition into an in4nite number of disjoint pieces
that are scaled versions of each other. As a consequence, relatively few explicit expres-
sions or even 4nite-dimensional representations for V (x) have been derived in higher
dimensions. One major di9culty is that although the variational problem (1) can be
viewed as an optimal control problem, it cannot be analyzed using classical control
theoretical methods (such as dynamic programming techniques). This is primarily due
to the fact that the independent variable x of the function V (x) serves as the terminal
condition for the trajectories (see (3)), as opposed to the initial condition. In the classi-
cal setting with unconstrained dynamics, this problem is usually overcome by reversing
the time axis. However, as explained below, this is no longer as straightforward when
the dynamics are constrained. The SM, which describes the constrained dynamics, can
be de4ned on a pathwise basis by solving what is known as the Skorokhod Problem
(SP) for each input trajectory  . For absolutely continuous inputs  , one can reformu-
late the SP in terms of a constrained ODE of the form �̇=�(�;  ̇ ); �(0)= (0), where
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�(x; �) is de4ned in terms of D, and where the map x → �(x; �) is discontinuous. In
spite of this discontinuity, under appropriate conditions one can show that this ODE
admits a decent qualitative theory (i.e., existence and uniqueness of solutions, etc.)
if one is solving forward in time (Dupuis and Ishii, 1991). However, in strong con-
trast to the classical theory for ODEs under a Lipschitz continuity condition, there is
non-uniqueness if one attempts to solve the constrained ODE backward in time. This
makes the development of dynamic programming principles di9cult. Numerical ap-
proximations of the rate function associated with a class of RBMs have been proposed
by Majewski (1998b), but these suLer from a combinatorial explosion with increase in
dimension, and do not identify certain qualitative properties of the minimizing paths
such as cyclicity.

1.2. Main results

Our main result (Theorem 3.6) is that V (x) is equal to the value function <V (x) of a
related optimal control problem [see (17)] that is more amenable to analysis. Roughly
speaking, <V (x) is the minimum cost to reach the origin for any trajectory � that starts
at x, where the dynamics are speci4ed by a SM associated with a “time-reversed”
constraint matrix <D (speci4ed in terms of A and D) and a cost that is a quadratic
function of the control  ̇ as well as of the local time �̇ = �̇ −  ̇ . The proof uses
time-reversal arguments and also establishes a one-to-one correspondence between the
minimizing trajectories of the two problems.

In the cases we have examined in detail, the minimizing trajectories for the time-
reversed problem have a simpler form than those of the original variational problem. For
example, we show in Section 4 that for product form RBMs the minimizing trajectory
for the time-reversed problem is associated with a constant control or input velocity
 ̇ , whereas in general the optimal control for the original variational problem (1) is
only piecewise constant. Moreover, using this property we show that the large deviation
trajectories associated with product form RBMs that arise as diLusion approximations to
open single-class networks or multi-class feedforward networks do not exhibit cycling
behavior.

The outline of the paper is as follows. In Section 2 we introduce the background the-
ory related to the Skorokhod Problem and large deviations that is necessary to establish
that under suitable assumptions the function V (x) with the variational representation
(1) characterizes the exponential decay rate of the tails of a stationary (b; A; D) RBM.
In Section 3 we introduce the time-reversed optimal control problem and the varia-
tional representation for its value function <V (x). The main result V = <V is established
in Theorem 3.6 using pathwise time-reversal arguments under the assumption that D
and <D are completely-S. In Section 4 we specialize to the case of RBMs with product
form stationary distributions. We identify the large deviation minimizing trajectories
and show that for the subclass of RBMs whose constraint matrices D are either of
Harrison–Reiman type, or satisfy Condition 2.3, these trajectories do not cycle. For
the special case of three dimensions, we also show that the minimizing large deviation
trajectories of product form RBMs having generalized Harrison–Reiman constraint ma-
trices do not cycle. We illustrate the implications of these results for determining the
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most likely way in which buLers over$ow in queueing networks via a three-dimensional
example in Section 5.

1.3. Notation

Some common notation used throughout the paper is as follows. We use capital let-
ters to denote matrices, and lower case letters to denote vectors or scalars. Inequalities
involving vectors and matrices will be understood componentwise. Vectors are under-
stood to be column vectors, and the ith component of a vector v is denoted (v)i, or
when there is no ambiguity, simply by vi. Given a matrix D; Dij denotes the entry in
the ith row and jth column and di denotes the ith column vector of D. Note that by
this convention, Dij =(dj)i. Moreover, we use D′ to denote the transpose of the matrix
D. I represents the N × N identity matrix, RN

+ is used to denote the N -dimensional
orthant

⋂
i=1; :::;N {x : xi¿ 0}, and {ei; 1 = 1; : : : ; N} is the standard orthonormal basis

in RN .
Given any subset A ⊂ RN , we let A◦ denote its interior and @A its boundary. For

E =RN or RN
+ we use C([0;∞) :E) (respectively, C+([0;∞) :E)) to denote the set of

continuous functions f on [0;∞) taking values in E whose initial value f(0) lies in RN

(respectively, RN
+). We de4ne I([0;∞) :E); I+([0;∞) :E) to be the analogous sets of

(componentwise) non-decreasing continuous functions and likewise let AC([0;∞) :E)
and AC+([0;∞) :E) be the corresponding sets of absolutely continuous functions. We
use ! to represent the identity mapping ! :R+ → R+ so that !(t)= t for every t¿ 0. In
general, quantities with a bar on them (like <�) are used to refer to the time-reversed
variational problem <V de4ned by (17), while plain quantities without bars (like �)
refer to the original variational problem (1). Starred quantities (like < ∗ or  ∗) are used
to represent optimal or minimizing trajectories for the respective variational
problems.

2. Large deviations for stationary re�ected Brownian motion

In this section we formulate the well-known variational representation (1) for the
decay rate of the tails of the stationary distribution 
 of a (b; A; D) RBM X . We 4rst
show that the decay rate can equivalently be represented as the large deviation rate
function for the sequence {
̃n}, where 
̃n is the stationary distribution of a (b; A=n; D)
RBM, and then use standard results to show that the latter has the representation (1).
In Section 2.1 we de4ne the Skorokhod Problem, the associated Skorokhod Map and
re$ected Brownian motion (RBM). In Section 2.2 we show that the decay rate has the
variational representation V (x) given in (1).

2.1. The Skorokhod Map

Let a constraint matrix D be given, and recall that dj is the jth column of D. For
each point x on the boundary of RN

+, let I(x) := {i : xi =0}. We introduce the set-valued
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function

d(x) :=



∑
i∈I(x)

aidi : ai¿ 0;

∥∥∥∥∥∥
∑
i∈I(x)

aidi

∥∥∥∥∥∥= 1




that describes the set of directions of constraint allowed at each point x∈ @RN
+. The

Skorokhod Problem (SP) assigns to every path  ∈C+([0;∞) :RN ) a path �∈
C+([0;∞) :RN

+) that starts at �(0) =  (0), but is constrained to RN
+ as follows. If

� is in the interior of RN
+ then the evolution of � mimics that of  , in that the incre-

ments of the two functions are the same until � hits the boundary of RN
+. When � is

on the boundary a constraining “force” is applied to keep � in the domain, and this
force can only be applied in one of the directions in d(�(t)), and only for t such that
�(t) is on the boundary. The precise de4nition is as follows. For �∈C([0;∞) :RN )
and t ∈ [0;∞) we let |�|(t) denote the total variation of � on [0; t] with respect to the
Euclidean norm on RN .

De�nition 2.1 (Skorokhod Problem). Let  ∈C+([0;∞) :RN ) be given. Then (�; �)
solves the SP for  (with respect to RN

+ and the constraint matrix D) if �(0) =  (0);
and if for all t ∈ [0;∞)
1. �(t) =  (t) + �(t);
2. �(t)∈RN

+;
3. |�|(t)¡∞;
4. |�|(t) =

∫
[0; t] 1{�(s)∈@RN

+}d|�|(s);
5. There exists a Borel measurable function $ : [0;∞) → RN such that d|�|-almost

everywhere $(t)∈d(�(t)); and such that

�(t) =
∫

[0; t]
$(s)d|�|(s):

Note that � changes only when � is on the boundary, and only in the directions d(�).
We let �( ) denote the set of � such that (�; � −  ) solve the SP for  and refer
to the (in general multi-valued) mapping � as the Skorokhod Map (SM). Note that
if � is single-valued (e.g. when � is Lipschitz continuous), then with some abuse of
notation we will write � = �( ) if (�; �−  ) solve the SP for  .

Remark. In the de4nition of the SP given above; we have specialized to the case
where the domain is RN

+ and there are N directions of constraint. (For a more general
de4nition; see Dupuis and Ishii; 1991; Dupuis and Ramanan; 1999a.) In this setting
the SP and SM are often referred to as the dynamic complementarity problem and
the re$ection map; respectively (Harrison and Reiman; 1981; Mandelbaum and Van
der Heyden; 1987). Moreover; � is often represented as D%; where %∈I([0;∞) :RN )
(Harrison and Reiman; 1981). We refer to % as the local time.

A basic assumption we make on the constraint matrix D is that it satis4es the
completely-S condition stated below. When D is completely-S, its diagonal elements
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must be positive, and thus without loss of generality we assume throughout the paper
that Dii = 1 for i = 1; : : : ; N . Note that this means d′

iei = 1 for i = 1; : : : ; N .

De�nition 2.2 (Completely-S). D∈RN×N is said to be completely-S if for each prin-
cipal matrix D̃ of D there is y¿ 0 such that D̃y¿ 0; where the inequalities are inter-
preted componentwise.

It is well-known that the SM � is well-de4ned on all of C+([0;∞) :RN ) if and
only if the associated constraint matrix D is completely-S (Bernard and El Khar-
roubi, 1991). We now consider some additional regularity conditions on the constraint
matrix D.

Condition 2.1 (Regular SP): D∈RN×N is invertible and the associated Skorokhod
Map � is Lipschitz continuous (with respect to the topology of uniform convergence
on compact sets) and is de;ned for every  ∈C+([0;∞) :RN ).

Observe that D must in particular be completely-S in order to satisfy Condition 2:1.
General assumptions that ensure Condition 2:1 can be found in Dupuis and Ishii (1991)
and Dupuis and Ramanan (1999a,b). Below we provide three su9cient conditions under
which D satis4es Condition 2:1 (Dupuis and Ramanan, 1999b; Harrison and Reiman,
1981). Note, however, that these are not necessary conditions for Condition 2:1 to hold
(Dupuis and Ramanan, 1999b, Section 2:4). Recall that I is the N ×N identity matrix.

Condition 2.2 (Harrison–Reiman): D∈RN×N has the form I − V , where V is a non-
negative o<-diagonal matrix with spectral radius less than one.

Condition 2.3 (Multiclass feedforward): D∈RN×N has the form I − V , where V is
upper triangular (vij = 0 if i6 j) or lower triangular (vij = 0 if i¿ j).

Condition 2.4 (Generalized Harrison–Reiman): D∈RN×N has the form I − V , where
|V | is an o<-diagonal matrix with spectral radius less than one.

Note that Condition 2:4 includes Conditions 2:2 and 2:3 as special cases. When
D has the regularity properties dictated by Condition 2:1, the associated SM serves
as an extremely convenient tool for the pathwise construction of re$ected Brownian
motion. We use ! to denote the identity map. Since the only RBMs we consider admit
a pathwise construction, we will take the following as our de4nition of RBM.

De�nition 2.3 (Re?ected Brownian motion). Given a drift vector b∈RN ; covariance
matrix A = ((′ ¿ 0; N -dimensional standard Brownian motion W; domain RN

+ and
constraint matrix D satisfying Condition 2:1; let � be the associated Skorokhod Map.
Then

X := �(b! + (W )

is a (b; A; D) RBM.
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2.2. The large deviation rate function for stationary RBM

We now characterize the large deviation rate function for a sequence of scaled
stationary RBMs in terms of the variational problem (1) for V (x). We 4rst recall the
de4nition of a large deviation principle (LDP) (Varadhan, 1984, De4nition 2.1).

De�nition 2.4 (Large deviation principle). A sequence of probability measures {
n}
de4ned on a complete separable metric space (X;B) is said to satisfy the LDP with
rate function J if for all +∈B;

lim sup
n→∞

1
n

log 
n(+)6− inf
x∈ <+

J (x);

and

lim inf
n→∞

1
n

log 
n(+)¿− inf
x∈+◦

J (x);

where J :X → R∪ {∞} is a function with compact level sets. A sequence of random
variables {Xn} de4ned on some measure space taking values in a complete separable
metric space (X;B) is said to satisfy an LDP with rate function J (·) if the correspond-
ing induced measures satisfy a LDP with the same rate function.

Given a constraint matrix D, de4ne

C
:= −d(0) =

{
−
∑

,idi : ,i¿ 0
}
;

where as before di is the ith column of the constraint matrix D. We now state a
stability condition that ensures existence of the invariant distribution for a (b; A; D)
RBM.

Condition 2.5 (Stability): b∈C
◦.

Note that when D is invertible, Condition 2:5 is equivalent to the inequality D−1b¡ 0.
When D satis4es Condition 2:1 it was shown in Budhiraja and Dupuis (1999) that Con-
dition 2:5 is necessary and su9cient for the trajectory �(x + b!)(t) to reach the origin
in 4nite time for any x∈RN

+, and for the associated (b; A; D) RBM X to be positive
recurrent. (Recall that ! :R+ → R+ is the identity mapping.) For the case when the
constraint matrix satis4es the Harrison–Reiman condition (Condition 2:2), the fact that
b∈C

◦ is necessary and su9cient for the positive recurrence of RBM was 4rst estab-
lished in Harrison and Williams (1987a, Section 6). Note that if the RBM is positive
recurrent it has an invariant distribution.

Let 
 be the invariant distribution of the (b; A; D) RBM. We are interested in the
large deviation principle for the sequence {
n} de4ned by 
n(B)=
(nB), and will use
the fact that 
n = 
̃n, where 
̃n is the invariant distribution for the (b; A=n; D) RBM.
This will allow us to appeal to existing results in the large deviation literature, and in
particular to the classical results of Freidlin and Wentzell on large deviations for the
invariant distributions of small noise Markov processes.
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Theorem 2.5. Suppose the (b; A; D) RBM X on the orthant RN
+ is such that A = ((′

is positive de;nite and Conditions 2:1 and 2:5 are satis;ed. Let � be the associated
Skorokhod Map. Then {
n} satis;es the LDP with rate function V (x) given by (1).

Proof. Consider the RBM Xn
:= �(b! + (W=

√
n). Xn is well-de4ned by Condition

2:1; and possesses a unique invariant distribution 
̃n under Condition 2:5. Fix any
T ∈ (0;∞) and x∈RN

+. We also consider the family of RBMs with starting position
x de4ned by X x

n
:= �(x + b! + (W=

√
n). Schilder’s theorem (which states the large

deviation principle for Brownian motion with drift b and covariance A=n; (Varadhan;
1984; p. 19)); the contraction mapping theorem (Varadhan; 1984; Remark 1); and the
continuity of � imply that {X x

n } satis4es a large deviation principle on [0; T ] with rate
function J x

T ; where

J x
T (�) := inf

 ∈AC([0;∞) : RN ) :  (0)=x;�=�( )

1
2

∫ T

0
L( ̇ (t)) dt;

and where L is given by (2). Straightforward extensions of standard arguments from
Freidlin–Wentzell theory (Freidlin and Wentzell; 1984; Theorem 4:3; Chapter 4) can
then be used to establish the representation (1) of the large deviation rate function for
the sequence of invariant measures {
̃n}. We then use the relation 
n = 
̃n to deduce
that {
n} satis4es the LDP with the same rate function V (·). (Also see Majewski;
1998a;b; for an alternate derivation of the variational representation for the particular
case when D satis4es either Condition 2:2 or 2:3.)

3. An associated control problem

Theorem 2.5 established that under suitable assumptions the exponential decay rate
of the stationary distribution of re$ected Brownian motion can be characterized as the
minimum cost V (x) (expressed as a quadratic function L(·) of the control  ̇ ) till �(t)=
�( )(t) reaches x. In this section we establish that V (x) also has a representation in
terms of another “time-reversed” optimal control problem that appears more amenable
to analysis. More precisely, we show in Theorem 3.6 that there exists another constraint
matrix <D such that V (x) can be represented as a minimum cost problem involving
trajectories that start at x and accumulate cost till they reach the origin. Under the
assumption that the constraint matrices D and <D are completely-S, the representation
takes the same form as (1), save that the constraints on the endpoints are reversed, and
the running cost is quadratic in the local time as well as the control. The new constraint
matrix and costs are chosen in such a way that the least cost incurred to produce a
trajectory � (going from 0 to x) in the original variational problem is equal to the least
cost incurred to realize the same trajectory traced backward in time (going from x to 0)
in the time-reversed optimal control problem. In fact, as established in Lemma 3.1 and
explained in detail below, this equivalence actually holds at a more local level. In
the absence of boundaries, it is easy to see how the cost structure should be changed
in order to achieve this. However this problem is more subtle when boundaries are
present.
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Fig. 1. The time-reversed cost structure.

Our objective is to equate the cost of moving an in4nitesimal amount in a certain
direction w away from a point in the original problem with the cost of moving an
in4nitesimal amount away from the same point in the opposite direction −w for the
time-reversed problem. When the point is in the interior of the domain, by de4nition
of the SP the controls y and <y are equal to the velocities w and −w produced in the
forward and time-reversed variational problems, respectively. Thus it is clear that for
the costs to be equal, the de4nition of the cost function in the time-reversed problem
should be <L(y) := L(−y) (see (4) below), regardless of the time-reversed constraint
matrix <D. Now suppose instead that the point is on the boundary, say in the relative
interior of the face {z ∈RN

+ : z1 =0}, and that the velocity moves along the boundary so
that w1 =0 (see Fig. 1). Then the cost to move along w in the forward problem is the
in4mum of L(y) over all “controls” y that map to w under the SM associated with D.
Fix y and note that from the de4nition of the SM it must have a representation of the
form y=w−�1d1 for some �1¿ 0. Likewise, any velocity <y used in the time-reversed
problem to achieve an in4nitesimal displacement in the direction −w must have a
representation −w− <�1 <d1 for some <�1¿ 0. However, since w− �1d1 
=w+ <�1 <d1 unless
�1= <�1=0, we do not in general have the equality <L( <y)=L(y). Now choose <y to be the
speci4c velocity corresponding to <�1 = �1 in the representation. Lemma 3.1 shows that
by adding a “boundary” cost to the interior cost <L( <y), which is a quadratic function
of the local time vector <�, and by choosing an appropriate <D, the cost of using <y in
the time-reversed problem can be made equal to L(y). Note that for the example in
R2 illustrated in Fig. 1, just a linear cost <c <� is adequate, but when the same logic is
applied to points on the intersection of multiple faces, it turns out that the cost must
in fact be quadratic in the local time as well as the control.

Before we can state the lemma, we need to introduce some notation. Consider a
(b; A; D) RBM X and recall the de4nition of L given in (2). Consider the function
<L :RN → R+ de4ned by

<L(y) := L(−y); (4)

and a new constraint matrix <D de4ned by

<D := −D + 2AM−1; (5)
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where M is the diagonal matrix with Mii
:= Aii = e′iAei. Let

vi
:= 2AM−1ei; (6)

and observe that if di and <di are the ith columns of the matrices D and <D, respectively,
then

<di = −di + vi; (7)

and ( <di)i = 1. We will use the vector <c∈RN de4ned by

<c := 2M−1b; (8)

so that

<ci
:= ( <c)i = 2b′M−1ei:

In addition, we de4ne the N × N matrix <K by

<Kij
:= 2e′iM

−1AM−1ej − e′iM
−1Dej − e′jM

−1Dei: (9)

Rewriting <Kij in the form

<Kij = e′iM
−1[2A− DM −MD′]M−1ej;

and using the fact that A is symmetric and Dii =1, it is easy to see that <K is symmetric
( <Kij = <Kji) and <Kii = 0. Rearranging and expanding the relation (5), we observe that

2Ajk = Ajj(dk)j + Ajj( <dk)j = AjjDjk + Ajj <Djk :

Lemma 3.1. Given any J ⊂ {1; : : : ; N}; for every w∈RN that satis;es wi=0 for i∈ J ;
we have

 <L

(
−w −

∑
i∈J

�i <di

)
+
∑
i∈J

<ci�i −
∑
i; j∈J

<Kij�i�j


= L

(
w −

∑
i∈J

�idi

)
: (10)

Proof. Using de4nition (2) of L; we see that the right-hand side of (10) is equal to

1
2
(w − b)′A−1(w − b) −

∑
i∈J

d′
iA

−1(w − b)�i +
1
2

∑
i∈J

∑
j∈J

d′
iA

−1dj�i�j: (11)

On the other hand; de4nitions (4) and (7) of <L and <di; respectively; imply that

<L

(
−w −

∑
i∈J

�i <di

)
= L

(
w −

∑
i∈J

�i(di − vi)

)
;
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and analogous to (11) we can expand the right-hand side of the last display to obtain

1
2
(w − b)′A−1(w − b) −

∑
i∈J

[
(di − vi)′A−1(w − b)

]
�i

+
1
2

∑
i∈J

∑
j∈J

(di − vi)′A−1(dj − vj)�i�j: (12)

Subtracting (12) from (11) we see that L(w −∑i∈J �idi) − <L(−w −∑i∈J �i <di) is
equal to

−
∑
i∈J

v′iA
−1(w − b)�i − 1

2

∑
i; j∈J

v′iA
−1vj�i�j +

1
2

∑
i; j∈J

v′iA
−1dj�i�j

+
1
2

∑
i; j∈J

d′
iA

−1vj�i�j:

Since wi = 0 for i∈ J ; substitution of de4nition (6) of vi reduces the above display to∑
i∈J

2e′iM
−1b�i −

∑
i; j∈J

[2e′iM
−1AM−1ej − e′iM

−1Dej − e′jM
−1Dei]�i�j;

which; on substituting the values for <ci and <Kij from (8) and (9) becomes∑
i∈J

<ci�i −
∑
i; j∈J

<Kij�i�j:

Combining the last three displays we obtain (10); thus completing the proof.

We now establish three more results required to convert the local equivalence proved
in Lemma 3.1 to the main result in Theorem 3.6. Fix x∈RN

+, and consider any function
�∈AC([0;∞) :RN

+) such that �(0)=0 and �x ¡∞, where �x
:= inf{t¿ 0 :�(t)=x}.

Let S�(x) be the set of all trajectories  ∈AC([0;∞) :RN ) with  (0) = 0 for which
there is %∈I([0;∞) :RN ) such that %(0) = 0 and

 ̇ (s) = �̇(s) −
N∑
i=1

%̇i(s)di for s∈ [0; �x]; and %̇i(s)¿ 0 only if �i(s) = 0:

From De4nition 2.1, it is easy to see that S�(x) is the set of absolutely continuous
trajectories that map to � under the SP. Note that no assumptions are made on the
existence or uniqueness of solutions to the SP for arbitrary  in this de4nition. For
each such trajectory � we de4ne the minimal cost

V�(x) = inf
 ∈S�(x)

∫ �x

0
L( ̇ (s)) ds:

We also de4ne an analogous set <S�(x), save that the condition  (0) = 0 is replaced
by  (0) = x; d is replaced by <d and �0

:= inf{t¿ 0 :�(t) = 0} is used in lieu of �x.
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For �∈AC([0;∞) :RN
+) with �(0) = x let

<V�(x) := inf
 ∈ <S�(x)

∫ �0

0
[ <L( ̇ (s)) + <c′%̇(s) − %̇

′
(s) <K%̇(s)] ds:

Lemma 3.2. Fix x∈RN
+; and consider any function �∈AC([0;∞) :RN

+) such that
�(0) = 0; �x ¡∞; and �(t) 
= 0 for t ∈ (0; �x). De;ne <�(t) := �(�x − t). Then

V�(x) = <V <�(x):

Proof. For  ∈ S�(x) let % be the corresponding vector of increasing processes.
Let <�(·) be the time-reversed trajectory de4ned by �(�x − ·); and let

<̇%(t) := %̇(�x − t)

for t ∈ [0; �x]. In addition; let

<�0
:= inf{t¿ 0 : <�(t) = 0}:

Then since �(t) 
= 0 for t ∈ (0; �x); we have <�(0) = x; <�(�x) = 0; <�0 = �x ¡∞;
and <̇�(t) =−�̇(�x − t) for t ∈ [0; <�0]. Moreover; for every s∈ [0; �x] %̇i(s)¿ 0 implies
�i(s) = 0 if and only if for every s∈ [0; <�0] <̇%i(s)¿ 0 implies <�i(s) = 0. For s∈ [0; <�0]
de4ne

< (s) := <�(s) − <D <%(s): (13)

It is easy to see that  ∈ S�(x) if and only if < ∈ <S <�(x). In fact; on diLerentiating

Eq. (13) and substituting for <̇% in terms of  ̇ and �̇ one obtains the explicit relation
<̇ (s) = <DD−1 ̇ (�x − s) − [I + <DD−1]�̇(�x − s): (14)

Recall from Section 2.1 that for y∈RN ; I(y) := {i∈{1; : : : ; N} :yi = 0}. Using the
de4nition of <L(·), the properties stated above and Lemma 3.1, we deduce that∫ �x

0
L( ̇ (s)) ds

=
∫ �x

0
L

(
�̇(s) −

N∑
i=1

%̇i(s)di

)
ds

=
∫ �x

0
L


�̇(s) −

∑
i∈I(�(s))

%̇i(s)di


 ds

=
∫ �x

0


 <L


−�̇(s) −

∑
i∈I(�(s))

%̇i(s) <di




+
∑

i∈I(�(s))

<ci%̇i(s) −
∑

i; j∈I(�(s))

<Kij%̇i(s)%̇j(s)


 ds
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=
∫ <�0

0


 <L


 <̇�(s) −

∑
i∈I( <�(s))

<̇%i(s) <di




+
∑

i∈I( <�(s))

<ci <̇%i(s) −
∑

i; j∈I( <�(s))

<Kij <̇%i(s) <̇%j(s)


 ds

=
∫ <�0

0


 <L

(
<̇�(s) −

N∑
i=1

<̇%i(s) <di

)
+

N∑
i=1

<ci <̇%i(s) −
N∑

i; j=1

<Kij <̇%i(s) <̇%j(s)


 ds

=
∫ <�0

0

[
<L( <̇ (s)) + <c′ <̇%(s) − <̇%

′
(s) <K <̇%(s)

]
ds:

Since for every �∈AC([0;∞) :RN ) there exists a one–one correspondence  ↔ < 
between the sets S�(x) and <S <�(x) (given explicitly by (14)), the last display and the
de4nitions of V�(x) and <V�(x) show that V�(x) = <V <�(x).

Let

T (x) := {�∈AC([0;∞);RN
+) :�(0) = 0; �x ¡∞};

and de4ne the minimal cost

U (x) := inf
�∈T (x)

V�(x): (15)

Similarly, let

<T (x) := {�∈AC([0;∞);RN
+) :�(0) = x; �0 ¡∞};

and

<U (x) := inf
�∈ <T (x)

<V�(x): (16)

Theorem 3.3. Let U and <U be de;ned by (15) and (16). Then U = <U . Moreover;
for any x∈RN

+; U (x) is achieved at a trajectory � that satis;es �(t) 
= 0 for t ¿ 0
if and only if <U (x) is attained at the corresponding trajectory <� de;ned by

<�(t) = �(�x − t);

where �x is de;ned by (3).

Proof. Since L¿ 0; in the de4nition of U (x) we can restrict to trajectories � which
satisfy �(t) 
= 0 for t ¿ 0. Similarly; since by (10) and the fact that L¿ 0 the inte-
grand in the de4nition of <V� is also non-negative; in the de4nition of <U (x) we can
restrict to � which satisfy �(t) 
= x for t ¿ 0. Making use of the bijection � ↔ <�
between the sets {�∈AC([0;∞) :RN ) :�(0) = 0; �(t) 
= 0; t ¿ 0; �(�x) = x; �x ¡∞}
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and {�∈AC([0;∞) :RN ) :�(0) = x; �(t) 
= x; t ¿ 0; �(�0) = 0; �0 ¡∞}; and Lemma
3.2 we conclude that

U (x) = inf
{�∈AC([0;∞) : RN ) : �(0)=0;�(t)
=0; t¿0; �(�x)=x; �x¡∞}

V�(x)

= inf
{�∈AC([0;∞) : RN ) : �(0)=0; �(t)
=0; t¿0; �(�x)=x; �x¡∞}

<V <�(x)

= inf
{�∈AC([0;∞) : RN ) : �(0)=x;�(t)
=x; t¿0; �(�0)=0; �0¡∞}

<V�(x)

= <U (x):

The second statement follows automatically from the proof above.

In the theorem just proved the in4mization is over trajectories �, rather than over
the set of “control” processes  . Indeed,  enters only indirectly through the de4nition
of V�. This formulation has the advantage of not requiring any regularity of the corre-
sponding SM, since the question of which � is the image of a given  is never raised.
However, U (x) is not automatically equal to V (x), since the variational problem (1)
for the latter requires in4mization over all absolutely continuous  .

Thus to complete the derivation of a “reverse time” formulation of the large devia-
tions variational problem, we 4rst show in Lemma 3.4 that when D is completely-S,
the image of an absolutely continuous trajectory under the associated SM is also
absolutely continuous.

Lemma 3.4. Suppose D∈RN×N is completely-S and � is the associated SM. Then
given any  ∈AC([0;∞) :RN ); �∈�( ) implies �∈AC([0;∞) :RN ).

Proof. For  ∈C([0;∞) :RN ); it was proved in Bernard and El Kharroubi (1991;
Lemma 1) that if D is completely-S and �∈�( ) then there exists K ¡∞ such that
for any 06 t16 t2 ¡∞;

|�(t2) − �(t1)|6KOsc( ; [t1; t2]);

where

Osc( ; [t1; t2])
:= sup{| (t) −  (s)| : t16 s¡ t6 t2}:

Fix T ¡∞. Since  is absolutely continuous; given 6¿ 0 we can 4nd 7¿ 0 so that
if {(ai; bi); i = 1; : : : ; n} is any collection of non-overlapping intervals in [0; T ] with∑n

i=1(bi − ai)¡7; then
∑n

i=1 | (bi)−  (ai)|¡6. Given such a collection of intervals;
let ai6 a∗i 6 b∗i 6 bi be such that | (b∗i )−  (a∗i )|=Osc( ; [ai; bi]). It follows that the
non-overlapping intervals {(a∗i ; b∗i ); i = 1; : : : ; n} satisfy

∑n
i=1(b

∗
i − a∗i )¡7; and thus

n∑
i=1

|�(bi) − �(ai)|6K
n∑

i=1

| (b∗i ) −  (a∗i )|6K6:

Since T ¡∞ is arbitrary; this shows that � is absolutely continuous on [0;∞).
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We now use this property to show that U (x) = V (x) in Theorem 3.5. In addition,
it will also be convenient to know when <U can be replaced by a variational problem
whose form is similar to that of V . Let <� denote the SM that is associated with the
constraint matrix <D, and assume for the purposes of the following de4nitions that <D
is completely-S and invertible. Note that in this case <� could be multi-valued. Let

<V (x) = inf
 ∈AC([0;∞) : RN ) :  (0)=x

inf
�∈ <�( ) : �0¡∞

∫ �0

0
[ <L( ̇ (s)) + <c′%̇(s) − %̇

′
(s) <K%̇(s)] ds;

(17)

where

�0
:= inf{t¿ 0 :�(t) = 0}; (18)

and

%(s) := ( <D
−1

)′(�(s) −  (s)): (19)

Theorem 3.5. Suppose D is completely-S; and de;ne V (x) and U (x) for x∈RN
+

by (1) and (15); respectively. Then V (x) = U (x). Suppose <D de;ned by (5) is
completely-S and invertible; and de;ne <V (x) and <U (x) for x∈RN

+ by (17) and (16);
respectively. Then <V (x) = <U (x).

Proof. Given any �∈T (x); let  ∈ S�(x). Then  is a candidate in4mizer in the
de4nition of V (x); which shows that V (x)6U (x). Next let  be a candidate minimizer
in the de4nition of V (x); i.e.;  ∈AC([0;∞) :RN ); with  (0) = 0 and �x ¡∞; for
some �∈�( ) with �x

:= inf{t¿ 0 :�(t) = x}. From Lemma 3.4 it follows that �
is absolutely continuous whenever  is absolutely continuous and D is completely-S.
Thus �∈T (x) and  ∈ S�(x); and therefore U (x)6V (x).

Since <D is invertible, <V is well-de4ned. The proof that <V (x) = <U (x) when <D is
completely-S is similar and therefore omitted.

We can now state our main result. Although it is an immediate corollary of the
results of this section, we will state it as a theorem due to its importance.

Theorem 3.6. Let V (x); <U (x) and <V (x) be de;ned by (1); (16) and (17); respectively.
If D is completely-S then V (x) = <U (x). If in addition <D is also completely-S and
invertible; then V (x) = <V (x). Moreover; �∗ with �∗(t) 
= 0 for t ¿ 0 is an optimal
trajectory for V (x) if and only if <�∗(·) := �∗(�∗x − ·) with <�∗(t) 
= x for t ¿ 0 (where
�∗x is de;ned as in (3) with � replaced by �∗) is an optimal trajectory for <V (x).

Proof. Follows directly from Theorems 3.3 and 3.5 and Lemma 3.2.

The paper (Dupuis and Ramanan, 2000) considers problems of the form (17) for
general convex functions and constraint matrices. In all cases, the corresponding optimal
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controls <̇ are constant in time, though they typically depend on the initial position x.
With the particular choice of the convex function <L de4ned in (4), the setup of Dupuis
and Ramanan (2000) corresponds to the case <K = <c=0 in (17). In the next section we
analyze the control problem (17) for the case when <K = 0, <c 
= 0 (which corresponds
to product form RBMs) and show once again that the optimal controls are constant in
time. In fact, in this special case the optimal controls turn out to also be independent
of the initial position x. In the general two-dimensional case, it can be veri4ed (by
using (14) and the two-dimensional results of Avram et al., 2000; for instance) that the
optimal controls continue to be constant in time, though not necessarily independent
of x. An important problem for future work is to determine if this qualitative property
holds in the general case with <K 
= 0, <c 
= 0 in arbitrary dimensions.

4. Large deviations of product form RBMs

Here we apply the results of the last section to RBMs that have the so-called product
form stationary distributions. We introduce this class of RBMs in Section 4.1 and
write down explicitly the known exponential decay rate of the tails of the stationary
distribution for such RBMs. Although the decay rate for any RBM in this class is
known, to the best of our knowledge the minimizing large deviation path that achieves
this value has not been identi4ed. These trajectories are of interest from the perspective
of design of queueing networks approximated by RBMs since they provide insight into
the manner in which large buLer contents build up. However, direct calculation of these
trajectories from the original variational problem (1) for V (x) appears to be non-trivial.

In Section 4.2 we examine the time-reversed variational problem (17) for this spe-
ci4c case. Since dynamic programming principles can be applied to the time-reversed
formulation, we obtain a simpli4cation that enables us to identify the minimizing paths.
Indeed, we show in Theorem 4.1 that optimal controls for the time-reversed problem
[i.e., <̇ in (17)] are constant, while optimal controls for the original variational problem
(1) are in general only piecewise constant.

Since the minimizing trajectories <�∗ associated with the time-reversed problem in
the product form case are images of trajectories with constant velocity under the SM,
in Section 4.3 we 4rst study images of this type. In Section 4.3.1 we consider the
general case when D is completely-S. In Section 4.3.2 we show that if D is either
Harrison–Reiman or satis4es Condition 2:3, then the image is piecewise linear with at
most N or 2N −1 changes of slope, respectively. In Section 4.3.3 we show that in three
dimensions, if D∈R3×3 is generalized Harrison–Reiman, then the image is piecewise
a9ne with at most 5 changes of slope. Using the fact (proved in Theorem 3.5) that
the minimizing large deviation trajectories �∗ are time-reversals of <�∗, this allows us
to conclude in Section 4.3.4 that the minimizing large deviation trajectories of product
form RBMs with matrices satisfying any of the above conditions do not cycle.

The results of this section demonstrate that the time-reversed perspective oLers a
considerable simpli4cation over the original variational problem, at least for the product
form case.
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4.1. The skew-symmetry condition

Harrison and Williams (1987a,b) and Williams (1987) showed that for any (b; A; D)
RBM X with a completely-S constraint matrix D such that D−1b¡ 0, the following
skew symmetry condition

2Ajk = Ajj(dk)j + Akk(dj)k = AjjDjk + AkkDkj

is necessary and su9cient for the stationary density p (with respect to Lebesgue mea-
sure) of X to have a separable exponential form. Note that although they assume that D
has the additional regularity stated in Condition 2:2, this is not required in the proof of
the particular theorem (Harrison and Williams, 1987b, Theorem 9:2; Dai and Harrison,
1992, Proposition 9) More precisely, they showed that

p(x) = C
N∏
i=1

ui exp(−uixi)

for some constant C ¡∞, where (translating Harrison and Williams, 1987b, Eq. (7)
into our notation)

u := −2M−1D−1b: (20)

Thus for the class of RBMs with completely-S D matrices satisfying the skew-
symmetry condition and D−1b¡ 0, the exponential decay rate of the tails of the dis-
tribution is linear and has the known explicit form

x′u = −2x′M−1D−1b:

4.2. The time-reversed control problem

In this section we analyze the time-reversed optimal control problem (17) for
product-form RBMs. The skew symmetry condition introduced in the last section can
be equivalently expressed as

2A = MD′ + DM: (21)

Comparing (5) and (21) we note that this condition is satis4ed if and only if the
time-reversed constraint matrix <D satis4es the relationship

<D = MD′M−1: (22)

Moreover, from De4nition (9) of <K it is easy to see that (21) holds if and only if the
matrix <K is identically zero. Thus for product form RBMs, the time-reversed control
problem (17) reduces to

<V (x) = inf
 ∈AC([0;∞) : RN ) :  (0)=x

inf
�∈ <�( ) : �0¡∞

∫ �0

0
[ <L( ̇ (s)) + <c′%̇(s)] ds; (23)

where <� is the Skorokhod Map associated with <D, and �0 and % are de4ned as before
via (18)–(19).
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In Theorem 4.1 below we derive the structure of the optimal control for <V (x).
We 4rst provide some intuition behind the result. Given w∈RN , let DwV (Dw <V )
denote the directional derivative of V (respectively <V ) along w. Whenever V is smooth
DwV (x) = Dw <V (x) exists for all w∈RN , and dynamic programming principles (see
for example, Kushner and Dupuis, 1992, Chapter 3) suggest that for x∈ (RN

+)◦ the
Hamilton–Jacobi–Bellman equation

inf
�

[D� <V (x) + <L(�)] = 0 (24)

related to the control problem (17) should be satis4ed. Moreover, one would expect that
when �(t)= x∈ (RN

+)◦ the optimal control that should be applied must be equal to the
value <�∗ at which the in4mum in (24) is achieved. For the product form case, if D is
su9ciently regular to ensure that the tails of the stationary distribution satisfy an LDP
with rate de4ned by the variational problem (1) and if <D=MD′M−1 is completely-S,
then by Theorem 3.6 we have <V (x) = V (x) = x′u. Both of these conditions hold if,
for example, D satis4es Condition 2:4. Thus using the de4nitions of <L and <V and
diLerentiating the left-hand side of Eq. (24), simple algebra yields

<�∗ = −b− Au = −b + 2AM−1D−1b = MD′M−1D−1b; (25)

where the second equality uses the de4nition (20) of u and the last equality follows
from the skew symmetry condition (21). Note that since <V is linear in the product
form case, <�∗ is independent of x. This leads one to conjecture that the minimizing
trajectory in (17) may be given by

< ∗(t) = x + <�∗t: (26)

The discussion above was heuristic as it neglected the eLect of boundaries. In
Theorem 4.1 below we prove this conjecture by direct veri4cation. We 4rst de4ne <�∗
by

<�∗(t) := <�(x + <�∗!)(t); (27)

let <�∗0 be de4ned by (18) with � replaced by <�∗, and for s∈ [0; <�∗0 ] let

�∗(s) := <�∗( <�∗0 − s):

In the next theorem we prove that <�∗ de4nes the velocity of the unique minimizer in the
de4nition of <V (x). As a consequence of the explicit correspondence between the mini-
mizing paths for the forward and backward problems U (x) and <U (x) proved in Lemma
3:3, it then follows that �∗ is the unique minimizing path in the de4nition of U (x), up
to the normalization �∗(t) 
= 0 for t ¿ 0. It is therefore also the most likely path from
the perspective of the related large deviation problem when D is su9ciently regular to
ensure that V (x) characterizes the exponential decay rate for the stationary RBM.

Theorem 4.1. Suppose Conditions 2:4 and 2:5 hold; and in addition the skew-symmetry
condition (21) is satis;ed. Let <V and < ∗ be de;ned as in (17) and (26) respectively.
Then the in;mum in (17) is uniquely achieved when  = < ∗.
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Proof. From the discussion in Section 4.1 and Theorem 2.5; we can conclude that
V (x) = u′x; where u is de4ned by (20). Since Conditions 2:4 and 2:5 imply that D
and therefore <D = MD′M−1 is completely-S and invertible (it in fact also satis4es
Condition 2:4); by Theorem 3.6 <V (x)=V (x)= u′x. Recall that <� is the SM associated
with the matrix <D; let <�∗ be de4ned by (27) and suppose <̇%∗ := <D

−1
( <̇�∗ − <�∗). De4ne

Z∗(t) :=
∫ t

0
[ <L( <�∗) + <c′ <̇%∗(s)] ds:

Note that since <di = MD′M−1ei;

u′ <di = −2b′(D′)−1M−1MD′M−1ei = −2b′M−1ei = − <ci:

Moreover; the de4nition of <�∗ as the optimizer in (24) implies that <L( <�∗)=−u′ <�∗. Us-
ing these two properties; the de4nition of <%∗; and the relation <̇�∗(t)= <�∗+

∑N
i=1

<̇%∗i (t) <di;
we conclude that

d
dt

Z∗(t) = <L( <�∗) + <c′ <̇%∗(t)

=−u′ <�∗ + <c′ <̇%∗(t)

=−u′ <̇�∗(t) +
N∑
i=1

[u′ <di + <ci] <̇%∗i (t)

=−u′ <̇�∗(t)

=− d
dt

<V ( <�∗(t)):

Now since <D satis4es (22); we infer that

<D
−1 <�∗ = M (D′)−1M−1MD′M−1D−1b = D−1b:

Hence Condition 2:5 (which is equivalent to D−1b¡ 0) holds if and only if <D
−1 <�∗ ¡ 0.

Thus by Budhiraja and Dupuis (1999; Theorem 3:12) <�∗0 ¡∞; and integrating the
equality in the last display gives Z∗( <�∗0) = <V (x). This shows that <�∗ is an optimal
control in the variational problem (23); i.e.; it achieves the value <V (x).

Using the fact that <L( <�)¿− u′ <� if <� 
= <�∗, it follows that any other trajectory gives
strictly greater cost. Suppose that the control <�(t) is not equal to <�∗ on a set of positive
Lebesgue measure (prior to the 4rst time the controlled trajectory reaches the origin).
Let <�, <%; <�0 and Z be de4ned as the starred quantities were. Then for a subset of
[0; <�0] of positive Lebesgue measure,

d
dt

Z(t)¿− d
dt

<V ( <�(t)):
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Thus either <�0 =∞, in which case <� is not admissible, or else Z( <�0)¿ <V (x), in which
case <� is not optimal.

Remark. Observe that for the product form case the milder assumption that D be
completely-S (and D−1b¡ 0) is su9cient to ensure that V (x) = <V (x) and that the
exponential decay rate of the tails of the stationary distribution is equal to u′x. Thus
it is natural to ask whether Theorem 4.1 still holds without the additional regularity
(i.e. Condition 2:4) imposed on D. The proof uses the regularity in two places. Firstly
it is needed to ensure (as in Theorem 2.5) that the exponential decay rate u′x indeed
has the variational representation V (x). Secondly it is used to deduce that <�∗0 ¡∞
(which follows from the fact that <� is Lipschitz continuous and <D

−1
b¡ 0); which is

necessary for < ∗ to be a valid control in the de4nition (23) of <V .

4.3. When do most likely large deviation trajectories cycle?

Theorem 4.1 established that (under Conditions 2:4 and 2:5) for the product form
case the optimal control for the time-reversed variational problem <V (x) is constant.
In contrast, the optimal control for the original variational problem typically does not
have this property, as is borne out by the relation (14) between the two controls as
well as by the example given in Section 5. Since the minimizing trajectories for the
time-reversed variational problem are images of constant velocity trajectories under the
SM, in this section we 4rst analyze trajectories of this form.

In Section 4.3.1 we consider SMs that are associated with a completely-S constraint
matrix D and show that the image of a piecewise a9ne trajectory under such a SM
is again piecewise a9ne (see De4nition 4.2). In Sections 4.3.2 and 4.3.3 we show
that when additional regularity properties are imposed on D, then � is 4nitely piece-
wise a9ne. As a corollary of these results, in Section 4.3.4 (Theorem 4.9) we derive
su9cient conditions for when the most likely large deviation path associated with a
product-form RBM does not cycle.

4.3.1. Images of aEne trajectories under SMs associated with a completely-S
matrix

We start by quoting a lemma of Bernard and Kharroubi (1991, Proposition 3 and
Remark 4) that shows that the images of a9ne trajectories under the SM are piece-
wise a9ne (see de4nition below) whenever the SM is associated with a completely-S
matrix.

De�nition 4.2 (Piecewise aEne). We say �∈C([0;∞) :RN ) is piecewise a9ne if for
every t ∈ [0;∞) there exists vt ∈RN and 6t ¿ 0 such that for s∈ [0; 6t);

�(t + s) = �(t) + svt :

Moreover; � is m-piecewise a9ne if for some k6m; there exist 0=t0 ¡t1 ¡t2 ¡ · · ·¡
tk−1 ¡tk = ∞ and vectors v1; : : : ; vk ∈RN with vi 
= vi+1 for i = 1; : : : ; k − 1 such that
for i = 1; : : : ; k and t ∈ [ti−1; ti);

�(t) = �(ti−1) + (t − ti−1)vi:
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Moreover; � is said to be 4nitely piecewise a9ne if it is m-piecewise a9ne for some
m¡∞.

Remark. Note that the de4nition of a piecewise a9ne function � given above allows
for the possibility that vk = 0 for some k ∈N. Thus the graph {x∈RN :�(t) = x for
some t¿ 0} of � may have fewer changes of slope than the function �.

Lemma 4.3 (Bernard and Kharroubi, 1991). Let � be the SM associated with a
completely-S matrix D∈RN×N . If  is piecewise aEne; then there exists �∈�( )
that is also piecewise aEne.

Recall the de4nition that I(x)= {i∈{1; : : : ; N} : xi =0}: Let � be the SM associated
with a completely-S matrix D∈RN×N and suppose �∈�(x + u!) is piecewise a9ne
(the existence of such a � is guaranteed by Lemma 4.3). Let t0 =0. Then by De4nition
4.2 and the de4nition of the SP it is clear that for as long as ti−1 ¡∞, there exists
ti ¿ ti−1 and a corresponding set Ji and vector vi such that

I(�(s)) = Ji and �̇(s) = vi for s∈ (ti−1; ti); (28)

there exists ,j¿ 0; j∈ Ji; such that

vi = u +
∑
j∈Ji

,jdj; (29)

vij = 0 for j∈ Ji and I(�(ti)) ⊃ Ji if ti ¡∞: (30)

Moreover, � is k-piecewise a9ne if and only if tj = ∞ for some j6 k.
A natural question to ask is under what conditions is � 4nitely piecewise a9ne. It

is straightforward to check that in two dimensions, as long as D is completely-S, �
is always 4nitely piecewise a9ne. (It can in fact be shown to be 3-piecewise a9ne.)
However, this is not true in higher dimensions. For example, in Bernard and Kharroubi
(1991, p. 160) it was shown that if � is the SM associated with the constraint matrix
D∈R3×3 such that D12 = D23 = D31 = 3=2; D13 = D21 = D32 = 0; u = −(1; 1; 1) and
x∈ @RN

+, then there exists �∈�(x + u!) with in4nitely many changes of slope which
cycles outward along the boundary. It is also possible to show that with the same choice
of u = −(1; 1; 1) and another choice of D (for example D12 = D23 = D31 = 6=5 and
D13=D21=D32=−3=5), there exists a corresponding trajectory �∈�(x+u!) that again
has in4nitely many changes of slope, but this time cycles inward along the boundary
and reaches 0 at some 4nite time and then stays there. In both cases the matrices D
are completely-S, but they do not satisfy additional regularity conditions such as the
generalized Harrison-Reiman condition (Condition 2:4). In the next two sections we
impose additional regularity conditions on D that guarantee that � is 4nitely piecewise
a9ne.

4.3.2. SuEcient conditions for ;nitely piecewise aEne paths in RN
+

Theorem 4.4 below shows that images of constant velocity trajectories under the SM
associated with two classes of matrices have a 4nite number of changes of slope and
hence do not cycle.
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Theorem 4.4. Let � be the SM associated with the constraint matrix D and suppose
 =x+u! for some x∈RN

+ and u∈RN ; and let �∈�( ). Then the following properties
hold.
1. If D satis;es Condition 2:2 then � is either N -piecewise aEne or there exists

T ¡∞ such that � is N -piecewise aEne on [0; T ] and �̇(t) = �(t) = 0 for all
t ¿T .

2. If D satis;es Condition 2:3 then � is 2N -piecewise aEne.

Proof. Suppose D satis4es Condition 2:2. Then D is completely-S and by Lemma
4.3 � is piecewise a9ne. The key to the proof under this condition is to show that
I(�(t)) is monotonically increasing in t. In other words; once � enters a given face
of @RN

+; it will stay in the closure of that face from that time on; and the trajectory
can only move from any given face (say F1) to a face having strictly lower dimension
(say F2); if I(x) ⊂ I(y) when x∈F1; y∈F2. Since � is easily seen to be a9ne within
faces; this means that � can undergo at most N changes of slope.

Let t0=0, de4ne ti; i=1; : : : ; as described after Lemma 4.3, and choose j∈{1; : : : ; N}
such that tj ¡∞. If no such j exists, then t1 =∞ and it follows that � is of constant
velocity. So we assume henceforth that such a j exists and let the vectors vi, and sets
Ji satisfy (28)–(30) for i = 1; : : : ; j + 1. For simplicity we denote Jj by J; vj by v
and I(�(tj)) by K . First note that J 
= {1; : : : ; N}, because otherwise from (28) and
uniqueness of the solution to the SP it follows that �̇(t) = 0 for all t¿ tj−1 which
implies that tj = ∞ and contradicts the choice of j. We now show that Jj+1 = K .

From the de4nition of the SP we know there exist ,i¿ 0; i∈ J , such that v = u +∑
i∈J ,idi. De4ne ,i = 0 for i∈K \ J . Clearly, vi ¡ 0 for i∈K \ J , and so vi = 0 for

i∈ J implies vi6 0 for all i∈K . Let DK be the submatrix of D that consists of all
entries Dij with i∈K and j∈K . Since D satis4es Condition 2:2, it follows that DK is
invertible, and moreover D−1

K ¿ 0 (see Berman and Plemmons, 1979, or Dupuis and
Ramanan, 2000, Lemmas 4.6 and 4:7). Let <,i; i∈K , solve(

v +
∑
i∈K

<,idi

)
j

= 0

for j∈K . In other words, if <, and <v are the column vectors in R|K| with entries <,i

and vi; i∈K , then

<v + DK <, = 0:

Since <v6 0 and D−1
K ¿ 0, it follows that <,¿ 0. We now de4ne ,̃i = ,i + <,i¿ 0 for

i∈K . Let w = u +
∑

i∈K ,̃idi. Then for any k ∈K ,

wk =

(
u +
∑
i∈K

,̃idi

)
k

=

(
v +
∑
i∈K

<,idi

)
k

= 0:

By uniqueness of the SM, if � = �(x + u!); then since �(�(tj) + u!)(t) = �(tj + t) it
follows that vj+1 =w and Jj+1 =K . Since from (30) we know that K ⊃ Jj; K 
= Jj, we
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have shown that � moves to a strictly lower dimensional face at tj whenever tj ¡∞.
It will stay in this face until it hits a face of even lower dimension or till time ∞.

Now consider the case when D satis4es Condition 2:3, and assume without loss of
generality that D is lower triangular. Then it follows from the de4nition of the SM
that there exists %∈I([0;∞) :RN ) with %(0) = 0 such that for i = 1; : : : ; N ,

�i =  i +
N∑

j=1

dij%j =  i + %i +
∑
j¡i

dij%j; (31)

where %̇i ¿ 0 only if �i = 0. Let �1 denote the one-dimensional Skorokhod Map with
domain R+ and d1 = e1 at {0} (given explicitly by (33)). Then it is easy to see that
(31) holds if and only if � satis4es

�1 = �1( 1);

�2 = �1( 2 + d21%1);
...

�i = �1

(
 i +

∑
j¡i

dij%j

)
;

...

�N = �1


 N +

∑
j¡N

dij%j


 ; (32)

where %i = �i −  i −
∑

j¡i−1 dij%j.
The one-dimensional Skorokhod Map �1 is known to have the explicit expression

(Skorokhod, 1961)

�1(f)(t) = f(t) −
[

inf
s∈[0; t]

f(s)
]
∧ 0: (33)

We 4rst prove some properties of �1. Suppose f∈C([0;∞) :R1) with f(0)∈R+ is
1-piecewise a9ne and let g=�1(f). Then clearly f=x+v! for some x∈R+ and v∈R.
If v¿ 0, then g = x + v! and hence is 1-piecewise a9ne. On the other hand if v¡ 0,
then g(t) = x + vt for t ∈ [0;−x=v], and g(t) = 0 for t¿− x=v. Thus g = �1(f) has at
most one change of slope, and so is 2-piecewise a9ne. Now suppose f is m-piecewise
a9ne with slope vi on the interval (ti−1; ti) for i = 1; : : : ; m, where tm

:= ∞, and let
g = �1(f). Then using the behavior of �1 on a9ne trajectories and the fact that for
any i �1(g(ti−1) + vi!)(t) = g(ti−1 + t) for t ∈ [0; ti − ti−1], it follows that g can have
at most one change in slope in each interval (ti−1; ti). Thus g is 2m-piecewise a9ne,
and moreover the number of points at which either f or g has a change of slope is
bounded by 2m− 1. Moreover, these 2m− 1 points also contain the changes of slope
of any function obtained as a linear combination of f and g and=or addition by a
1-piecewise a9ne function.
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Applying these properties to the mappings in (32), it follows that since  1 is
1-piecewise a9ne, the set of points where either  1; �1; %1, or  2 has a change of
slope is bounded by 1 (where the property for  2 holds trivially since it has no change
of slope). Now suppose there is a set with cardinality m−1 that contains the points of
change of slopes of all the functions %j; j¡ i, and  i. Then by (32) and the properties
of �1 listed in the last paragraph, there must exist a set of cardinality 2m − 1 that
contains the points of change of slopes of the functions �i; %j; j¡ i+1, and  i. Since
we have shown this to be true for m = 2, proceeding by induction we conclude that
the total number of points of change of slope for any of the functions %i; i6N , is
bounded by 2N − 1. Since each �i is a linear combination of these functions along
with translation by the a9ne function  i, it follows that � is 2N -piecewise a9ne.

4.3.3. More general conditions for ;nitely piecewise aEne paths in R3
+

The main result of this section, Theorem 4.8, shows that if � is associated with
a generalized Harrison–Reiman matrix D∈R3×3, then any trajectory � obtained by
the application of � to a constant velocity input is 6-piecewise a9ne. The proof uses
Lemma 4.6 and Theorem 4.7, which together show that if D∈RN×N is a generalized
Harrison–Reiman matrix, then � never leaves the boundary @RN

+ after the 4rst time
t0 ¿ 0 that it hits the boundary. Note that Theorem 4.7 is true for arbitrary dimensions,
while Theorem 4.8 is valid only in three dimensions. Recall the de4nition I(x) =
{i∈{1; : : : ; N} : xi = 0}. Given a 4nite set A we use |A| to denote its cardinality. We
4rst prove an elementary lemma that shows that functions obtained as images of an
a9ne function under a regular Skorokhod Map cannot have two diLerent slopes on the
same face.

Lemma 4.5. Let � be the SM associated with a matrix D∈RN×N that satis;es
Condition 2:1; and let � := �(x + u!) for some x∈RN

+ and u∈RN . If there exist
06 t1 ¡t26 t3 ¡t4 and J ⊆ {1; : : : ; N} such that I(�(s)) = J for s∈ (t1; t2)∪ (t3; t4);
then there exists v∈RJ with vi =0 for i∈ J such that �̇(s)= v for s∈ (t1; t2)∪ (t3; t4).

Proof. Since � is piecewise a9ne by Lemma 4.3; it is clear from (28) and (29) that
for i = 1; 2 there exist vi ∈RJ with vij = 0 for j∈ J and

vi = u +
∑
j∈J

,i
jdj;

for some ,i
j¿ 0; j∈ J ; such that �̇(s) = v1 for s∈ (t1; t2) and �̇(s) = v2 for s∈ (t3; t4).

By the de4nition of the SP this implies that for any y with I(y)= J there exists 6¿ 0
such that for s∈ [0; 6] �(y+u!)(s)=y+v1s and �(y+u!)(s)=y+v2s. The uniqueness
of � then dictates that v1 = v2.

Lemma 4.6. Let � be the SM associated with a matrix D∈RN×N that satis;es
Condition 2:4; and let � := �(x + u!) for some x∈RN

+ and u∈RN . Suppose for
s∈ (0;∞) that I(�(s)) 
= ∅. Then there exists

i∈ I(�(s)) such that ui6 0: (34)
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Proof. By Lemma 4.3 we know that � is piecewise a9ne. Thus; using the de4nition
of the SP; for every t ∈ [0;∞) there exist 6t ¿ 0; J ⊂ {1; : : : ; N} and v∈RN with
vi =0; i∈ J ; such that I(�(s))=J; �̇(s)=v for s∈ (t; t+6t) and 6t =inf{s¿ 0 : I(�(t+
s)) 
= J}; so that if 6t ¡∞ then I(�(t + 6t)) 
= J . Assume J 
= ∅. Clearly any t ∈ (0;∞)
can be expressed as the limit of a non-decreasing sequence sn ↑ t; where each sn ∈
(tn; tn + 6tn) for some sequence tn ∈ (0;∞) (for example; choose tn ↑ t). Moreover; if
(34) is satis4ed by s=sn for n=1; : : : ; then the continuity of �; the upper semicontinuity
of I(·); the 4niteness of {1; : : : ; N} and the fact that sn → t dictate that (34) is also
satis4ed for s = t. Thus property (34) is preserved under limits; and hence to prove
the lemma it is enough to establish (34) for s∈ (t; t + 6t); t ∈ [0;∞).

Fix any t ∈ [0;∞) and let 6t ; v and J 
= ∅ be as de4ned above. By de4nition of the
SP, there exist ,i¿ 0; i∈ J , such that

v = u +
∑
i∈J

,idi: (35)

Let DJ ∈R|J |×|J | be the submatrix of D having only entries Dij; i; j∈ J . Moreover,
de4ne the matrices D+

J and D−
J by

D+
J

:= DJ ∨ 0 − I and D−
J = DJ ∧ 0 + I;

where 0 and I here represent the |J | × |J | zero and identity matrix, respectively. Note
that DJ = D+

J + D−
J . Also, since 06 I − D−

J 6 |I − DJ | and Condition 2:4 implies
((|I −DJ |)¡ 1, it follows from Berman and Plemmons (1979, Corollary 2:1:5, p. 27)
that ((I−D−

J )¡ 1. Along with the inequality I−D−
J ¿ 0, this implies that (D−

J )−1¿ 0
(Dupuis and Ramanan, 2000, Lemmas 5:6 and 5:7; Berman and Plemmons, 1979). Let
vJ be the vector vi; i∈ J , and de4ne uJ and ,J analogously. Then (35) and the fact
that vJ = 0 implies that

uJ + DJ,J = uJ + D+
J ,

J + D−
J ,J = 0:

Rearranging terms in the above display and applying (D−
J )−1 to each term yields

(D−
J )−1uJ = −(D−

J )−1D+
J ,

J − ,J 6 0;

where the last inequality follows from the fact that ,J ¿ 0; D+
J ¿ 0 and (D−

J )−1¿ 0.
Once again using the fact (D−

J )−1¿ 0, the last display shows that uJ � 0. Since
J = I(�(s)) for s∈ (t; t + 6t), this establishes (34).

Remark. Note that the above proof does not require that the matrix D satisfy Condition
2:4; but only uses the less restrictive condition that the matrix D− := D ∧ 0 + I be
completely-S.

Theorem 4.7. Let � be the SM associated with a matrix D∈RN×N that satis;es
Condition 2:4; and let � := �(x + u!) for some x∈RN

+ and u∈RN . Then �(s)∈ @RN
+

for all s∈ (t0;∞); where

t0
:= inf{t ¿ 0 :�(t)∈ @RN

+}:
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Proof. The case t0 = ∞ follows trivially. So we assume without loss of general-
ity t0 ¡∞ and argue by contradiction. Suppose there exists t∗ ∈ (t0;∞) such that
�(t∗)∈ (RN

+)◦; and let s∗
:= sup{t6 t∗ :�(t)∈ @RN

+}. Since � is continuous and (@RN
+)◦

is open we know s∗ ∈ [t0; t∗); and from the de4nition of the SP we deduce that for
s∈ [s∗; t∗];

�(s) = �(s∗) + u(s− s∗):

The above display and the fact that �(s)∈ (RN
+)◦ for s∈ (s∗; t∗) imply that uj ¿ 0 for

every j∈ I(�(s∗)). However; since s∗ ¿ 0 and I(�(s∗)) 
= ∅; this contradicts Lemma
4.6; and so it follows that �(s)∈ @RN

+ for all s∈ (t0;∞).

Theorem 4.8. Let � be the SM associated with a constraint matrix D∈R3×3 that
satis;es Condition 2:4; and let � := �(x + u!) for some x∈R3

+; u∈R3. Then � is
either 5-piecewise aEne; or there exists T ¡∞ such that � is 5-piecewise aEne on
[0; T ] and �̇(t) = �(t) = 0 for all t ¿T .

Proof. Recall that di ∈R3 is the ith column of D. We 4rst show that a necessary
condition for D to satisfy Condition 2:4 is that

|(d1)2(d2)3(d3)1| + |(d1)3(d2)1(d3)2|¡ 1: (36)

Observe that the spectral radius of the matrix |I − D| is the largest root (in absolute
value) of the function

f(@) = @3 − [|(d1)2(d2)1| + |(d2)3(d3)2| + |(d3)1(d1)3|]@
− |(d1)2(d2)3(d3)1| − |(d1)3(d2)1(d3)2|:

Since f(@) ↑ ∞ as @ ↑ ∞ and f is continuous; a necessary condition for all roots of
f to be less than one is that f(1)¿ 0; which in turn implies (36).

Let t0
:= inf{t ¿ 0 :�(t)∈ @R3

+}. If t0 =∞ the theorem follows trivially. So assume
henceforth that t0 ¡∞. Since Condition 2:4 implies D is completely-S and � is
single-valued, by Lemma 4.3 � is piecewise a9ne. Thus as stated after Lemma 4.3
for i = 1; : : : ; as long as ti−1 ¡∞, there exists ti ∈ (ti−1;∞]; Ji ⊂ {1; 2; 3} and vi ∈R3

that satisfy (28)–(30).
Since � has constant velocity on [0; t0), it is enough to show that � is either

4-piecewise a9ne on [t0;∞) or is 5-piecewise a9ne on [t0;∞) with the 4nal piece
having zero velocity and staying at the origin. We now argue by contradiction. Suppose
this were not true. Then it must be that

ti ¡∞ for i = 1; : : : ; 4 and v5 
= 0: (37)

Also, for i = 1; : : : ; 5, since ti−1¿ t0 it follows from Lemma 4.6 that Ji 
= ∅. Recall the
de4nition �0

:= inf{t¿ 0 :�(t) = 0}. We conclude that |Ji| 
= 3 for i = 1; : : : ; 4, because
that would imply that vi=0 and ti=∞, which would violate (37). Now suppose |Ji|=2
for some i∈{1; 2; 3}. If vij¿ 0 for j 
∈ Ji then � must have a velocity of the form
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aej; a¿ 0, and thus ti = ∞. Since this would contradict (37), it must be that vij ¡ 0
for j 
∈ Ji, which implies that �(ti)=0. After time ti� will move away from the origin
in some direction vi+1. Since �(t)∈R3

+ this requires that vi+1
j ¿ 0 for j=1; 2; 3, which

in turn implies ti+1 = ∞ and hence contradicts (37).
Thus we conclude that if � is not 4-piecewise a9ne on [t0;∞), we must have |Ji|=1

for i=1; 2; 3. From the uniqueness of the SP and the continuity of � it is clear that in
order for this to happen, J1 
= J2 
= J3, and so (by relabeling indices if necessary) we
can assume that Ji = {i} for i = 1; 2; 3. Note that in that case

I(�(t1)) = {1; 2}; I(�(t2)) = {2; 3} and I(�(t3)) = {3; 1}: (38)

By Lemma 4.6 this implies that u6 0 and the de4nition of the SP and (38) dictate
that for i = 1; 2; 3,

vi = u + (−ui)di and vii+1 ¡ 0; (39)

and for i = 2; 3

vii−1 ¿ 0; (40)

where we identify 0 with 3 and 1 with 4. Moreover, for i = 2; 3 ui ¡ 0 since (39)
and (40) imply that if ui = 0, then vi = u and ui−1 ¿ 0, which contradicts the fact
that u6 0:

Since for t ∈ (t3; t4)�(t) 
∈ (R3
+)◦ and (by (37)) �(t) 
= 0, it follows that J4 
= {1; 2; 3}

and J4 
= ∅. Suppose |J4| = 2. Then since I(�(t3)) = {3; 1} by (38), � remains in the
set {ae2; a¿ 0}, and thus J4 = {3; 1}. For (37) to hold and �(t)∈R3

+ we must have
v4
2 ¡ 0 (or else t4=∞) and (since v4

2 ¡ 0 implies �(t4)=0) v5¿ 0; v5 
= 0. This implies
that after t4� must travel away from the origin along a ray. Since � cannot return to
the interior of R3

+, it must either move along an edge or the relative interior of a
face. In the former case, (38) shows that � will intersect itself transversally. However,
this contradicts the uniqueness of the SP. In the latter case, (39) shows that � will
have two diLerent velocities on the same face, which contradicts Lemma 4.5. Thus we
conclude that J4 
= {3; 1}, and consequently it must be that |J4| = 1. Since J3 = {3},
I(�(t3)) = {3; 1} and J4 
= J3, we know in fact that J4 = {1}. Furthermore, once again
by Lemma 4.5, it follows that v4 = v1, and since v4

3 must be positive, (40) and the
strict inequality ui ¡ 0 now hold also for i=1 in addition to i=2; 3. Since u¡ 0, the
identity in (39) along with the inequality (40) implies that for i = 1; 2; 3; (di)i−1 ¿ 0
and ui−1 + (−ui)(di)i−1 ¿ 0, which in turn requires that

|(di)i−1|¿ |ui−1|
|ui| ;

and therefore that

|(d2)1(d3)2(d1)3|¿ 1:

However, this contradicts (36), and so � must either be 4-piecewise a9ne on [t0;∞)
or 5-piecewise a9ne on [t0;∞) with �(t4) = 0 and v5 = 0. This concludes the proof.

The last theorem established that in three dimensions, � can have at most 4ve
changes of slope, and in fact that the graph of � can have at most 4 changes of slope



P. Dupuis, K. Ramanan / Stochastic Processes and their Applications 98 (2002) 253–287 281

(see the remark after De4nition 4.2). The following example shows that this is tight in
the sense that there exist x; u and D satisfying Condition 2:4 for which �=�(x + u!)
has precisely 4ve changes of slope.

A trajectory � := �(x + u!) in R3
+ with ;ve changes of slope. Let � be the SM

associated with the constraint matrix

D =




1 1
10 − 1

3

− 1
3 1 1

10

− 1
3 − 1

3 1


 ;

and note that since |I − D| is substochastic, Condition 2:4 is automatically satis4ed.
Let u = −(1; 11; 111), x = (1; 21; 211) and let � := �(x + u!). We show below that �
has four changes of slope. The 4rst piece of the trajectory � clearly has velocity u
and lies in the interior (R3

+)◦, and the 4rst change of slope occurs at t0 = 1, when �
hits (0; 10; 100). It then moves into the relative interior of the face {x∈R3 : x1 = 0}
with projected velocity v1 = (0;−34=3;−334=3), and its second change of slope occurs
at t1 = 1 + 30=34, when it reaches the point (0; 0; 30=17). It then moves along the face
{x∈R3 : x2 = 0; x1 ¿ 0; x3 ¿ 0} at a velocity v2 = (1=10; 0;−344=3). Since v2

1 ¿ 0 and
v2
3 ¡ 0, it is easy to see that there exists t2 ¿t1 such that �(t2)∈{x : x2 = x3 = 0}.

The fourth piece of � then acquires a velocity v3 = (−114=3; 1=10; 0) and moves along
the relative interior of the face {x∈R3 : x3 = 0}. As before, since v3

1 ¡ 0 and v3
2 ¿ 0,

there must exist t3 ¿t2 such that I(�(t3)) = {1; 3}. Note that the radial homogeneity
of the SM and the fact that v1

1 ¡ 0 shows that at t3 � cannot move into the relative
interior of the face {x∈R3 : x1 = 0}. Using the de4nition of the SP it is easy to see
that the 4fth piece of � moves along the face {x∈R3 : x1 =x3 =0; x2 ¿ 0} at a velocity
v4 = (0;−509=40; 0) till it reaches the origin at some t4 ¡∞. It then stays there for
all t¿ t4 since u∈C

◦ (or equivalently D−1u¡ 0) implies �̇(t) = v5 = 0 for all t ¿ t4.
It is interesting to contrast this three-dimensional example, which satis4es Condition

2:4, with three-dimensional examples that satisfy Conditions 2:2 or 2:3. Under Condition
2:2 we are guaranteed that � would have no more than four changes of slope. Under
Condition 2:3 we are guaranteed fewer than seven changes of slope, but since Condition
2:4 implies Condition 2:3 it is clear from Theorem 4.8 that in dimension 3 this bound
is not tight.

4.3.4. SuEcient conditions for no cycling of large deviation trajectories
As a corollary of the results proved in the last few sections, we now state conditions

under which the large deviation minimizing trajectories of a (b; A; D) RBM do not
cycle.

Theorem 4.9. Consider a (b; A; D) RBM X satisfying Condition 2:5 and the skew-
symmetry relation (21). If D∈RN×N satis;es either Condition 2:2 or 2:3; then for
every x∈RN

+ the minimizing trajectory �∗ for the large deviation rate function V (x)
of X is N -piecewise aEne or 2N -piecewise aEne; respectively. Moreover; if D∈R3×3

and satis;es Condition 2:4; then for any x∈R3
+ the minimizing trajectory �∗ for the

rate function V (x) is 5-piecewise aEne.
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Proof. First note that if D satis4es either Condition 2:2; 2:3 or 2:4; then the product
form time-reversed constraint matrix <D = MD′M−1 de4ned in (22) also satis4es the
same condition. The theorem then follows directly as a consequence of Theorems 3.6;
4.1; 4.4 and 4.8.

Remark. Note that minimizing large deviation trajectories of RBM’s in R3 can actually
have 4ve changes of slope. Indeed; if D; u and � are as described in the example at
the end of Section 4.3.3; consider the product form (b; A; D̃) RBM de4ned by D̃ := D′;
A := (D̃ + D̃

′
)=2 and b := D̃(D̃

′
)−1u. Then by Theorem 4.8 the minimizing large

deviation trajectory for this RBM is equal to the time-reversal of � and hence has 4ve
changes of slope.

5. Applications to a 3-D queueing network

In this section we demonstrate how the results of this paper can be used to 4nd
the most probable manner in which buLers over$ow in a queueing network during
periods of high congestion. Speci4cally we consider the single class three-buLer open
queueing network example illustrated in Fig. 2. As mentioned in the introduction, it
was shown in Reiman (1984) that under fairly general assumptions on the distributions
of the arrival, service and routing processes, the queue length process associated with
an open single-class queueing network can be approximated in heavy tra9c by a RBM
whose constraint matrix satis4es Condition 2:2. In particular, explicit expressions for
the drift, covariance matrix and constraint matrix of the RBM were derived in terms
of the primitive data associated with the queueing network. Since here we are more
interested in the structure of the approximating RBM’s, we only give a very rough idea
of how the parameters of the RBM are derived from the original queueing network,
referring the reader to Reiman (1984) for more details.

Heavy traEc RBM approximation for a 3-D open network. Consider a queueing
network with N stations, and suppose that in the heavy tra9c limit, the long term
average service time and the long term exogenous average interarrival time for station
i are denoted by 1=
i and 1=@i, respectively. Similarly, let si and ai, respectively, denote

1                                                 2

3

pp

p
2λ

λ

λ 1

3

12

32 23

Fig. 2. A three-dimensional queueing network.
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the corresponding limits of the long term variances of the interarrival and service
times at station i. We let P denote the routing matrix of the network, where Pij can be
interpreted as the long term average fraction of customers serviced at station i that get
routed to station j (with a fraction 1 −∑j Pij leaving the network). The fact that it
is an open network follows from the fact that the routing matrix is substochastic (i.e.∑

j Pij ¡ 1). When the network is heavily loaded, the (long term) net average input
rate nearly equals the net average capacity at each station. Thus in the heavy tra9c
limit (see Reiman, 1984, Condition (24)), we must have

@ = (I − P′)
: (41)

It was shown in Reiman (1984) that (under suitable assumptions) the queueing network
in heavy tra9c can be approximated by a RBM whose constraint matrix is given by
D = I − P′.

For concreteness, in what follows we consider the particular three-dimensional
network illustrated in Fig. 2, whose routing matrix is given by

P :=




0 1
2 0

0 0 1
3

0 1
4 0


 :

Then the constraint matrix for the approximating RBM is equal to

D =




1 0 0

− 1
2 1 − 1

4

0 − 1
3 1


 ;

and it is easy to check that D satis4es Condition 2:2. Finally we assume without
loss of generality that 
i

:= 1 for i = 1; 2; 3, and note that by (41) it follows that
@ = D
 = (1; 1=4; 2=3).

Time-reversal of a product form approximating RBM. We now assume that the
limit interarrival and service terms are independent and identically distributed according
to an exponential distribution. This implies that @2

i ai = 
2
i si = 1, and from Reiman

(1984, (27) and (28)) and (41) we conclude that the covariance matrix AP for the
approximating RBM satis4es (AP)ii=2
i, (AP)ij =−[
ipij +
jpji] for i 
= j, i; j=1; 2; 3.
Thus for the particular example considered above we have

AP =




2 − 1
2 0

− 1
2 2 − 7

12

0 − 7
12 2


 :

It is easy to verify that in this case (AP; D) satisfy the skew-symmetric condition (21),
and thus the approximating RBM is of product form.

Using relation (22) we see that the time-reversed constraint matrix <DP in the product
form case is equal to

<DP = MPD′(MP)−1 = D′ =




1 − 1
2 0

0 1 − 1
3

0 − 1
4 1


 ;
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1                                                 2

3

pp
3223

21
p

λ 1

λ 2

λ 3

Fig. 3. The time-reversed queueing network (product form case).

where recall that MP is the diagonal matrix whose diagonal entries coincide with those
of AP. Note that <DP satis4es Condition 2:2 and I− <D

′
P is sub-stochastic and nonnegative.

Thus <DP admits an interpretation as the constraint matrix of the RBM approximation
of a “time-reversed” queueing network with routing matrix

<PP = I − <D
′
P =




0 0 0
1
2 0 1

4

0 1
3 0


 :

The associated “time-reversed” queueing network is illustrated in Fig. 3. Note that this
network is simply the original network with the routing arrows reversed. As we will
see below, this simple correspondence holds only in the product form case.

Minimizing large deviation trajectories for the product form RBM. We now cal-
culate the minimizing large deviation trajectories for the product-form RBM that ap-
proximates the queueing process of Fig. 2. From (Reiman, 1984, expression (24)), in
constructing our example we can choose the drift independently of the other system
parameters AP and D. Here we assume that the drift b is given by

b := [ − 44;−44;−44]′:

Straightforward calculations show that D−1b =−[44; 84; 72]¡ 0, and hence Condition
2:5 is satis4ed. Using (25) we infer that the constant slope of the optimal control in
the product form time-reversed variational problem (23) is given by

<�∗ = <DPD−1b = [ − 2;−60;−51]′:

Now 4x x = (10; 10; 10), let < ∗ := x + <�∗! and let <�∗ := <�P( < ∗), where <�P is the SM
associated with <DP. Then simple calculations show that

<�∗(t) =




(10; 10; 10) + t(−2;−60;−51) for t ∈ [0; t1];

(29=3; 0; 3=2) + (t − t1)(−32; 0;−66) for t ∈ [t1; t2];

(295=33; 0; 0) + (t − t2)(−44; 0; 0) for t ∈ [t2; t3];

(0; 0; 0) for t ∈ [t3;∞);
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Fig. 4. The minimizing large deviation trajectory (x = (10; 10; 10)).

where t1 = 1=6, t2 = t1 + 1=44 and t3 = t2 + 295=1452. The minimizing trajectory <�∗
is illustrated in Fig. 4. Note that it is 4-piecewise a9ne with v4 = 0, as predicted
by Theorem 4.4. Moreover, by Theorem 3.6 the most likely way in which the RBM
reaches a level (10; 10; 10) is given by the path �∗(·) := <�∗(t3 − ·). Since the large
deviation behavior of the RBM closely approximates that of the queueing network for
open single-class networks, this shows that for all the scaled buLer contents to reach a
common high level of 10, buLer 1 4rst increases, and then buLer 3, and 4nally buLer
2 also joins in and all three buLers build up till they reach the level 10.

Time-reversal of a non-product form approximating RBM. We once again consider
the network in Fig. 2, with all parameter values being the same as in the product form
case except that the coe9cient of variation 
1

√
s1 for the service times at the 4rst

station is now
√

2 instead of 1. Once again, from Reiman (1984; (27) and (28)) and
relation (41) it follows that

A =




3 −1 0

−1 9
4 − 7

12

0 − 7
12 2


 :

Using the expression <D=−D+2AM−1 in (5), we see that the time-reversed constraint
matrix is given by

<D =




1 − 8
9 0

− 1
6 1 − 1

3

0 − 5
27 1


 :

Since I − <D is nonnegative and substochastic it clearly satis4es Condition 2:2, and so
the time-reversed non-product form RBM can be associated with another single-class
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Fig. 5. The time-reversed queueing network (general case).

open queueing network which has routing matrix <P := I − <D
′
. By Theorem 3.5 we see

that the most likely way in which the RBM approximation to the original queueing
network in Fig. 2 reaches a point x∈RN

+ is obtained as the time-reversal of the solution
to the variational problem that corresponds to the network in Fig. 5, where optimality
is measured with respect to the quadratic cost function speci4ed in (17).

As illustrated in Fig. 5, note that unlike the product form case, the time-reversed
network here is clearly not obtained by just reversing the routes of the original network.
Indeed, in general I− <D may not even be nonnegative and thus may have no interpreta-
tion in terms of an open single-class queueing network. (This is the case, for example,
if one assumes that @1s21 = 2, while all other interarrival and service distributions are
exponential.)

The presence of the <L term in the time-reversed variational problem in (17) suggests
a connection with a large deviation limit for a time-reversed network. However, for
non-product form RBMs one cannot always associate a single class network with the
time-reversed variational problem. In any case (to the authors’ knowledge) no rigorous
connection has been established between the variational problem in (17) and any time-
reversal of the original stochastic network.
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