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Abstract. This work considers a many-server queueing system in which im-

patient customers with i.i.d., generally distributed service times and i.i.d.,
generally distributed patience times enter service in the order of arrival and

abandon the queue if the time before possible entry into service exceeds the

patience time. The dynamics of the system is represented in terms of a pair
of measure-valued processes, one that keeps track of the waiting times of the

customers in queue and the other that keeps track of the amounts of time each

customer being served has been in service. Under mild assumptions, essen-
tially only requiring that the service and reneging distributions have densities,

as both the arrival rate and the number of servers go to infinity, a law of large

numbers (or fluid) limit is established for this pair of processes. The limit
is shown to be the unique solution of a coupled pair of deterministic integral

equations that admits an explicit representation. In addition, a fluid limit for
the virtual waiting time process is also established. This paper extends previ-

ous work by Kaspi and Ramanan, which analyzed the model in the absence of

reneging. A strong motivation for understanding performance in the presence
of reneging arises from models of call centers.
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1. Introduction

1.1. Background and Motivation. We consider a many-server queueing system
in which customers with independent, identically distributed (henceforth, i.i.d.)
service requirements chosen from a general distribution are processed in the order
of arrival. In addition, customers are assumed to abandon from the queue if the
time spent waiting in queue reaches the patience time, which is also assumed to
be i.i.d., drawn from another general distribution. When there are N servers and
the cumulative customer arrival process is assumed to be a renewal process, this
reduces to the so-called G/GI/N+GI model.

Over the last couple of decades, several applications have spurred the study of
many-server models with abandonment [2, 4, 9]. Specifically, in applications to tele-
phone contact centers and (more generally) customer contact centers, the effect of
customers’ impatience has been shown to have a substantial impact on the perfor-
mance of the system [9]. For example, customer abandonment can stabilize a system
that was formerly unstable. Under the assumption that the interarrival, service and
abandonment time distributions are (possibly time-varying) exponential, process-
level fluid and diffusion approximations were obtained by Mandelbaum, Massey and
Reiman [19] for the total number in system in networks of multiserver queues with
abandonments and retrials. On the other hand, for the case of Poisson arrivals,
exponential service times and general abandonment distributions (the M/M/N+GI
queue), explicit formulae for the steady state distributions of the queue length and
virtual waiting time were obtained by Baccelli and Hebuterne [2] (see Sections IV
and V.2 therein), while several other steady state performance measures and their
asymptotic approximations, in the limit as the arrival rates and servers go to in-
finity, were derived by Mandelbaum and Zeltyn [21]. In addition, approximations
for performance measures suggested by these limit theorems were used by Garnett
et al. [10] and Mandelbaum and Zeltyn [22] for the case of exponential and general
abandonment distributions, respectively, to provide insight into the design of large
call centers.

In all the previously mentioned works, the service times were assumed to be
exponential. However, statistical analysis of real call centers has shown that both
service times and abandon times are typically not exponentially distributed [5, 21],
thus providing strong motivation for considering many-server systems with general
service and abandonment distributions. One previous work that has taken a step
towards incorporating more realistic general service distributions is the insightful
paper [27], where a deterministic fluid approximation for a G/GI/N+GI queue with
general service and abandonment distributions was proposed. However, the con-
vergence of the discrete system starting empty to this fluid approximation was left
as a conjecture (see Conjecture 2.1 in [27]). In this work, we rigorously identify the
functional law of large numbers limit, in the limit as the number of servers goes to
infinity, for a many-server queueing system with general service and abandonment
distributions starting from general initial conditions. In a recent work, Mandelbaum
and Momcilovic [20] also established diffusion approximations for queue-length and
virtual waiting time processes for a G/GI/N+GI system.

With a view to providing a Markovian representation of the dynamics with a
state space that is independent of the number of servers, we introduce a pair of
measure-valued processes to describe the evolution of the system. One measure-
valued process keeps track of the waiting times of customers in queue and the other
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keeps track of the amounts of time each customer present in the system has been
in service. Under rather general assumptions (specified in Sections 2.1 and 3.1),
we establish an asymptotic limit theorem for the scaled (divided by N) pair of
measure-valued processes, as the number of servers N and the mean arrival rate
into the system simultaneously go to infinity. In a recent independent study, Zhang
[30] also considered the fluid limit for the same G/GI/N+GI system by using a
measure-valued representation. His approach is based on tracking the “residual”
service and patience times rather than tracking the “ages” in system and service as
considered in this work. As in [17], an advantage of the particular measure-valued
representation used here, in terms of ages in system and service, rather than residual
service and residual patience times, is that it facilitates the application of martingale
techniques, which streamlines the analysis and also allows for a more intuitive
representation of the dynamics of the limiting process. In addition, the measure-
valued approach also simultaneously allows for the characterization of asymptotic
limits of several other functionals of interest. In order to illustrate this point, we
also derive a limit theorem for the virtual waiting time of a customer, defined to
be the time before entry to service of a (virtual) customer with infinite patience.

This work generalizes the framework of Kaspi and Ramanan [17], in which the
corresponding model without abandonments was considered. The presence of two
coupled measure-valued processes, rather than just one as in [17], makes the analysis
here significantly more involved. In addition, an important step is the identification
of an explicit expression for the cumulative reneging process. This paper also forms
the basis of subsequent work, in which we establish the convergence of the stationary
distributions of the N -server systems to the invariant state of the fluid limit as N
converges to infinity and study the relation between the invariant state and the
long-time behavior of the fluid limit [16].

It is worthwhile to mention that the models discussed above are relevant when
the mean demand of customers is known (or can be accurately learnt from an initial
period of measurements), which is a realistic assumption in many applications. In
other scenarios, it may be more natural to model the demand as being doubly
stochastic. This approach was adopted by Harrison and Zeevi [11] (see also [3]), who
proposed optimal staffing and design of multi-class call centers with several agent
pools in the presence of abandonment under the assumption that the dominant
variability arises from the randomness in the mean demand, rather than fluctuations
around the mean demand.

1.2. Outline of the Paper. The outline of the paper is as follows. We provide a
more precise description of the model and the measure-valued representation of the
state, and state the dynamical equations governing the evolution of the system in
Section 2 (the explicit construction of the state process is relegated to Appendix A
and the strong Markov property of the state process is established in Appendix B).
A key result here is Theorem 2.1, which provides a succinct characterization of the
state dynamics. An analog of this characterization for continuous state processes
leads to the fluid equations, which are introduced in Section 3.2 (see Definition
3.3). Next, the main results of the paper are summarized in Section 3.3. The first
(Theorem 3.5) is a uniqueness result that states that (under the assumption that
the service and abandonment distributions have densities and finite first moments)
there exists at most one solution to the fluid equations. The proof of this result,
which is considerably more involved than in the case without abandonment, is the
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subject of Section 4. The second and main result of the paper (Theorem 3.6) states
that under mild additional assumptions (namely, Assumptions 3.1–3.3 introduced in
Section 3.1), the scaled sequence of state processes converges weakly to the (unique)
solution of the fluid equations, and provides a fairly explicit representation for the
solution. The proof of this result consists of two main steps. First, in Section 6,
the sequence of scaled state processes is shown to be tight and then, in Section 7,
it is shown that a (unique) solution to the fluid equations exists and is obtained as
the asymptotic limit of the sequence of scaled state processes. Both of these results
make use of properties of a family of martingales that are established in Section 5.
Finally, the last result (Theorem 3.8) formulates the asymptotic limit theorem for
the virtual waiting time process, which is proved in Section 7.2. To start with, in
Section 1.3, we first collect some basic notation and terminology used throughout
the paper.

1.3. Notation and Terminology. The following notation will be used throughout
the paper. Z is the set of integers, N is the set of strictly positive integers, R is
set of real numbers, R+ the set of non-negative real numbers and Z+ is the set of
non-negative integers. For a, b ∈ R, a ∨ b denotes the maximum of a and b, a ∧ b
the minimum of a and b and the short-hand a+ is used for a ∨ 0. Given A ⊂ R
and a ∈ R, A− a equals the set {x ∈ R : x+ a ∈ A} and 11B denotes the indicator
function of the set B (that is, 11B(x) = 1 if x ∈ B and 11B(x) = 0 otherwise).

1.3.1. Function and Measure Spaces. Given any metric space E, Cb(E) and Cc(E)
are, respectively, the space of bounded, continuous functions and the space of con-
tinuous real-valued functions with compact support defined on E, while C1(E) is
the space of real-valued, once continuously differentiable functions on E, and C1

c (E)
is the subspace of functions in C1(E) that have compact support. The subspace of
functions in C1(E) that, together with their first derivatives, are bounded, will be
denoted by C1

b (E). For H ≤ ∞, let L1[0, H) and L1
loc[0, H), respectively, represent

the spaces of integrable and locally integrable functions on [0, H), where a locally
integrable function f on [0, H) is a measurable function on [0, H) that satisfies∫

[0,a]
f(x)dx < ∞ for all a < H. The constant functions f ≡ 1 and f ≡ 0 will be

represented by the symbols 1 and 0, respectively. Given any càdlàg, real-valued
function ϕ defined on [0,∞), we define ‖ϕ‖T

.= sups∈[0,T ] |ϕ(s)| for every T < ∞,
and let ‖ϕ‖∞

.= sups∈[0,∞) |ϕ(s)|, which could possibly take the value ∞. In ad-
dition, the support of a function ϕ is denoted by supp(ϕ). Given a nondecreasing
function f on [0,∞), f−1 denotes the inverse function of f in the sense that

(1.1) f−1(y) = inf{x ≥ 0 : f(x) ≥ y}.

For each differentiable function f defined on R, f ′ denotes the first derivative of f .
For each function f(t, x) defined on R× Rn, ft denotes the partial derivative of f
with respect to t and fx denotes the partial derivative of f with respect to x.

The space of Radon measures on a metric space E, endowed with the Borel σ-
algebra, is denoted byM(E), whileMF (E),M1(E) andM≤1(E) are, respectively,
the subspaces of finite, probability and sub-probability measures in M(E). Also,
given B <∞,M≤B(E) ⊂MF (E) denotes the space of measures µ inMF (E) such
that |µ(E)| ≤ B. Recall that a Radon measure is one that assigns finite measure
to every relatively compact subset of R+. The space M(E) is equipped with the
vague topology, i.e., a sequence of measures {µn} inM(E) is said to converge to µ
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in the vague topology (denoted µn
v→ µ) if and only if for every ϕ ∈ Cc(E),

(1.2)
∫
E

ϕ(x)µn(dx)→
∫
E

ϕ(x)µ(dx) as n→∞.

By identifying a Radon measure µ ∈M(E) with the mapping on Cc(E) defined by

ϕ 7→
∫
E

ϕ(x)µ(dx),

one can equivalently define a Radon measure on E as a linear mapping from Cc(E)
into R such that for every compact set K ⊂ E, there exists LK <∞ such that∣∣∣∣∫

E

ϕ(x)µ(dx)
∣∣∣∣ ≤ LK ‖ϕ‖∞ ∀ϕ ∈ Cc(E) with supp(ϕ) ⊂ K.

OnMF (E), we will also consider the weak topology, i.e., a sequence {µn} inMF (E)
is said to converge weakly to µ (denoted µn

w→ µ) if and only if (1.2) holds for every
ϕ ∈ Cb(E). As is well-known, M(E) and MF (E), endowed with the vague and
weak topologies, respectively, are Polish spaces. The symbol δx will be used to
denote the measure with unit mass at the point x and, by some abuse of notation,
we will use 0 to denote the identically zero Radon measure on E. When E is an
interval, say [0, H), for notational conciseness, we will often write M[0, H) instead
of M([0, H)). For any finite measure µ on [0, H), we define

(1.3) Fµ(x) .= µ[0, x], x ∈ [0, H).

We say a measure µ is continuous at x if and only if µ({x}) = 0.
We will mostly be interested in the case when E = [0, H) and E = [0, H)×R+,

for some H ∈ (0,∞]. To distinguish these cases, we will usually use f to denote
generic functions on [0, H) and ϕ to denote generic functions on [0, H) × R+. By
some abuse of notation, given f on [0, H), we will sometimes also treat it as a
function on [0, H) × R+ that is constant in the second variable. For any Borel
measurable function f : [0, H)→ R that is integrable with respect to ξ ∈M[0, H),
we often use the short-hand notation

〈f, ξ〉 .=
∫

[0,H)

f(x) ξ(dx).

Also, for ease of notation, given ξ ∈ M[0, H) and an interval (a, b) ⊂ [0, H), we
will use ξ(a, b) and ξ(a) to denote ξ((a, b)) and ξ({a}), respectively.

1.3.2. Measure-valued Stochastic Processes. Given a Polish space H, we denote
by DH[0, T ] (respectively, DH[0,∞)) the space of H-valued, càdlàg functions on
[0, T ] (respectively, [0,∞)), and we endow this space with the usual Skorokhod J1-
topology [23]. Then DH[0, T ] and DH[0,∞) are also Polish spaces (see [23]). In this
work, we will be interested in H-valued stochastic processes, where H =MF [0, H)
for some H ≤ ∞ . These are random elements that are defined on a probability
space (Ω,F ,P) and take values in DH[0,∞), equipped with the Borel σ-algebra
(generated by open sets under the Skorokhod J1-topology). A sequence {Xn} of
càdlàg, H-valued processes, with Xn defined on the probability space (Ωn,Fn,Pn),
is said to converge in distribution to a càdlàg H-valued process X defined on
(Ω,F ,P) if, for every bounded, continuous functional F : DH[0,∞)→ R, we have

lim
n→∞

En [F (Xn)] = E [F (X)] ,



6 WEINING KANG AND KAVITA RAMANAN

where En and E are the expectation operators with respect to the probability
measures Pn and P, respectively. Convergence in distribution of Xn to X will be
denoted by Xn ⇒ X. Let IR+ [0,∞) be the subset of non-decreasing functions
f ∈ DR+ [0,∞) with f(0) = 0.

2. Description of Model and State Dynamics

In Section 2.1 we describe the basic model and the model primitives, In Section
2.2 we introduce the state descriptor and some auxiliary processes, and derive
some equations that describe the dynamics of the state. Finally, in Section 2.3 (see
Theorem 2.1), we provide a succinct characterization of the state dynamics. This
characterization motivates the form of the fluid equations, which are introduced in
Section 3.2.

2.1. Model Description and Primitive Data. Consider a system withN servers,
in which arriving customers are served in a non-idling, First-Come-First-Serve
(FCFS) manner, i.e., a newly arriving customer immediately enters service if there
are any idle servers or, if all servers are busy, then the customer joins the back
of the queue, and the customer at the head of the queue (if one is present) enters
service as soon as a server becomes free. Our results are not sensitive to the exact
mechanism used to assign an arriving customer to an idle server, as long as the
non-idling condition, that there cannot simultaneously be a positive queue and an
idle server, is satisfied. It is assumed that customers are impatient, and that a
customer reneges from the queue as soon as the amount of time he/she has spent
in queue reaches his/her patience time. Customers do not renege once they have
entered service. The patience times of customers are given by an i.i.d. sequence,
{ri, i ∈ Z}, with common cumulative distribution function Gr on [0,∞], while the
service requirements of customers are given by another i.i.d. sequence, {vi, i ∈ Z},
with common cumulative distribution function Gs on [0,∞). For i ∈ N, ri and
vi represent, respectively, the patience time and the service requirement of the
ith customer to enter the system after time zero, while {ri, i ∈ −N ∪ {0}} and
{vi, i ∈ −N ∪ {0}} represent, respectively, the patience times and the service re-
quirements of customers that arrived prior to time zero (if such customers exist),
ordered according to their arrival times (prior to time zero). We assume that Gs has
density gs and Gr, restricted on [0,∞), has density gr. This implies, in particular,
that Gr(0+) = Gs(0+) = 0. Let

Hr .= sup{x ∈ [0,∞) : gr(x) > 0},
Hs .= sup{x ∈ [0,∞) : gs(x) > 0}

denote the right ends of the supports of gr and gs, respectively. The superscript
(N) will be used to refer to quantities associated with the system with N servers.

Let E(N) denote the cumulative arrival process, with E(N)(t) representing the to-
tal number of customers that arrive into the system with N servers in the time inter-
val [0, t]. Also, consider the càdlàg, real-valued process α(N)

E defined by α(N)
E (s) = s

if E(N)(s) = 0 and, if E(N)(s) > 0, then

(2.1) α
(N)
E (s) .= s− sup

{
u < s : E(N)(u) < E(N)(s)

}
,

which denotes the time elapsed since the last arrival. If E(N) is a renewal process,
then α(N)

E is simply the backward recurrence time process. Also, let E(N)
0 be an a.s.
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Z+-valued random variable that represents the number of customers that entered
the system prior to time zero. This random variable does not play an important role
in the analysis, but is used for bookkeeping purposes to keep track of the indices
of customers.

The following mild assumptions on E(N) will be imposed throughout, without
explicit mention:

• E(N) is a non-decreasing, pure jump process with E(N)(0) = 0 and a.s., for
t ∈ [0,∞), E(N)(t) <∞ and E(N)(t)− E(N)(t−) ∈ {0, 1};
• The process α(N)

E is Markovian with respect to its own natural filtration
(this holds, for example, when E(N) is a renewal process);
• The cumulative arrival process E(N), the sequence of service requirements
{vj , j ∈ Z}, and the sequence of patience times {rj , j ∈ Z} are independent;

The assumption on the jump size of E(N) is not crucial, and is imposed mainly
for convenience. On the other hand, the assumed independence of the service and
patience times is a genuine restriction. It would be of interest to consider the case
of correlated service and patience times.

2.2. State Descriptor and Dynamical Equations. As mentioned in Section
1.1, our representation of the state of the system with N servers involves a pair of
measure-valued processes, the “potential queue measure” process, η(N), which keeps
track of the waiting times of customers in queue and the “age measure” process,
ν(N), which encodes the amounts of time that customers currently receiving service
have been in service. In fact, the potential queue measure process keeps track not
only of the waiting times of customers in queue, but also of the potential waiting
times (equivalently, times since entry into system) of those customers who may
have already entered service (and possibly departed the system), but for whom
the time since entry into the system has not yet exceeded the patience time. In
order to determine which subset of these customers is actually in queue, the process
X(N), which represents the total number of customers in system with N servers
(including those in service and those in queue), is also incorporated into the state
descriptor. Thus the state of the system is represented by the vector of processes
(α(N)
E , X(N), ν(N), η(N)), where α(N)

E determines the cumulative arrival process via
(2.1). The reason for introducing the process η(N) into the state (rather than
working directly with a restricted measure that only encodes the waiting times of
customers in queue) is that its dynamics is decoupled from the service dynamics. It
is governed purely by the primitive data E(N) and Gr, and is thus more amenable
to analysis (see Remark 2.2 for further elaboration of this point). Indeed, the
queue measure process η(N) can also be viewed as describing the ages of customers
in an infinite server queue that has cumulative arrivals E(N) and i.i.d. service
requirements distributed according to Gr. Thus the dynamics of the process η(N)

is also of independent interest.
Precise mathematical descriptions of η(N) and ν(N) are given in Sections 2.2.1

and 2.2.2, respectively. Some auxiliary processes that are useful for describing the
evolution of the state are introduced in Section 2.2.3. Finally, in Section 2.2.4, a
filtration {F (N)

t } corresponding to the system with N servers is introduced, and
it is shown that the state processes and auxiliary processes are all adapted to this
filtration. In fact, it is shown in Appendix B that the state process is a strong
Markov process with respect to this filtration.
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2.2.1. Description of Queue Dynamics. The potential waiting time process w(N)
j

of customer j is (for every realization) defined to be the piecewise linear function
on [0,∞) that is identically zero till the customer enters the system, then increases
linearly, representing the amount of time elapsed since entering the system, and
then remains constant (equal to the patience time) once the time elapsed exceeds
the patience time. More precisely, for j ∈ N, if ζ(N)

j is the time at which the jth

customer arrives into the system after time 0, then for j ∈ N ζ
(N)
j = (E(N))−1(j) .=

inf{t > 0 : E(N)(t) = j} and

(2.2) w
(N)
j (t) =

{ [
t− ζ(N)

j

]
∨ 0 if t− ζ(N)

j < rj ,

rj otherwise.

For j ∈ −N ∪ {0}, w(N)
j represents the potential waiting time process of the jth

customer who entered the system before time zero (if such a customer exists).
Observe that the potential waiting time w(N)

j (t) of a customer at time t equals its
actual waiting time (equivalently, time spent in queue) if and only if the customer
has neither entered service nor reneged by time t. For t ∈ [0,∞), let η(N)

t be the
non-negative Borel measure on [0, Hr) that has a unit mass at the potential waiting
time of each customer that has entered the system by time t and whose potential
waiting time has not yet reached its patience time. Recall that δx represents the
Dirac mass at x. The potential queue measure η(N)

t can be written in the form

(2.3) η
(N)
t =

E(N)(t)∑
j=−E(N)

0 +1

δ
w

(N)
j (t)

11{w(N)
j (t)<rj}

=
E(N)(t)∑

j=−E(N)
0 +1

δ
w

(N)
j (t)

11(
dw

(N)
j
dt (t+)>0

),

where the last equality holds because at any time t, the potential waiting time
process of any customer has a right derivative that is positive if and only if the
customer has entered the system and the customer’s potential waiting time has not
yet reached its patience time.

For t ∈ [0,∞), let Q(N)(t) be the number of customers waiting in queue at time
t. Due to the non-idling condition, the queue length process is then given by

(2.4) Q(N)(t) = [X(N)(t)−N ]+.

Moreover, since the head-of-the-line customer is the customer in queue with the
longest waiting time, the quantity

(2.5) χ(N)(t) .= inf
{
x > 0 : η

(N)
t [0, x] ≥ Q(N)(t)

}
=
(
F η

(N)
t

)−1

(Q(N)(t))

represents the waiting time of the head-of-the-line customer in the queue at time t.
Here, recall from (1.3) that F η

(N)
t is the c.d.f. of the measure η(N)

t and (F η
(N)
t )−1

represents its inverse, as defined in (1.1). Since this is an FCFS system, any mass in
η

(N)
t that lies to the right of χ(N)(t) represents a customer that has already entered

service by time t. Therefore, the queue length process Q(N) admits the following
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alternative representation in terms of χ(N) and η(N):

Q(N)(t) =
E(N)(t)∑

j=−E(N)
0 +1

11{w(N)
j (t)≤χ(N)(t), w

(N)
j (t)<rj}

(2.6)

= η
(N)
t [0, χ(N)(t)].

2.2.2. Description of Service Dynamics. Analogous to the potential waiting process
w

(N)
j , the age process a(N)

j associated with customer j is (for every realization)
defined to be the piecewise linear function on [0,∞) that equals 0 till the customer
enters service, then increases linearly while the customer is in service (representing
the amount of time elapsed since entering service) and is then constant (equal to
the total service requirement) after the customer completes service and departs the
system. For j = −E(N)

0 + 1, . . . , 0, let a(N)
j (0) represent the age of the jth customer

in service at time 0 and for j ∈ N, we set a(N)
j (0) = 0. Due to the First-Come-

First-Serve (FCFS) nature of the system, customers in service at time t are those
that did not renege, that have been in the system longer than the head-of-the-line
customer at time t, but have not yet completed service and departed. Therefore,
a.s., for j = −E(N)

0 + 1, . . . , 0, . . . , E(N)(t), t ≥ 0,

(2.7)
d a

(N)
j (t+)
dt

=



0 if a(N)
j (t) = 0, w(N)

j (t) = rj ,

or a(N)
j (t) = 0, w(N)

j (t) ≤ χ(N)(t),
or a(N)

j (t) = vj ,

1 if a(N)
j (t) = 0, χ(N)(t) < w

(N)
j (t) < rj ,

or 0 < a
(N)
j (t) < vj .

Note that the condition in the penultimate line of the right-hand side above rep-
resents the scenario in which a customer enters service precisely at time t, which
causes χ(N) to have a downward jump at time t since the condition that the arrival
process increases only in unit jumps ensures that there is at most one customer
with a given potential waiting time.

Now, for t ∈ [0,∞), let ν(N)
t be the discrete non-negative Borel measure on

[0, Hs) that has a unit mass at the age of each of the customers in service at time
t. Then, in a fashion analogous to (2.3), the age measure ν(N)

t can be explicitly
represented as

(2.8) ν
(N)
t =

E(N)(t)∑
j=−E(N)

0 +1

δ
a
(N)
j (t)

11(
da

(N)
j
dt (t+)>0

).

2.2.3. Auxiliary Processes. We now introduce certain auxiliary processes that will
be useful for the study of the evolution of the system.

• The cumulative reneging process R(N), where R(N)(t) is the cumulative
number of customers that have reneged from the system in the time interval
[0, t];
• the cumulative potential reneging process S(N), where S(N)(t) represents

the cumulative number of customers whose potential waiting times have
reached their patience times in the interval [0, t];
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• the cumulative departure process D(N), where D(N)(t) is the cumulative
number of customers that have departed the system after completion of
service in the interval [0, t];
• the process K(N), where K(N)(t) represents the cumulative number of cus-

tomers that have entered service in the interval [0, t].
Now, a customer j completes service (and therefore departs the system) at time s if
and only if, at time s, the left derivative of a(N)

j is positive and the right derivative

of a(N)
j is zero. Therefore, we can write

(2.9) D(N)(t) =
E(N)(t)∑

j=−E(N)
0 +1

∑
s∈[0,t]

11(
da

(N)
j
dt (s−)>0,

da
(N)
j
dt (s+)=0

).
Note that the second sum in (2.9) is well defined since for each t ≥ 0 and each j

between −E(N)
0 + 1 and E(N)(t), the piecewise linear structure of a(N)

j ensures that
the indicator function in the sum is non-zero for at most one s ∈ [0, t], i.e., there
exists at most one s ∈ [0, t] such that the customer j completes service at time s.
A similar logic shows that the cumulative potential reneging process S(N) admits
the representation

(2.10) S(N)(t) =
E(N)(t)∑

j=−E(N)
0 +1

∑
s∈[0,t]

11(
dw

(N)
j
dt (s−)>0,

dw
(N)
j
dt (s+)=0

),

and the cumulative reneging process R(N) admits the representation

(2.11) R(N)(t) =
E(N)(t)∑

j=−E(N)
0 +1

∑
s∈[0,t]

11(
w

(N)
j (s)≤χ(N)(s−),

dw
(N)
j
dt (s−)>0,

dw
(N)
j
dt (s+)=0

),

where the additional restriction w(N)
j (s) ≤ χ(N)(s−) is imposed so as to only count

the reneging of customers actually in queue (and not the reneging of all customers
in the potential queue, which is captured by S(N)). Here, one considers the left
limit χ(N)(s−) of χ(N) at time s to capture the situation in which χ(N) jumps down
at time s due to the head-of-the-line customer reneging from the queue or entering
service.

Now, 〈1, ν(N)
t 〉 = ν

(N)
t [0,∞) represents the total number of customers in service

at time t. Therefore, mass balances on the total number of customers in the system,
the number of customers waiting in the “potential queue”, and the number of
customers in service show that

(2.12) X(N)(0) + E(N) = X(N) +D(N) +R(N),

(2.13) 〈1, η(N)
0 〉+ E(N) = 〈1, η(N)〉+ S(N),

and

(2.14) 〈1, ν(N)
0 〉+K(N) = 〈1, ν(N)〉+D(N).

In addition, it is also clear that

(2.15) X(N) = 〈1, ν(N)〉+Q(N).
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Combining (2.12), (2.14) and (2.15), we obtain the following mass balance for the
number of customers in queue:

(2.16) Q(N)(0) + E(N) = Q(N) +R(N) +K(N).

Furthermore, the non-idling condition takes the form

N − 〈1, ν(N)〉 = [N −X(N)]+.

Indeed, note that this ensures that when X(N)(t) < N , the number in the system
is equal to the number in service, and so there is no queue, while if X(N)(t) > N ,
there is a positive queue and 〈1, ν(N)

t 〉 = N , indicating that there are no idle servers.
An advantage of the measure-valued state representation that we adopt is that

it allows us to simultaneously study several other functionals of interest. As an
example, we consider the so-called virtual waiting time process, which is important
for applications. For each t ≥ 0, the virtual waiting time W (N)(t) is defined to be
the amount of time a (virtual) customer with infinite patience would have to wait
before entering service if he were to arrive at time t. For a more precise definition
of W (N), let t ∈ [0,∞) and for each s ∈ [0,∞), define

T (N)
t (s)(2.17)

.=
∑

u∈[t,t+s]

E(N)(t)∑
j=−E(N)

0 +1

11(
dw

(N)
j
dt (u−)>0,

dw
(N)
j
dt (u+)=0

)11{w(N)
j (u)≤χ(N)(u−)}.

Observe that T (N)
t (s) equals the cumulative number of customers who arrived be-

fore time t and reneged from the queue (before entering service) in the time interval
[t, t + s]. Once again, for each j there is at most one u ∈ [t, t + s] for which both
indicator functions in the summation are non-zero, and so the sum is well defined.
The virtual waiting time W (N)(t) of a customer at time t is the least amount of
time s that elapses after time t such that the cumulative departure from the system
of customers that arrived prior to time t strictly exceeds the queue length at time
t. Observing that this cumulative departure in the interval [t, t+ s] can be due to
either departure from service or reneging of customers that arrived prior to time t,
we can express the virtual waiting time as

W (N)(t) .= inf{s ≥ 0 : D(N)(t+ s)−D(N)(t) + T (N)
t (s) > Q(N)(t)}.(2.18)

Here, we have used the fact that for all s such that D(N)(t+s)−D(N)(t)+T (N)
t (s) ≤

Q(N)(t), every customer that departed in the time interval [t, t+s] must have arrived
prior to time t.

2.2.4. Filtration. The total number of customers in service at time t is given by
〈1, ν(N)

t 〉 = ν
(N)
t [0, Hs) and is bounded above by N . In addition, from (2.13) it

follows that

〈1, η(N)
t 〉 = η

(N)
t [0, Hr) ≤ E(N)(t) + 〈1, η(N)

0 〉 ≤ E(N)(t) + E(N)
0

which is a.s. finite by assumption. Therefore, for every t ∈ [0,∞), a.s., ν(N)
t ∈

MF [0, Hs) and η(N)
t ∈MF [0, Hr). Hence, the state descriptor (α(N)

E , X(N), ν(N), η(N))
takes values in R+ × Z+ × MF [0, Hs) × MF [0, Hr). For purely technical pur-
poses we will find it convenient to also introduce the additional “station process”
s(N) .= (s(N)

j , j ∈ Z), defined on the same probability space (Ω,F ,P). For each
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t ∈ [0,∞), if customer j has already entered service by time t, then s(N)
j (t) is equal

to the index i ∈ {1, . . . , N} of the station at which customer j receives/received ser-
vice and s(N)

j (t) .= 0 otherwise. For t ∈ [0,∞), let F̃ (N)
t be the σ-algebra generated

by{
E(N)

0 , X(N)(0), α(N)
E (s), w(N)

j (s), a(N)
j (s), s(N)

j , j ∈ {−E(N)
0 + 1, . . . , 0} ∪ N, s ∈ [0, t]

}
and let {F (N)

t } denote the associated right-continuous filtration, completed with
respect to P. In Appendix A, an explicit construction of the state descriptor and
auxiliary processes is provided, which shows in particular that the state descriptor
(α(N)
E , X(N), ν(N), η(N)) and auxiliary processes are càdlàg. Moreover, in Lemma

A.1, it is proved that the state process V (N) .= (α(N)
E , X(N), ν(N), η(N)) and the

processes E(N), Q(N), S(N), R(N), D(N) and K(N) are all F (N)
t -adapted, and in

Lemma B.1, it is shown that (V (N),F (N)
t ) is a strong Markov process.

2.3. A Succinct Characterization of the Dynamics. The main result of this
section is Theorem 2.1, which provides equations that more succinctly characterize
the dynamics of the state (α(N)

E , X(N), ν(N), η(N)) described in Section 2.2. First,
we introduce some notation that is required to state the result.

For any measurable function ϕ on [0, Hs)×R+, consider the process D(N)
ϕ that

takes values in R, and is given by

(2.19) D(N)
ϕ (t) .=

∑
s∈[0,t]

E(N)(t)∑
j=−E(N)

0 +1

11(
da

(N)
j
dt (s−)>0,

da
(N)
j
dt (s+)=0

)ϕ(a(N)
j (s), s)

for t ∈ [0,∞). It follows immediately from (2.19) and the right continuity of the
filtration {F (N)

t } that D(N)
ϕ is {F (N)

t }-adapted. Also, comparing (2.19) with (2.9),
it is clear that when ϕ is the constant function 1, D(N)

1 is exactly the cumulative
departure process D(N), i.e.,

(2.20) D
(N)
1 = D(N).

In an exactly analogous fashion, for any measurable function ψ on [0, Hr) × R+,
consider the process S(N)

ψ that takes values in R, and is given by

(2.21) S
(N)
ψ (t) .=

∑
s∈[0,t]

E(N)(t)∑
j=−E(N)

0 +1

11(
dw

(N)
j
dt (s−)>0,

dw
(N)
j
dt (s+)=0

)ψ(w(N)
j (s), s).

It follows immediately from (2.21) and the right continuity of the filtration {F (N)
t }

that for t ∈ [0,∞), S(N)
ψ is {F (N)

t }-adapted. Moreover, S(N)
1 is clearly equal to the

cumulative potential reneging process S(N), i.e.,

(2.22) S
(N)
1 = S(N).

In addition, using (2.12), (2.15) and the non-negativity of Q(N), R(N) and 〈1, ν(N)〉,
it follows that for any t ∈ [0,∞) and bounded, measurable ϕ,

(2.23) E
[∣∣∣D(N)

ϕ (t)
∣∣∣] ≤ ‖ϕ‖∞ E

[
X(N)(0) + E(N)(t)

]
<∞
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and likewise, for each t ∈ [0,∞) and bounded measurable ψ, (2.13) shows that

(2.24) E
[∣∣∣S(N)

ψ (t)
∣∣∣] ≤ ‖ψ‖∞ E

[
〈1, η(N)

0 〉+ E(N)(t)
]
<∞.

Next, comparing (2.11) with (2.21), it is clear that the cumulative reneging
process R(N) satisfies

R(N)(t) = S
(N)

θ(N)(t), t ≥ 0,(2.25)

where θ(N) is given by

(2.26) θ(N)(x, s) = 11[x,∞)(χ(N)(s−)), x ∈ R, s ≥ 0.

We now state the main result of this section. For s, r ∈ [0,∞), recall that
〈ϕ(·+r, s), ν(N)

s 〉 is used as a short form for
∫

[0,Hs)
ϕ(x+r, s) ν(N)

s (dx), and likewise
for η(N).

Theorem 2.1. The processes (E(N), X(N), ν(N), η(N)) a.s. satisfy the following
coupled set of equations: for ϕ ∈ C1

c ([0, Hs)× R+) and t ∈ [0,∞),〈
ϕ(·, t), ν(N)

t

〉
=

〈
ϕ(·, 0), ν(N)

0

〉
+
∫ t

0

〈
ϕx(·, s) + ϕs(·, s), ν(N)

s

〉
ds(2.27)

−D(N)
ϕ (t) +

∫
[0,t]

ϕ(0, s)dK(N)(s),

for ψ ∈ C1
c ([0, Hr)× R+) and t ∈ [0,∞),〈
ψ(·, t), η(N)

t

〉
=

〈
ψ(·, 0), η(N)

0

〉
+
∫ t

0

〈
ψx(·, s) + ψs(·, s), η(N)

s

〉
ds(2.28)

−S(N)
ψ (t) +

∫
[0,t]

ψ(0, s)dE(N)(s),

X(N)(t) = X(N)(0) + E(N)(t)−D(N)
1 (t)−R(N)(t),(2.29)

N −
〈
1, ν(N)

t

〉
= [N −X(N)(t)]+,(2.30)

where K(N) satisfies (2.14), R(N) satisfies (2.25) and D
(N)
ϕ and S

(N)
ψ are the pro-

cesses defined in (2.19) and (2.21), respectively.

Remark 2.2. In the service dynamics, customer arrivals into service are governed
by the process K(N), the random duration in service is determined by the distri-
bution Gs and departures are represented by D(N). As captured by the equations
(2.27) and (2.28), the dynamics of the potential queue is exactly analogous, with the
customer arrivals now governed by the process E(N), the random duration of stay
in the potential queue determined by Gr, and potential departures due to reneging
represented by S(N). Moreover, given K(N), the dynamics of ν(N) is exactly the
same as in the case without abandonment, which was well studied in [17]. However,
in the presence of reneging, there is a significantly more complicated coupling be-
tween ν(N) and K(N), as captured by the equations (2.29) and (2.30). In particular,
this involves the cumulative reneging process R(N), which has no analogy with any
quantity in the system without abandonments. Instead, as shown in the sequel (see
in Lemma 5.4, (5.31) and Proposition 7.2), we will exploit the representation (2.25)
of R(N) in terms of the “known” quantity S(N) in order to characterize the limit of
the scaled sequence of reneging processes.
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Proof of Theorem 2.1. The proof of (2.27) can be carried out in exactly the same
way as the proof of (5.2) in Theorem 5.1 of [17], since the definition of ν(N) in [17]
is equivalent to the definition given in (2.8) here since da(N)

j (t+)/dt = 0 for all
j > K(N)(t) in [17]. For the reasons mentioned in Remark 2.2, the proof of (2.28)
is also analogous except that the condition that each ν(N)

t has total mass no greater
than N is replaced by the argument below, which shows that each η

(N)
t has finite

mass. We know that for k = 0, . . . , bntc,〈
1, η(N)

k+1
n

〉
≤ E(N)

(
k + 1
n

)
+
〈
1, η(N)

0

〉
≤ E(N)(t+ 1) + 〈1, η(N)

0 〉.

Thus, by taking the supremum over k = 0, . . . , bntc, we have a.s.,

(2.31) sup
k=0,...,bntc

〈
1, η(N)

k+1
n

〉
≤ E(N)(t+ 1) + E(N)

0 <∞.

Equation (2.29) follows from (2.12), (2.20) and (2.25), while equation (2.30) is just
the non-idling condition formulated in Section 2.2.3. �

3. Main Results

In this section we summarize our main results. First, in Section 3.1, we introduce
the fluid-scaled quantities and state our basic assumptions. Then, in Section 3.2,
we introduce the so-called fluid equations, which provide a continuous analog of
the characterization of the discrete model given in Theorem 2.1. In Section 3.3
we present our main theorems. In particular, we show that the fluid equations
uniquely characterize the strong law of large numbers or “fluid” limit of the many-
server system, as the number of servers goes to infinity.

3.1. Fluid Scaling and Basic Assumptions. Consider the following scaled ver-
sions of the basic processes described in Section 2. For each N ∈ N, the scaled
version of the state descriptor (α(N)

E , X
(N)

, ν(N), η(N)) is given by

α
(N)
E (t) .= α

(N)
E (t), X

(N)
(t) .=

X(N)(t)
N

,(3.32)

ν
(N)
t (B) .=

ν
(N)
t (B)
N

, η
(N)
t (B) .=

η
(N)
t (B)
N

,(3.33)

for t ∈ [0,∞) and any Borel subset B of R+. Analogously, define

I
(N) .=

I(N)

N
for I = E,D,K,Q,R, S, Tt.(3.34)

Recall that IR+ [0,∞) is the subset of non-decreasing functions f ∈ DR+ [0,∞)
with f(0) = 0, Hs = sup{x ∈ [0,∞) : gs(x) > 0} and Hr = sup{x ∈ [0,∞) :
gr(x) > 0}. Define

(3.35) S0
.=
{

(e, x, ν, η) ∈ IR+ [0,∞)× R+ ×MF [0, Hs)×MF [0, Hr) :
1− 〈1, ν〉 = [1− x]+

}
.

S0 serves as the space of possible input data for the fluid equations. Our goal is to
identify the limit in distribution of the quantities (X

(N)
, ν(N), η(N)), as N →∞. To

this end, we impose some natural assumptions on the sequence of initial conditions
(E

(N)
, X

(N)
(0), ν(N)

0 , η
(N)
0 ).
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Assumption 3.1. (Initial conditions) There exists an S0-valued random vari-
able (E,X(0), ν0, η0) such that, as N →∞, the following limits hold:

(1) E
(N) → E in DR+ [0,∞) P-a.s., and E

[
E

(N)
(t)
]
→ E

[
E(t)

]
< ∞ for

every t ∈ [0,∞);
(2) X

(N)
(0)→ X(0) in R+ P-a.s.;

(3) ν
(N)
0

w→ ν0 in MF [0, Hs);
(4) η

(N)
0

w→ η0 in MF [0, Hr), and E
[
〈1, η(N)

0 〉
]
→ E[〈1, η0〉] <∞.

Remark 3.1. If the limits in (1) and (2) of Assumption 3.1 hold only in distribution
rather than almost surely, then using the Skorokhod representation theorem in the
standard way, it can be shown that all the stochastic process convergence results in
the paper continue to hold. Also, (1) and (4) of Assumption 3.1 and (2.30) imply
that, for every T ∈ [0,∞),

(3.36) sup
t∈[0,T ]

sup
N

E
[
X

(N)
(0) + E

(N)
(t)
]
≤ E

[
1 + 〈1, η(N)

0 〉+ E
(N)

(T )
]
<∞.

The next assumption imposes some regularity conditions on η0 and E.

Assumption 3.2. For each t ≥ 0, if η0({t}) > 0 then η0(t, t + ε) > 0 for every
ε > 0 and if E(t)− E(t−) > 0, then E(t−)− E(t− ε) > 0 for every ε > 0.

Remark 3.2. Assumption 3.2 is trivially satisfied if η0 and E are continuous, that
is, η0({t}) = 0 for all t ≥ 0 and the function E is continuous.

In order to state our last assumption, define the hazard rate functions of Gr and
Gs in the usual manner:

hr(x) .=
gr(x)

1−Gr(x)
, x ∈ [0, Hr),(3.37)

hs(x) .=
gs(x)

1−Gs(x)
, x ∈ [0, Hs).(3.38)

It is easy to verify that hr and hs are locally integrable on [0, Hr) and [0, Hs),
respectively.

Assumption 3.3. There exists Ls < Hs such that hs is either bounded or lower-
semicontinuous on (Ls, Hs), and likewise, there exists Lr < Hr such that hr is
either bounded or lower-semicontinuous on (Lr, Hr).

3.2. Fluid Equations. We now introduce the so-called fluid equations and provide
some intuition as to why the limit of any sequence (X

(N)
, ν(N), η(N)) should be

expected to be a solution to these equations. In Section 7, we provide a rigorous
proof of this fact.

Definition 3.3. (Fluid Equations) The càdlàg function (X, ν, η) defined on
[0,∞) and taking values in R+ × MF [0, Hs) × MF [0, Hr) is said to solve the
fluid equations associated with (E,X(0), ν0, η0) ∈ S0 and the hazard rate functions
hr and hs if and only if for every t ∈ [0,∞),

(3.39)
∫ t

0

〈hr, ηs〉 ds <∞,
∫ t

0

〈hs, νs〉 ds <∞,
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and the following relations are satisfied: for every ϕ ∈ C1
c ([0, Hs)× R+),

〈ϕ(·, t), νt〉 = 〈ϕ(·, 0), ν0〉+
∫ t

0

〈ϕs(·, s), νs〉 ds+
∫ t

0

〈ϕx(·, s), νs〉 ds(3.40)

−
∫ t

0

〈hs(·)ϕ(·, s), νs〉 ds+
∫ t

0

ϕ(0, s) dK(s),

where

(3.41) K(t) = 〈1, νt〉 − 〈1, ν0〉+
∫ t

0

〈hs, νs〉 ds;

for every ψ ∈ C1
c ([0, Hr)× R+)

〈ψ(·, t), ηt〉 = 〈ψ(·, 0), η0〉+
∫ t

0

〈ψs(·, s), ηs〉 ds+
∫ t

0

〈ψx(·, s), ηs〉 ds(3.42)

−
∫ t

0

〈hr(·)ψ(·, s), ηs〉 ds+
∫ t

0

ψ(0, s) dE(s);

Q(t) = X(t)− 〈1, νt〉;(3.43)

Q(t) ≤ 〈1, ηt〉;(3.44)

R(t) =
∫ t

0

(∫ Q(s)

0

hr((F ηs)−1(y))dy

)
ds,(3.45)

where we recall that F ηt(x) = ηt[0, x];

X(t) = X(0) + E(t)−
∫ t

0

〈hs, νs〉 ds−R(t);(3.46)

and

(3.47) 1− 〈1, νt〉 = [1−X(t)]+.

It immediately follows from (3.43) and (3.47) that for each t ∈ [0,∞),

(3.48) Q(t) = [X(t)− 1]+.

For future use, we also observe that (3.41), (3.43) and (3.46), when combined, show
that for every t ∈ [0,∞),

(3.49) Q(0) + E(t) = Q(t) +K(t) +R(t).

We now provide an informal, intuitive explanation for the form of the fluid equa-
tions. Equations (3.41), (3.43) and (3.46) are simply mass conservation equations,
that are fluid analogs of (2.14), (2.15) and (2.29), respectively, while (3.44) ex-
presses a bound, whose analog clearly holds in the pre-limit, as can be seen from
(2.6). The relation (3.47) is simply the fluid analog of the non-idling condition
(2.30). Equations (3.40) and (3.42), which govern the evolution of the fluid age
measure ν and queue measure η, respectively, are natural analogs of the pre-limit
equations (2.27) and (2.28), respectively. It is worthwhile to comment further on
the fourth terms on the right-hand-sides of (3.40) and (3.42), which characterize
the fluid departure rate and potential reneging rate, respectively, as integrals of the
corresponding hazard rate with respect to the age and queue measures. Note that
νs(dx) represents the amount of mass (limiting fraction of customers) whose age
lies in the range [x, x+dx) at time s, and hs(x) represents the fraction of mass with
age x (i.e., with service time no less than x) that would depart from the system
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while having age in [x, x+ dx). Hence, it is natural to expect 〈hs, νs〉 to represent
the departure rate of mass from the fluid system at time s. This was rigorously
proved in the case without abandonments in [17] (see Proposition 5.17 therein). By
exploiting the exact analogy between (ν,K,D) and (η,E, S) (see Remark 2.2), it
is clear that the potential reneging rate at time s can be similarly represented as
〈hr, ηs〉. Thus the fluid potential reneging process S, defined by

(3.50) S(t) .=
∫ t

0

〈hr, ηs〉 ds, t ∈ [0,∞),

represents the cumulative amount of potential reneging from the fluid system in
the interval [0, t]. Due to the FCFS nature of the system, the fluid queue at time
s contains all the mass in η that is to the left of (F ηs)−1(Q(s)), where recall F ηs
is the c.d.f. of ηs. Moreover, roughly speaking, given any y ∈ [0, Q(s)], there is a
mass of dy customers in the queue whose waiting time at s is (F ηs)−1(y) and the
mean reneging rate of customers with this waiting time is hr((F ηs)−1(y)). Thus
the total actual reneging that has occurred in the interval [0, t], is represented by
the integral, as specified in (3.45).

We close the section with a simple result on the action of time-shifts on solutions
to the fluid equations. For this, we need the following notation: for any t ∈ [0,∞),

E
[t] .= E(t+·)−E(t), K

[t] .= K(t+·)−K(t), X
[t] .= X(t+·), ν[t] .= νt+·,

R
[t] .= R(t+ ·)−R(t), η[t] .= ηt+·, Q

[t] .= Q(t+ ·).

Lemma 3.4. Suppose the càdlàg function (X, ν, η) defined on [0,∞) and taking
values in R+ ×MF [0, Hs) ×MF [0, Hr) solves the fluid equations associated with
(E,X(0), ν0, η0) ∈ S0, then (X

[t]
, ν[t], η[t]) solves the fluid equations associated with

(E
[t]
, X(t), νt, ηt) ∈ S0, where K

[t]
, R

[t]
, Q

[t]
are the corresponding processes that

satisfy (3.41), (3.45), (3.43) with ν[t], η[t] and X
[t]

in place of ν, η and X.

The proof of the lemma just involves a rewriting of the fluid equations, and is
thus omitted.

3.3. Summary of Main Results. Our first result establishes uniqueness of solu-
tions to the fluid equations.

Theorem 3.5. Given any (E,X(0), ν0, η0) ∈ S0, there exists at most one solution
(X, ν, η) to the associated fluid equations (3.39)–(3.47). Moreover, if ν and η satisfy
(3.39), then (X, ν, η) is a solution to the fluid equations if and only if, for every
f ∈ Cb(R+),∫

[0,Hr)

f(x) ηt(dx) =
∫

[0,Hr)

f(x+ t)
1−Gr(x+ t)

1−Gr(x)
η0(dx)(3.51)

+
∫

[0,t]

f(t− s)(1−Gr(t− s)) dE(s),∫
[0,Hs)

f(x) νt(dx) =
∫

[0,Hs)

f(x+ t)
1−Gs(x+ t)

1−Gs(x)
ν0(dx)(3.52)

+
∫

[0,t]

f(t− s)(1−Gs(t− s)) dK(s),
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where
(3.53)

K(t) = [X(0)−1]+− [X(t)−1]+ +E(t)−
∫ t

0

(∫ [X(s)−1]+

0

hr
((
F ηs

)−1
(y)
)
dy

)
ds

and for all t ∈ [0,∞), X satisfies [X(t) − 1]+ ≤ 〈1, ηt〉, the non-idling condition
(3.47) and
(3.54)

X(t) = X(0) + E(t)−
∫ t

0

〈hs, νs〉 ds−
∫ t

0

(∫ [X(s)−1]+

0

hr
((
F ηs

)−1
(y)
)
dy

)
ds.

Moreover, K also satisfies
(3.55)

K(t) = 〈1, νt−s〉 − 〈1, ν0〉+
∫

[0,Hs)

Gs(x+ t− s)−Gs(x)
1−Gs(x)

ν0(dx)

+
∫ t

0

(
〈1, νt−s〉 − 〈1, ν0〉+

∫
[0,Hs)

Gs(x+ t− s)−Gs(x)
1−Gs(x)

ν0(dx)

)
us(s) ds,

where us is the density of the renewal function Us associated with Gs (us exists
since Gs is assumed to have a density).

Next, we state the main result of the paper, which shows that, under fairly
general conditions, a solution to the fluid equations exists and is the functional law
of large numbers limit, as N →∞, of the N -server system with abandonment.

Theorem 3.6. Suppose that Assumptions 3.1–3.3 hold, and let (E,X(0), ν0, η0) ∈
S0 be the limiting initial condition. Then there exists a unique solution (X, ν, η) to
the associated fluid equations, and the sequence (X

(N)
, ν(N), η(N)) converges weakly,

as N →∞, to (X, ν, η).

Theorem 3.6 follows from Theorem 6.1, which establishes tightness of the se-
quence {X(N)

, ν(N), η(N)}, Theorem 7.1, which shows that any subsequential limit
of the sequence {X(N)

, ν(N), η(N)} satisfies the fluid equations, and the uniqueness
of solutions to the fluid equations stated in Theorem 3.5.

Corollary 3.7. Suppose that Assumptions 3.1–3.3 hold. Given any (E,X(0), ν0, η0) ∈
S0, let (X, ν, η) be the unique solution to the associated fluid equations (3.39)–(3.47)
specified in Theorem 3.5. If the function E is absolutely continuous and ν0 and η0

are absolutely continuous measures, then the function X is also absolutely continu-
ous and for every t ∈ [0,∞), the measures νt and ηt are also absolutely continuous.

Proof. Since E is absolutely continuous, (3.54) allows us to deduce that X is ab-
solutely continuous. In turn, (3.53) shows that K is also absolutely continuous.
Then the argument used in proving Lemma 5.18 of [17] can be adapted, together
with (3.51) and (3.52), to show that νt and ηt are absolutely continuous for every
t ∈ [0,∞). This proves the corollary. �

We now state the fluid limit result for the virtual waiting time process W (N).
This result is of particular interest in the context of call centers. Note that in
the fluid system, for any u > t the total mass of customers in queue at time u
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that arrived before time t equals Q(u) − ηu[0, u − t], and the ages of these (fluid)
customers lie in the interval (u− t, χ(u)], where

(3.56) χ(u) .= (F ηu)−1(Q(u)).

Observe that this definition is analogous to the definition of χ(N) given in (2.5).
Therefore, by the same logic that was used to justify the expression (3.45) for R in
Definition 3.3, it is natural to conjecture that, for each t ∈ [0,∞), the fluid limit of
the sequence {T (N)

t } equals T t, where for s ∈ [0,∞),

T t(s)
.=
∫ t+s

t

(∫ Q(u)

ηu[0,u−t]
hr((F ηu)−1(y)) dy

)
du(3.57)

=
∫ s

0

(∫ Q(t+u)

ηt+u[0,u]

hr((F ηt+u)−1(y)) dy

)
du.

Also, define

(3.58) W (t) .= inf
{
s ≥ 0 :

∫ t+s

t

〈hs, νu〉 du+ T t(s) ≥ Q(t)
}
.

We will say a function f ∈ D[0,∞) is uniformly strictly increasing if it is abso-
lutely continuous and there exists a > 0 such that the derivative of f is bigger than
and equal to a for a.e. t ∈ [0,∞). Note that for any such function, f−1(f(t)) = t
and f−1 is continuous and strictly increasing on [0,∞). We now characterize the
fluid limit of the (scaled) virtual waiting time in the system.

Theorem 3.8. Suppose that the conditions of Theorem 3.6 hold and that the func-
tion

∫ ·
0
〈hs, νu〉 du is uniformly strictly increasing. For each t ≥ 0, if Q is continuous

at t, then T (N)

t ⇒ T t and W (N)(t)⇒W (t), as N →∞.

4. Uniqueness of Solutions to the Fluid Equations

In Section 4.1, we show that if (X, ν, η) solve the fluid equations associated
with a given initial condition (E,X(0), ν0, η0) ∈ S0, then ν (respectively, η) can be
written explicitly in terms of the auxiliary fluid process K (respectively, cumulative
arrival process E). In Section 4.2, these representations are used, along with the
non-idling condition and the remaining fluid equations, to show that there is at
most one solution to the fluid equations for a given initial condition.

4.1. Integral Equations for (ν,K) and (η,E). We begin by recalling Theorem
4.1 and Remark 4.3 of [17], which we state here as Proposition 4.1. This proposition
identifies an implicit relation that must be satisfied by the processes (ν,K) and
(η,E) that solve (3.40) and (3.42), respectively.

Proposition 4.1 ([17]). Let G be the cumulative distribution function of a prob-
ability distribution with density g and hazard rate function h = g/(1 − G), let
H

.= sup{x ∈ [0,∞) : g(x) > 0}. Suppose π ∈ DMF [0,H)[0,∞) has the property
that for every m ∈ [0, H) and T ∈ [0,∞), there exists C(m,T ) <∞ such that

(4.1)
∫ ∞

0

〈ϕ(·, s)h(·), πs〉 ds < C(m,T )||ϕ||∞
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for every ϕ ∈ Cc(R2) with supp(ϕ) ⊂ [0,m]× [0, T ]. Then given any π0 ∈MF [0, H)
and Z ∈ IR+ [0,∞), π satisfies the integral equation

(4.2)
〈ϕ(·, t), πt〉 = 〈ϕ(·, 0), π0〉+

∫ t

0

〈ϕs(·, s), πs〉 ds+
∫ t

0

〈ϕx(·, s), πs〉 ds

−
∫ t

0

〈ϕ(·, s)h(·), πs〉 ds+
∫

[0,t]

ϕ(0, s) dZ(s)

for every ϕ ∈ Cc((−∞, H)× R) and t ∈ [0,∞), if and only if π satisfies
(4.3)∫

[0,M)

f(x)πt(dx) =
∫

[0,M)

f(x+t)
1−G(x+ t)

1−G(x)
π0(dx)+

∫
[0,t]

f(t−s)(1−G(t−s)) dZ(s),

for every f ∈ Cb(R+) and t ∈ (0,∞). Moreover, for every f ∈ C1
b (R+) and t ∈

(0,∞),

(4.4)

∫ t

0

f(t− s)(1−G(t− s)) dZ(s)

= f(0)Z(t) +
∫

[0,t]

f ′(t− s)(1−G(t− s))Z(s) ds

−
∫

[0,t]

f(t− s)g(t− s)Z(s) ds.

The fluid equations (3.39)–(3.42) show that (4.1) and (4.2) are satisfied with
(h, π, Z) replaced by (hs, ν,K) and (hr, η, E), respectively. Therefore, the next
result follows from Proposition 4.1.

Corollary 4.2. Processes (η,E) and (ν,K) satisfy (3.51) and (3.52) for every
bounded Borel measurable function f and t ∈ [0,∞). Moreover, K satisfies the
renewal equation
(4.5)

K(t) = 〈1, νt〉 − 〈1, ν0〉+
∫

[0,Hs)

Gs(x+ t)−Gs(x)
1−Gs(x)

ν0(dx) +
∫ t

0

gs(t− s)K(s) ds

for each t ≥ 0 and admits the representation

K(t) =
∫

[0,t]

(〈1, νt−s〉 − 〈1, ν0〉) dUs(s)

+
∫

[0,t]

(∫
[0,Hs)

Gs(x+ t− s)−Gs(x)
1−Gs(x)

ν0(dx)

)
dUs(s),

where dUs is the renewal measure associated with the distribution Gs.

Remark 4.3. Strictly speaking, in [17] the cumulative distribution function G was
assumed to be absolutely continuous and supported on [0,∞). However, the proofs
given there only use the local integrability of the hazard rate function h on [0, H)
and so continue to hold for Gr here, which may possibly have a positive mass at
∞. In fact, in the case that Gr has a positive mass at ∞ the hazard rate function
hr is globally integrable on [0, Hr).



FLUID LIMITS OF MANY-SERVER QUEUES WITH RENEGING 21

4.2. Uniqueness of Solutions. Let (X, ν, η) be a solution to the fluid equations
associated with (E,X(0), ν0, η0). Recall the definitions of Q and R that are given
in (3.43) and (3.45). As an immediate consequence of (3.45), we have the following
elementary property.

Lemma 4.4. For any 0 ≤ a ≤ b < ∞, if Q(t) = 0 for all t ∈ [a, b], then R(b) −
R(a) = 0.

Next, we establish the intuitive result that the process K that represents the
cumulative entry of “fluid” into service is non-decreasing.

Lemma 4.5. The function K is non-decreasing.

Proof. Fix t ∈ [0,∞) and 0 ≤ s < t. If X(t) ≥ 1, then 〈1, νt〉 = 1 ≥ 〈1, νs〉 by
(3.47). Hence, by (3.41), it follows that

(4.6) K(t)−K(s) = 〈1, νt〉 − 〈1, νs〉+
∫ t

s

〈hs, νl〉 dl ≥ 0.

If X(t) < 1, we consider two cases.
Case 1: X(v) < 1 for all v ∈ (s, t]. In this case, by (3.43) and (3.47), Q(v) = 0 for
all v ∈ (s, t]. Hence, by Lemma 4.4 and the right continuity of R, R(t)−R(s) = 0.
By (3.49), it then follows that

K(t)−K(s) = K(t)−K(s) +R(t)−R(s) +Q(t)−Q(s)

= E(t)− E(s)
≥ 0.

Case 2: There exists v ∈ (s, t] such that X(v) ≥ 1. Define l
.= sup{v ≤ t :

X(v) ≥ 1}. Then, clearly l ∈ (s, t] and X(l−) ≥ 1. Now, (3.45) implies that
R is continuous and hence, by (3.46), X(v) − X(v−) ≥ 0 for every v ∈ (0,∞).
Therefore, X(l) ≥ 1 = 〈1, νl〉, with the latter equality being a consequence of the
non-idling condition (3.47). Due to the case assumption X(t) < 1, we must have
l < t. Then (4.6), with t replaced by l, shows that K(l)−K(s) ≥ 0. On the other
hand, since X(v) < 1 for all v ∈ (l, t], the argument in Case 1 above shows that
K(t)−K(l) ≥ 0. Thus, in this case too, we have K(t)−K(s) ≥ 0. �

We now state the main result of this section.

Theorem 4.6. For i = 1, 2, let (X
i
, νi, ηi) be a solution to the fluid equations

associated with (E,X(0), ν0, η0) ∈ S0. Then X
1

= X
2
, ν1 = ν2 and η1 = η2.

Proof. For each i = 1, 2, let Q
i
,K

i
, D

i
, R

i
be the processes associated with the

solution (X
i
, νi, ηi) to the fluid equations for (E,X(0), ν0, η0) ∈ S0. It follows

directly from Corollary 4.2 that η1 = η2. Let4A denote A2−A1 for A = Q,K,D,R
and ν. For each t ≥ 0, let4νt be the measure that satisfies4νt(Ξ) = ν2

t (Ξ)−ν1
t (Ξ)

for every measurable set Ξ ⊂ [0,∞). Choose δ > 0 and define

τ = τδ
.= inf{t ≥ 0 : 4K(t) ∨4K(t−) ≥ δ}.

We shall argue by contradiction to show that τ =∞. Suppose that τ <∞.
We first claim that for each t ∈ [0, τ ],

(4.7) 4K(t) < δ if 〈1, ν1
t 〉 = 1.
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To see why this is true, suppose that 〈1, ν1
t 〉 = 1 for some t ∈ [0, τ ]. Since 〈1, ν2

t 〉 ≤
1, we have 〈1,4νt〉 ≤ 0. When combined with (4.5) and the identity 4ν0 = 0, this
shows that

4K(t) = 〈1,4νt〉+
∫ t

0

gs(t− s)4K(s) ds ≤
∫ t

0

gs(t− s)4K(s) ds.(4.8)

If Gs(t) > 0 then, along with the fact that 4K(s) < δ for all s ∈ [0, t), this implies
4K(t) < δGs(t) ≤ δ. On the other hand, if Gs(t) = 0, it must be that gs(s) = 0 for
a.e. s ∈ [0, t] and so (4.8) implies that 4K(t) = 0 ≤ δ. Thus (4.7) follows in either
case. In addition, the right-continuity of K

1
and K

2
implies that 4K(τ) ≥ δ.

When combined with (4.7), (3.43) and (3.47), this shows that

(4.9) X
1
(τ) = 〈1, ν1

τ 〉 < 1 and Q
1
(τ) = 0.

Now, define

r
.= sup

{
t < τ : Q

2
(t) < Q

1
(t)
}
∨ 0.

Then for every t ∈ [r, τ ], Q
2
(t) ≥ Q

1
(t). If r = 0, then 4K(r) = 4K(0) = 0 < δ.

On the other hand, if r > 0, there exists a sequence of {tn}∞n=1 such that tn < r

and tn → r as n→∞ and 0 ≤ Q
2
(tn) < Q

1
(tn) for each n ∈ N. Since Q

1
and Q

2

are càdlàg, this implies that

(4.10) Q
2
(r−) ≤ Q1

(r−)

and, due to (3.43) and (3.47), it also follows that X
1
(tn) > 〈1, ν1

tn〉 = 1 for every
n ∈ N. When combined with (4.8), this shows that for n ∈ N,

4K(tn) ≤
∫ tn

0

gs(tn − s)4K(s) ds =
∫ tn

0

gs(s)4K(tn − s) ds.

Since K
1

and K
2

are càdlàg, this implies that

4K(r−) ≤
∫ r

0

gs(s)4K((r − s)−) ds.

Using the fact that 4K((r − s)−) < δ for all s ∈ (0, r), it is easy to see (once
again, as in the analysis of (4.8), by considering the cases Gs(r) > 0 and Gs(r) = 0
separately) that this implies

(4.11) 4K(r−) < δ.

On the other hand, since (3.49) is satisfied with (K,R,Q) replaced by (K
i
, R

i
, Q

i
)

for i = 1, 2, and 4Q(0) +4E(t) = 0 for each t ≥ 0, it follows that

4K(τ) +4R(τ) +4Q(τ) = 4K(r−) +4R(r−) +4Q(r−) = 0.

Hence,

4K(τ)−4K(r−) = −(4R(τ)−4R(r−))−4Q(τ) +4Q(r−).

Since −4Q(τ) = Q
1
(τ) − Q2

(τ) = −Q2
(τ) ≤ 0 due to (4.9) and 4Q(r−) ≤ 0 by

(4.10), we obtain

(4.12) 4K(τ)−4K(r−) ≤ −(4R(τ)−4R(r−)).



FLUID LIMITS OF MANY-SERVER QUEUES WITH RENEGING 23

We now show that the right-hand side of the above display is non-positive. For
each t ≥ 0, by (3.45), we see that

4R(t) = R
2
(t)−R1

(t)

=
∫ t

0

(∫ Q
2
(s)

0

hr((F
η2
s)−1(y))dy

)
ds−

∫ t

0

(∫ Q
1
(s)

0

hr((F
η1
s)−1(y))dy

)
ds.

Since η1 = η2, it follows that F
η1
· = F

η2
· . Together with the continuity of R

1
and

R
2
, this yields the equation:

4R(τ)−4R(r−)(4.13)

= 4R(τ)−4R(r)

=
∫ τ

r

(∫ Q
2
(s)

0

hr((F
η1
s)−1(y))dy

)
ds−

∫ τ

r

(∫ Q
1
(s)

0

hr((F
η1
s)−1(y))dy

)
ds.

However, by the definition of r, for each t ∈ [r, τ ], Q
2
(t) ≥ Q1

(t), and so 4R(τ)−
4R(r−) ≥ 0. Together with (4.12) and (4.11), this implies

4K(τ) ≤ 4K(r−) < δ.

Essentially the same argument can be used to also show that4K(τ−) ≤ 4K(r−) <
δ. Hence 4K(τ) ∨4K(τ−) < δ, which contradicts the definition of τ .

Thus we have proved that τ = ∞ and K
2
(t) − K1

(t) ≤ δ for each δ > 0 and
t ≥ 0. By letting δ → 0, we have K

2
(t) ≤ K1

(t) for all t ≥ 0. An exactly analogous
argument yields the reverse inequality K

1
(t) ≤ K2

(t) for each t ≥ 0, and so it must
be that K

2
= K

1
. By Corollary 4.2, it follows that ν1 = ν2. Also, by (3.49), we

obtain

(4.14) R
1

+Q
1

= R
2

+Q
2
.

We now show that, in fact Q
1

= Q
2

and R
1

= R
2
. If there exists t ∈ (0,∞) such

that Q
1
(t) > Q

2
(t), let

s
.= sup{v < t : Q

1
(v) ≤ Q2

(v)} ∨ 0.

Then Q
1
(s−) ≤ Q2

(s−) and Q
1
(v) > Q

2
(v) for each v ∈ (s, t]. Due to the fact that

η1 = η2, we have

R
1
(t)−R1

(s) =
∫ t

s

(∫ Q
1
(v)

0

hr((F
η1
v )−1(y))dy

)
dv

≥
∫ t

s

(∫ Q
2
(v)

0

hr((F
η2
v )−1(y))dy

)
dv

= R
2
(t)−R2

(s).

From (4.14) and the continuity of R
i
, i = 1, 2, we deduce that Q

1
(t) − Q1

(s−) ≤
Q

2
(t) − Q

2
(s−). Combining this with the inequality Q

1
(s−) ≤ Q

2
(s−) proved

above, we obtain Q
1
(t) ≤ Q

2
(t), which leads to a contradiction. Hence Q

1
(v) ≤

Q
2
(v) for all v ∈ (0,∞). By symmetry, we can also argue that Q

1
(v) ≥ Q

2
(v) for
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all v ∈ (0,∞). This shows Q
1

= Q
2

and, hence, R
1

= R
2
. Lastly, by (3.43), we

have X
1

= X
2
. �

Proof of Theorem 3.5. The first statement in Theorem 3.5 follows from Theorem
4.6. The second statement follows directly from Corollary 4.2 and the fluid equa-
tions (3.43), (3.45), (3.46) and (3.48). The alternative representation (3.55) for K
is a direct consequence of the renewal equation (4.5) and the fact that the first
three terms on the right-hand side of (4.5) are bounded by one. �

Remark 4.7. For future use, we observe here that the result of Lemma 5.16 in [17]
(and the analog with ν replaced by η), which was obtained for the model without
abandonments, is also valid in the present context. This is because equations (3.51)
and (3.52) of Theorem 3.5 and Corollary 4.14 of [17] show that, in the terminology
of [17], {ηs} (respectively, {νs}) satisfies the simplified age equation associated
with a certain Radon measure ξ(η0, E) and hr (respectively, ξ(ν0, K) and hs).
Therefore, by Proposition 4.15 of [17], it follows that the result of Lemma 5.16 of
[17] is also valid in the present context.

5. A Family of Martingales

In Section 5.1, we identify the compensators (with respect to the filtration F (N)
t )

of the cumulative departure, potential reneging and (actual) reneging processes.
Then, in Section 5.2, we establish a more convenient representation for the com-
pensator of the reneging process.

5.1. Compensators. For any bounded measurable function ϕ on [0, Hs) × R+,
consider the sequence {A(N)

ϕ,ν } of processes given by

(5.15) A(N)
ϕ,ν (t) .=

∫ t

0

(∫
[0,Hs)

ϕ(x, s)hs(x) ν(N)
s (dx)

)
ds, t ∈ [0,∞).

Likewise, for any bounded measurable function ϕ on [0, Hr)× R+ and N ∈ N, let

(5.16) A(N)
ϕ,η (t) .=

∫ t

0

(∫
[0,Hr)

ϕ(x, s)hr(x) η(N)
s (dx)

)
ds, t ∈ [0,∞).

In Proposition 5.1, we show that A(N)
ϕ,ν (respectively, A(N)

ϕ,η ) is the F (N)
t -compensator

of the associated “ϕ-weighted” cumulative departure process D(N)
ϕ (respectively,

S
(N)
ϕ ). A similar result was established in [17] for the model without abandonments.

However, the filtration {F (N)
t } considered here is larger than the one considered in

[17], and so Proposition 5.1 does not directly follow from the results in [17].

Proposition 5.1. The following properties hold.

(1) For every bounded measurable function ϕ on [0, Hs)×R+ such that the func-
tion s 7→ ϕ(a(N)

j (s), s) is left continuous on [0,∞) for each j, the process

M
(N)
ϕ,ν defined by

(5.17) M (N)
ϕ,ν

.= D(N)
ϕ −A(N)

ϕ,ν
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is a local F (N)
t -martingale. Moreover, for every N ∈ N, t ∈ [0,∞) and

m ∈ [0, Hs),

(5.18) |A(N)
ϕ,ν (t)| ≤ ‖ϕ‖∞

(
X(N)(0) + E(N)(t)

)(∫ m

0

hs(x) dx
)
<∞

for every ϕ ∈ Cc([0, Hs)×R+) with supp(ϕ) ⊂ [0,m]×R+. In addition, the
quadratic variation process 〈M (N)

ϕ,ν 〉 of the scaled process M
(N)

ϕ,ν
.= M

(N)
ϕ,ν /N

satisfies

(5.19) lim
N→∞

E
[
〈M (N)

ϕ,ν 〉(t)
]

= 0; M
(N)

ϕ,ν ⇒ 0 as N →∞.

(2) Furthermore, properties (5.17)–(5.19) also hold with D, aj , ν,H
s and hs,

respectively, replaced by S,wj , η,Hr and hr.

Proof. In Lemma 5.4 and Corollary 5.5 of [17], it was shown that A(N)
ϕ,ν is the

compensator of D(N)
ϕ with respect to a certain filtration. The filtration {F (N)

t }
that we consider here is larger than the filtration used in [17] since it also includes
the σ-algebra generated by the potential waiting times {η(N)

j (s), s ≤ t, j = −E(N)
0 +

1, . . . , E(N)(t)}. Thus the results of [17] do not directly apply here. Nevertheless,
as we prove below, the result continues to hold due to the assumed independence
of the patience and service times.

We first claim that for every F (N)
t -stopping time Υ,

(5.20)
E
[
11{θkn≤ j

2m<Υ,ζkn>
j

2m }
11{ζkn≤ j+1

2m }
|F (N)

j
2m

]
= 11{θkn≤ j

2m<Υ,ζkn>
j

2m }

∫ (j+1)/2m

j/2m

gs(u− θkn)
1−Gs( j

2m − θkn)
du,

where θkn (respectively, ζkn) is the time at which the n-th customer to be served at
station k starts (respectively, completes) service. Then ζkn − θkn is the service time
of the n-th customer to be served at station k, which has cumulative distribution
function Gs. In order to show the equality in (5.20), it suffices to show that for
every bounded F (N)

j
2m

-adapted random variable H,

(5.21)
E
[
H11{θkn≤ j

2m<Υ,ζkn>
j

2m }
11{ζkn≤ j+1

2m }

]
= E

[
H11{θkn≤ j

2m<Υ,ζkn>
j

2m }

∫ (j+1)/2m

j/2m

gs(u− θkn)
1−Gs( j

2m − θkn)
du

]
.

For j ∈ N, m ∈ N, define G(N)
j

2m
be the σ-algebra to be generated by the events {(θkn ≤

x) ∩ (θkn ≤
j

2m , ζ
k
n >

j
2m ), x ≥ 0}. In particular, G(N)

j
2m

contains the information of

the ages of all customers in service at time j
2m . Recall that the patience times and

the service times of customers are assumed to be independent. Therefore, given
G(N)

j
2m

, ζkn − θkn and F (N)
j

2m
are conditionally independent. Hence, it follows from the

left-hand-side of (5.21) that

E
[
H11{θkn≤ j

2m<Υ,ζkn>
j

2m }
11{ζkn≤ j+1

2m }

]
= E

[
E
[
H11{ j

2m<Υ}11{θkn≤ j
2m ,ζkn>

j
2m }

11{ζkn−θkn≤ j+1
2m −θkn}

|G(N)
j

2m

]]
= E

[
E
[
H11{ j

2m<Υ}|G
(N)
j

2m

]
E
[
11{θkn≤ j

2m ,ζkn>
j

2m }
11{ζkn−θkn≤ j+1

2m −θkn}
|G(N)

j
2m

]]
,
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and
E
[
11{θkn≤ j

2m ,ζkn>
j

2m }
11{ζkn−θkn≤ j+1

2m −θkn}
|G(N)

j
2m

]
= 11{θkn≤ j

2m ,ζkn>
j

2m }

∫ (j+1)/2m

j/2m

gs(u− θkn)
1−Gs( j

2m − θkn)
du.

Therefore,

E
[
E
[
H11{ j

2m<Υ}|G
(N)
j

2m

]
E
[
11{θkn≤ j

2m ,ζkn>
j

2m }
11{ζkn−θkn≤ j+1

2m −θkn}
|G(N)

j
2m

]]
= E

[
E
[
H11{ j

2m<Υ}|G
(N)
j

2m

]
11{θkn≤ j

2m ,ζkn>
j

2m }

∫ (j+1)/2m

j/2m

gs(u− θkn)
1−Gs( j

2m − θkn)
du

]

= E

[
E

[
H11{ j

2m<Υ}11{θkn≤ j
2m ,ζkn>

j
2m }

∫ (j+1)/2m

j/2m

gs(u− θkn)
1−Gs( j

2m − θkn)
du|G(N)

j
2m

]]

= E

[
H11{ j

2m<Υ}11{θkn≤ j
2m ,ζkn>

j
2m }

∫ (j+1)/2m

j/2m

gs(u− θkn)
1−Gs( j

2m − θkn)
du

]
.

This shows that (5.21), and therefore (5.20), holds.
If ϕ is bounded, measurable and such that the function s 7→ ϕ(a(N)

j (s), s) is left

continuous for each j, then the process {ϕ(a(N)
j (s), s), s ≥ 0} is F (N)

t -predictable.

Therefore, it follows from the standard theory (cf. Theorem 3.18 of [12]) that M (N)
ϕ,ν

is a local F (N)
t -martingale. The inequality (5.18) can be established exactly as in

Proposition 5.7 of [17] and assertions (5.19) can be proved using the same argument
as in Lemma 5.9 of [17], thus establishing property (1). Due to the analogy between
the service dynamics and the potential queue dynamics (see Remark 2.2), property
(2) is a direct consequence of property (1). �

Remark 5.2. It is easy to see that Lemmas 5.6 and 5.8 of [17] continue to be valid
in the presence of abandonments. Indeed, the proofs of Lemmas 5.6 and 5.8 of [17]
only depend on Assumption 1 and Corollary 5.5 therein (since, as shown in Lemma
5.12 of [17], the additional conditions (5.32) and (5.33) of Lemma 5.8 of [17] can be
derived from Assumption 1), which correspond to Assumption 3.1 and Proposition
5.1 of this paper. In addition, due to the parallels between the dynamics of ν(N)

and η(N) (see Remark 2.2), the analogs of the results in Lemmas 5.6 and 5.8, with
D(N), ν(N), Gs and Hs, respectively, replaced by S(N), η(N), Gr and Hr, also hold.
In this case, even though η

(N)
0 is (unlike ν(N)

0 ) not necessarily a sub-probability
measure, the verification of the conditions analogous to (5.32) and (5.33) of Lemma
5.8 in [17] can still be carried out in the same manner since Assumption 3.1 implies
that the sequence {〈1, η(N)

0 〉} is tight. Moreover, even though Gr is allowed to have
a mass at ∞, the proofs of Lemmas 5.6 and 5.8 are still valid, with the renewal
function Us now replaced by the function Ur(·) =

∫ ·
0

∑∞
n=1(gr)∗n(s) ds, where

(gr)∗n is the nth convolution of gr on [0,∞).

Now, note from (2.25) that R(N) = S
(N)

θ(N) , where θ(N) is defined by (2.26). In

view of the fact that A(N)
ϕ,η is the compensator for S(N)

ϕ , it is natural to conjecture
that the compensator of R(N) is equal to A(N)

θ(N),η
, where

(5.22)

A
(N)

θ(N),η
(t) .=

∫ t

0

(∫
[0,Hr)

11[0,χ(N)(s−)](x)hr(x) η(N)
s (dx)

)
ds, t ∈ [0,∞).
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However, this is not immediate from Proposition 5.1(2) since θ(N)(w(N)
j (·), ·) is not

left continuous for any j. Instead, we approximate θ(N) by a sequence {θ(N)
m }N∈N

defined by

(5.23) θ(N)
m (x, s) .= 11(x− 1

m ,∞)(χ
(N)(s−)),

which is shown to be left continuous in Lemma 5.3. Then in Lemma 5.4, we use an
approximation argument to show that A(N)

θ(N),η
is indeed the compensator of R(N).

Lemma 5.3. For each m ≥ 1, x ∈ R and s ∈ R+, the sequence {θ(N)
m }N∈N defined

by (5.23) satisfies the following two properties:

(1) For every N ∈ N, x ∈ R, s ∈ R, θ(N)
m (x, s) is non-increasing in m and

converges, as m→∞, to θ(N)(x, s) for every sample point in Ω.
(2) For each N,m ∈ R, j ∈ Z, the process θ(N)

m (w(N)
j (·), ·) has left continuous

paths on (0,∞).

Proof. The first property is immediate from the definition of θ(N)
m . For the second

property, fix N,m ∈ N, s > 0, j ∈ Z and ω ∈ Ω. To ease the notation, we shall
suppress ω from the notation. Let {sn} be a sequence in (0,∞) such that sn ↑ s as
n→∞. We now consider two mutually exclusive cases.
Case 1. θ

(N)
m (w(N)

j (s), s) = 1. Then w
(N)
j (s) < χ(N)(s−) + 1/m. Since w(N)

j is

non-decreasing, w(N)
j (sn) ≤ w(N)

j (s) and since the process {χ(N)(s−), s ≥ 0} is left

continuous, we have, for all n large enough, w(N)
j (sn) < χ(N)(sn−) + 1/m. Hence,

θ
(N)
m (w(N)

j (sn), sn) = 1 for all n ∈ N. Thus, in this case, θ(N)
m (w(N)

j (·), ·) is left
continuous at s.
Case 2. θ(N)

m (w(N)
j (s), s) = 0. Then w

(N)
j (s) ≥ χ(N)(s−) + 1/m. It follows from

Lemma A.2 that for all sufficiently large n, χ(N)(s−) − χ(N)(sn−) = s − sn >

0. Since (2.2) implies w(N)
j (s) − w

(N)
j (sn) ≤ s − sn for all n ∈ N, this implies

w
(N)
j (sn) ≥ χ(N)(sn−)+1/m for all n large enough. Hence, θ(N)

m (w(N)
j (sn), sn) = 0

and θ
(N)
m (w(N)

j (·), ·) is again left continuous at s. �

Lemma 5.4. For every N ∈ N, the process M (N)

θ(N),η
defined by

(5.24) M
(N)

θ(N),η

.= R(N) −A(N)

θ(N),η

is a local F (N)
t -martingale. In addition, as N →∞,

(5.25) lim
N→∞

E
[
〈M (N)

θ(N),η〉(t)
]

= 0, M
(N)

ψ,η ⇒ 0 and M
(N)

θ(N),η ⇒ 0.

Proof. Fix N ∈ N, and let A(N)

θ
(N)
m ,η

, m ∈ N, be defined in the obvious way:

(5.26) A
(N)

θ
(N)
m ,η

(t) .=
∫ t

0

(∫
[0,Hr)

θ(N)
m (x, s)hr(x) η(N)

s (dx)

)
ds.

By Proposition 5.1(2) and Lemma 5.3(2), the processA(N)

θ
(N)
m ,η

is the F (N)
t -compensator

of the process S(N)

θ
(N)
m

, and the process M (N)

θ
(N)
m ,η

defined by

(5.27) M
(N)

θ
(N)
m ,η

.= S
(N)

θ
(N)
m

−A(N)

θ
(N)
m ,η
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is a local F (N)
t -martingale. Now, by Lemma 5.3(1), θ(N)

m → θ(N) pointwise on R2
+,

|θ(N)
m (x, s)−θ(N)(x, s)| ≤ 1 for all (x, s) ∈ R2

+, and E
[
S

(N)
1 (t)

]
<∞, E

[
A

(N)
1,η (t)

]
<

∞ for all t ∈ (0,∞). Hence, an application of the dominated convergence theorem
shows that for all t ∈ (0,∞), as m→∞,

E
[

sup
0≤s≤t

∣∣∣A(N)

θ
(N)
m ,η

(s)−A(N)

θ(N),η
(s)
∣∣∣]→ 0 and E

[
sup

0≤s≤t

∣∣∣S(N)

θ
(N)
m

(s)− S(N)

θ(N)(s)
∣∣∣]→ 0,

and henceM (N)

θ
(N)
m ,η

converges in distribution toM (N)

θ(N),η
. Since

∣∣∣S(N)

θ
(N)
m

(t)− S(N)

θ
(N)
m

(t−)
∣∣∣ ≤

1 for all t ∈ [0,∞) and m ∈ N, we conclude that M (N)

θ(N),η
is a local F (N)

t -martingale

by Corollary 1.19 of Chapter IX of [12]. Given that M (N)

θ(N),η
is a martingale, the

proof of the limits (5.25) is exactly analogous to the proof of (5.19), as carried out
in Lemma 5.9 of [17]. �

5.2. An Alternative Representation for the Compensator of R(N). We now
derive an alternative, more convenient, representation for A(N)

θ(N),η
, or more gener-

ally, for processes of the form A
(N)

θ(N),η
, but with hr replaced by an arbitrary measur-

able function h. In what follows, recall that F η
(N)
t (x) = η

(N)
t [0, x] and its inverse

(F η
(N)
t )−1 is as defined in (1.1).

Proposition 5.5. For each N ∈ N, t ≥ 0 and measurable function h on [0, Hr),

(5.28)
∫

[0,Hr)

11[0,χ(N)(t−)](x)h(x)η(N)
t (dx) =

∫ Q(N)(t)+ι(N)(t)

0

h((F η
(N)
t )−1(y))dy,

where

(5.29) ι(N)(t) .=
{

0 if (χ(N)(t−)− χ(N)(t))(K(N)(t)−K(N)(t−)) = 0,
1 if (χ(N)(t−)− χ(N)(t))(K(N)(t)−K(N)(t−)) > 0.

Proof. Fix N ∈ N, t ≥ 0 and a measurable function h on [0, Hr). By the represen-
tation (2.3) for η(N)

t , we have

(5.30)

∫
[0,Hr)

11[0,χ(N)(t−)](x)h(x)η(N)
t (dx)

=
E(N)(t)∑

j=−E(N)
0 +1

h
(
w

(N)
j (t)

)
11{w(N)

j (t)≤χ(N)(t−)}11{w(N)
j (t)<rj}

.

Moreover, by (2.6),

Q(N)(t) = η
(N)
t [0, χ(N)(t)] =

E(N)(t)∑
j=−E(N)

0 +1

11{w(N)
j (t)≤χ(N)(t)}11{w(N)

j (t)<rj}
.

Thus Q(N)(t) is the total number of customers who have arrived to the system
and have not reneged by t and whose potential waiting times at t are less than
or equal to χ(N)(t). If we arrange those customers in increasing order of their
potential waiting times at t, then for i = 1, 2, . . . , Q(N)(t), (F η

(N)
t )−1(i) is exactly

the potential waiting time at t of the ith customer from the back of the queue.



FLUID LIMITS OF MANY-SERVER QUEUES WITH RENEGING 29

Suppose that (χ(N)(t−) − χ(N)(t))(K(N)(t) − K(N)(t−)) = 0. This implies
that either χ(N)(t−) = χ(N)(t) holds or both χ(N)(t−) > χ(N)(t) and K(N)(t) =
K(N)(t−) hold. The latter condition indicates that the head-of-the-line customer
right before time t reneged at time t. In this case, the right-hand side of (5.30)
admits the alternative representation∫ Q(N)(t)

0

h((F η
(N)
t )−1(y))dy.

On the other hand, suppose that (χ(N)(t−)−χ(N)(t))(K(N)(t)−K(N)(t−)) > 0.
In this case, the head-of-the-line customer right before time t departs for service
at time t and this customer is counted in the righthand side of (5.30) but not in
Q(N)(t). Since E(N)(t) − E(N)(t−) ≤ 1, there is exactly one such customer, i.e.,
K(N)(t)−K(N)(t−) = 1. Hence the right-hand side of (5.30) can be rewritten as∫ Q(N)(t)+1

0

h((F η
(N)
t )−1(y))dy.

�

As an immediate consequence of (5.22), Lemma 5.4, and Proposition 5.5, we
obtain the following alternative representation for the compensator A(N)

θ(N),η
of R(N):

(5.31) A
(N)

θ(N),η
(t) .=

∫ t

0

(∫ Q(N)(t)+ι(N)(t)

0

hr((F η
(N)
s )−1(y))dy

)
ds, t ∈ [0,∞),

where ι(N) is given by (5.29).

6. Tightness of Pre-limit Sequences

The main objective of this section is to show that, under suitable assumptions,
the sequence of scaled state processes {(X(N)

, ν(N), η(N))} and the sequences of
auxiliary processes are tight. Specifically, from (2.23) and (5.18) it is clear that for
every t, the linear functionals D

(N)

· (t) : ϕ 7→ D
(N)

ϕ (t) and A
(N)

·,ν (t) : ϕ 7→ A
(N)

ϕ,ν (t) are
finite Radon measures on [0, Hs)×R+. Likewise, from (2.24) and the fact that (5.18)
holds with ν, hs, respectively, replaced by η, hr by property (2) of Proposition 5.1,
it follows that the linear functionals S

(N)

· (t) : ψ 7→ S
(N)

ψ (t) and A
(N)

·,η (t) : ψ 7→
A

(N)

ψ,η (t) define finite Radon measures on [0, Hr)×R+. Thus {D(N)

· (t) : t ∈ [0,∞)}
and {A(N)

·,ν (t) : t ∈ [0,∞)} can be viewed as MF ([0, Hs) × R+)-valued càdlàg

processes, and {S(N)

· (t) : t ∈ [0,∞)} and {A(N)

·,η (t) : t ∈ [0,∞)} can be viewed as
MF ([0, Hr)× R+)-valued càdlàg processes. Now, for N ∈ N, let

Y
(N) .=

(
X

(N)
(0), E

(N)
, X

(N)
, R

(N)
, ν

(N)
0 , ν(N), η

(N)
0 , η(N),(6.32)

A
(N)

·,ν , D
(N)

· , A
(N)

·,η , S
(N)

·

)
.

Then each Y
(N)

is a Y-valued process, where Y is the space

Y .= R+ × (DR+ [0,∞))3 ×MF [0, Hs)×DMF [0,Hs)[0,∞)×MF [0, Hr)

×DMF [0,Hr)[0,∞)× (DMF ([0,Hs)×R+)[0,∞))2 × (DMF ([0,Hr)×R+)[0,∞))2
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equipped with the product metric. Clearly, Y is a Polish space. Now we state the
main result of this section.

Theorem 6.1. Suppose Assumption 3.1 is satisfied. Then the sequence {Y (N)}
defined in (6.32) is relatively compact in the Polish space Y, and is therefore tight.

The relative compactness of {Y (N)} follows from Assumption 3.1 and Lemmas
6.3, 6.4, 6.6 and 6.7 below. Since Y is a Polish space, tightness is then a direct
consequence of Prohorov’s theorem.

We start by recalling Kurtz’ criteria (see Theorem 3.8.6 of [8] for details) for the
relative compactness of a sequence {F (N)} of processes in DR+ [0,∞).

Proposition 6.2. (Kurtz’ criteria) The sequence of processes {Z(N)} is relatively
compact if and only if the following two properties hold:

K1: For every rational t ≥ 0,

lim
R→∞

sup
N

P(Z(N)
(t) > R) = 0;

K2: For each t > 0, there exists β > 0 such that

(6.33) lim
δ→0

sup
N

E
[∣∣∣Z(N)

(t+ δ)−Z(N)
(t)
∣∣∣β] = 0.

Lemma 6.3. Suppose Assumption 3.1 holds. Then the sequences {X(N)}, {K(N)},
{R(N)}, {〈1, ν(N)〉}, {〈1, η(N)〉}, the sequences {D(N)

ϕ }, {A(N)

ϕ,ν }, for every ϕ ∈
Cb([0, Hs)×R+), and the sequences {S(N)

ψ }, {A(N)

ψ,η }, for every ψ ∈ Cb([0, Hr)×R+),
are relatively compact.

Proof. Fix T ∈ (0,∞). It follows from Proposition 5.1(1), (2.23) and (3.36) that
for ϕ ∈ Cb([0, Hs)× R+),

sup
N

E
[
A

(N)

ϕ,ν (T )
]

= sup
N

E[D
(N)

ϕ (T )] ≤ ||ϕ||∞ sup
N

E[X
(N)

(0) + E
(N)

(T )] <∞.

Similarly, by Proposition 5.1(2), (2.24) and (3.36), we have for every ψ ∈ Cb([0, Hr)×
R+),

sup
N

E[A
(N)

ψ,η (T )] = sup
N

E[S
(N)

ψ (T )] ≤ ||ψ||∞ sup
N

E[X
(N)

(0) + E
(N)

(T )] <∞,

which verifies the condition K1 for Z = A
(N)
ϕ,ν , D

(N)
ϕ , ϕ ∈ Cb([0, Hs) × R+), and

Z = A
(N)
ψ,η , S

(N)
ψ , ψ ∈ Cb([0, Hr)×R+). The same argument that was used to prove

Lemma 5.8(2) in [17] can then be used to show that (6.33) is also satisfied by the
same collection of Z (see Remark 5.2). The fact that R

(N)
and its increments

are dominated, respectively, by S
(N)

and its increments shows that the sequence
{R(N)} also satisfies conditions K1 and K2, and is thus relatively compact. Since
D

(N)
= D

(N)

1 and S
(N)

= S
(N)

1 , it follows that the sequences {D(N)} and {S(N)} are
also relatively compact. By Assumption 3.1, the sequences {E(N)} and {X(N)

(0)}
are relatively compact.

Since for every t ≥ 0, 〈1, ν(N)
t 〉 ≤ X

(N)
(t) ≤ X

(N)
(0) + E

(N)
(t) by (2.30) and

(2.12), it follows from Markov’s inequality that 〈1, ν(N)
t 〉 and X

(N)
satisfy K1 of
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Proposition 6.2. In addition, (2.12) also shows that∣∣∣X(N)
(t)−X(N)

(s)
∣∣∣ ≤ ∣∣∣E(N)

(t)− E(N)
(s)
∣∣∣+
∣∣∣D(N)

(t)−D(N)
(s)
∣∣∣

+
∣∣∣R(N)

(t)−R(N)
(s)
∣∣∣ ,

and by (2.30) and the Lipschitz continuity of the function x 7→ [1 − x]+ with
Lipschitz constant 1, we have∣∣∣〈1, ν(N)

t 〉 − 〈1, ν(N)
s 〉

∣∣∣ =
∣∣∣[1−X(N)

(t)]+ − [1−X(N)
(s)]+

∣∣∣ ≤ ∣∣∣X(N)
(t)−X(N)

(s)
∣∣∣ .

When combined with the properties of E
(N)

, D
(N)

and R
(N)

established above, this
shows that {X(N)} and {〈1, ν(N)〉} satisfy K2 of Proposition 6.2 and, are relatively
compact. In turn, by (2.16), the relative compactness of {D(N)} and {〈1, ν(N)〉}
implies that of {K(N)}. Moreover, due to (2.13), for every s, t ∈ [0,∞), we have
that ∣∣∣〈1, η(N)

t 〉 − 〈1, η(N)
s 〉

∣∣∣ ≤ ∣∣∣E(N)
(t)− E(N)

(s)
∣∣∣+
∣∣∣S(N)

(t)− S(N)
(s)
∣∣∣ ,(6.34)

〈1, η(N)
t 〉 ≤ 〈1, η(N)

0 〉+ E
(N)

(t).(6.35)

Thus 〈1, η(N)〉 is also relatively compact, and the proof is complete. �

Lemma 6.4. Suppose Assumption 3.1 holds. For every f ∈ C1
c (R+), the sequences

{〈f, ν(N)〉} and {〈f, η(N)〉} of DR[0,∞)-valued random variables are relatively com-
pact.

Proof. Fix t ∈ [0,∞). By (2.27) and (2.28), for every f ∈ C1
c (R+), we have

〈f, ν(N)
t 〉 − 〈f, ν(N)

0 〉 =
∫ t

0

〈f ′, ν(N)
s 〉 ds−D(N)

f (t) + f(0)K
(N)

(t)

and

〈f, η(N)
t 〉 − 〈f, η(N)

0 〉 =
∫ t

0

〈f ′, η(N)
s 〉ds− S(N)

f (t) + f(0)E
(N)

(t).

Since {D(N)

f }, {K(N)}, {S(N)

f } and {E(N)} are relatively compact due to Lemma
6.3 and property 1 of Assumption 3.1, it suffices to show that the sequences
{
∫ ·

0
〈f ′, ν(N)

s 〉 ds} and {
∫ ·

0
〈f ′, ηs〉 ds} are tight. It follows from (6.35) that for δ ∈

(0, 1),∣∣∣∣∣
∫ t+δ

t

〈f ′, η(N)
s 〉ds

∣∣∣∣∣ ≤ ||f ′||∞
∫ t+δ

t

|〈1, η(N)
s 〉|ds ≤ ||f ′||∞δ

(
〈1, η(N)

0 〉+ E
(N)

(t+ 1)
)
.

Hence, we have

E

[∣∣∣∣∣
∫ t+δ

t

〈f ′, η(N)
s 〉ds

∣∣∣∣∣
]
≤ ||f ′||∞δ sup

N
E[〈1, η(N)

0 〉+ E
(N)

(t+ 1)].(6.36)

For each t ∈ [0,∞), by (2.3) and Assumption 3.1, it follows that

(6.37) sup
N

E
[
〈1, η(N)

t 〉
]
≤ sup

N
E
[
〈1, η(N)

0 〉+ E
(N)

(t)
]
<∞.
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Therefore, taking the limit, as δ → 0, in (6.36) and using the last inequality in
(6.37), we have

lim
δ→0

sup
N

E

[∣∣∣∣∣
∫ t+δ

t

〈f ′, η(N)
s 〉ds

∣∣∣∣∣
]

= 0.

Similarly, since 〈1, ν(N)
s 〉 ≤ 1 for every s ∈ [0,∞) and N ∈ N,

lim
δ→0

sup
N

E

[∣∣∣∣∣
∫ t+δ

t

〈f ′, ν(N)
s 〉ds

∣∣∣∣∣
]
≤ lim
δ→0
||f ′||∞δ = 0.

Moreover, by (6.37), we also have, for every t ∈ [0,∞),

sup
N

E
[∣∣∣∣∫ t

0

〈f ′, η(N)
s 〉ds

∣∣∣∣] ≤ ||f ′||∞t sup
N

E
[
〈1, η(N)

0 〉+ E
(N)

(t)
]
<∞.

Similarly, we have

sup
N

E
[∣∣∣∣∫ t

0

〈f ′, ν(N)
s 〉ds

∣∣∣∣] ≤ sup
N

E
[∫ t

0

|〈f ′, ν(N)
s 〉|ds

]
≤ ||f ′||∞t <∞.

This implies that
{∫ ·

0
〈f ′, η(N)

s 〉ds
}

and
{∫ ·

0
〈f ′, ν(N)

s 〉ds
}

both satisfy criteria K1
and K2 of Proposition 6.2 and hence are relatively compact. This completes the
proof of the lemma. �

Next, we show that {ν(N)} and {η(N)} are tight, and hence are relatively compact
with respect to the topology on DMF [0,Hs)[0,∞) and DMF [0,Hr)[0,∞), respectively.
Since, as mentioned in Section 1.3.1, MF [0, Hs) and MF [0, Hr), equipped with
the topology of weak convergence, are Polish spaces, we can apply Jakubowski’s
criteria to establish the tightness of {ν(N)} and {η(N)}. For convenience, we recall
Jakubowski’s criteria.

Proposition 6.5. (Jakubowski) A sequence {π(N)} of DMF [0,H)[0,∞)-valued ran-
dom elements defined on (Ω,F ,P) is tight if and only if the following two conditions
hold.

J1: For each T > 0 and 0 < δ < 1, there are compact subsets C̃T,δ of
MF [0, H) such that

lim inf
N→∞

P
(
ν

(N)
t ∈ C̃T,δ for all t ∈ [0, T ]

)
> 1− δ.

J2: There exists a family F of real continuous functions F on MF [0, H) that
separates points in MF [0, H) and is closed under addition, and {π(N)} is
F-weakly tight, i.e., for every F ∈ F, the sequence {F (π(N)), s ∈ [0,∞)} is
tight in DR[0,∞).

Lemma 6.6. Suppose Assumption 3.1 holds. The sequences {ν(N)} and {η(N)}
are relatively compact.

Proof. By Remark 5.11 of [17] and Lemma 6.4, it follows that {ν(N)} and {η(N)}
satisfy Jakubowski’s J2 criterion. Therefore, it suffices to show that they also
satisfy Jakubowski’s J1 criterion. By (2) and (3) of Assumption 3.1, for almost
every ω ∈ Ω, supN ν

(N)
0 (ω)[0, Hs) < ∞. By Lemma A 7.5 of [15], for every ε > 0,

there exists k(ω, ε) < ∞ such that supN ν
(N)
0 (ω)(k(ω, ε), Hs) < ε. The argument

for tightness of {ν(N)} (in the absence of reneging) presented in Lemma 5.12 of
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[17] can be directly applied to show that {ν(N)} satisfies Jakubowski’s J1 criterion,
and hence {ν(N)} is tight in the presence of reneging as well. Similarly, due to
(2) and (4) of Assumption 3.1, for almost every ω ∈ Ω, supN η

(N)
0 (ω)[0, Hr) < ∞.

Once again, by Lemma A 7.5 of [15], we infer that for every ε > 0, there exists
l(ω, ε) < ∞ such that supN η

(N)
0 (ω)(l(ω, ε), Hr) < ε. Since {〈1, η(N)〉} is tight by

Lemma 6.4, the argument for tightness of {ν(N)} presented in Lemma 5.12 of [17]
can also be adapted to show that the sequence {η(N)} satisfies Jakubowski’s J1
criterion, and is therefore tight. We omit the details. �

We end this section by establishing the relative compactness of the measure-
valued processes associated with the cumulative departure and reneging functionals
and their compensators.

Lemma 6.7. Suppose Assumption 3.1 holds. Then the sequences {D(N)

· } and
{A(N)

·,ν } are relatively compact in DMF ([0,Hs)×R+)[0,∞). Similarly, the sequences

{S(N)

· } and {A(N)

·,η } are relatively compact in DMF ([0,Hr)×R+)[0,∞).

Proof. This can be proved by combining Lemma 6.3 and Proposition 5.1 with the
argument that was used in Lemma 5.13 of [17] to establish the tightness of the
sequences {Q(N)} and {A(N)} therein. Since the adaptation of the argument in
[17] is straightforward, we omit the details. �

7. Strong Law of Large Numbers Limits

7.1. Characterization of Subsequential Limits. The focus of this section is
the following theorem which, in particular, establishes existence of a solution to the
fluid equations.

Theorem 7.1. Suppose that Assumptions 3.1–3.3 hold. Let (X, ν, η) be the limit
of any subsequence of {X(N)

, ν(N), η(N)}. Then (X, ν, η) solves the fluid equations.

The rest of the section is devoted to the proof of this theorem. Let (E,X(0), ν0, η0)
be the S0-valued random variable that satisfies Assumption 3.1, and let {Y (N)}N∈N
be the sequence of processes defined in (6.32). Then, by Assumption 3.1, Theorem
6.1 and the limits M

(N)

·,ν = D
(N)

· −A(N)

·,ν ⇒ 0 and M
(N)

·,η = S
(N)

· −A(N)

·,η ⇒ 0 estab-
lished in Proposition 5.1, there exist processes X ∈ DR+ [0,∞), R ∈ DR+ [0,∞), ν ∈
DMF [0,Hs)[0,∞), η ∈ DMF [0,Hr)[0,∞), A·,ν ∈ DMF ([0,Hs)×R+)[0,∞), D· ∈ DMF ([0,Hs)×R+)[0,∞),

A·,η ∈ DMF ([0,Hr)×R+)[0,∞), S· ∈ DMF ([0,Hr)×R+)[0,∞) such that Y
(N)

converges
weakly (along a suitable subsequence) to

Y
.=
(
X(0), E,X,R, ν0, ν, η0, η, A·,ν , A·,ν , A·,η, A·,η

)
∈ Y.

Denoting this subsequence again by Y
(N)

and invoking the Skorokhod Representa-
tion Theorem, with a slight abuse of notation, we can assume that, P a.s., Y

(N) → Y
as N →∞. Without loss of generality, we may further assume that the above con-
vergence holds everywhere.

We now identify some properties of the limit that will be used to prove Theorem
7.1. From Proposition 5.1(1), it follows that, as N →∞, (Y

(N)
, D

(N)

· )→ (Y ,A·,ν).
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Together with (2.12), this implies that

(7.38) X = X(0) + E −A1,ν −R.

Moreover, we claim that

(7.39) Aϕ,ν =
∫ ·

0

〈ϕhs, νs〉ds.

This corresponds to the relation (5.48) established in Proposition 5.17 of [17] for
the model without abandonments. However, essentially the same argument can be
used here as well. Specifically, the proof of (5.48) in [17] relies on Lemma 5.8(1) and
Lemma 5.16 of [17], which continue to be valid in the presence of abandonments
due to Remarks 5.2 and 4.7. On substituting (7.39) into (7.38), we see that the
fluid equation (3.46) is satisfied.

Next, in Proposition 7.2, we establish the representation (3.45) for R given in
the fluid equations. The proof of this result relies on the alternative representation
for the compensator A(N)

θ(N),η
of R(N) given in (5.31).

Proposition 7.2. For every T ∈ [0,∞), as N →∞,

(7.40) E

[
sup
t∈[0,T ]

∣∣∣∣∣A(N)

θ(N),η(t)−
∫ t

0

(∫ Q(s)

0

hr((F ηs)−1(y))dy

)
ds

∣∣∣∣∣
]
→ 0.

Moreover, almost surely,

(7.41) R(t) =
∫ t

0

(∫ Q(s)

0

hr((F ηs)−1(y))dy

)
ds, t ∈ [0,∞).

The proof of Proposition 7.2 is given near the end of this section and relies on
the following preliminary observations. Let R̃(t) be defined by the right-hand side
of (7.41) for t ∈ [0,∞). We first show how (7.41) can be deduced from (7.40).
From (7.40), it follows that A

(N)

θ(N),η ⇒ R̃ as N → ∞. Since R̃ is continuous,

R
(N)

= M
(N)

θ(N),η+A
(N)

θ(N),η and M
(N)

θ(N),η ⇒ 0 by Lemma 5.4, it follows that R
(N) ⇒ R̃.

This implies, a.s., R̃ = R and thus the second statement of Proposition 7.2 follows
from the first statement.

The proof of (7.40) relies on Lemmas 7.3–7.6 below and the following obser-
vations. Using (5.31) and the elementary relation (F η

(N)
s )−1(N ·) = (F η

(N)
s )−1(·),

simple algebraic manipulations show that

(7.42) A
(N)

θ(N),η(t) .=
∫ t

0

(∫ Q
(N)

(t)+ι(N)(t)

0

hr((F η
(N)
s )−1(y))dy

)
ds, t ∈ [0,∞),

where, as usual, ι(N) .= ι(N)/N and ι(N) is given by (5.29). Next, observe that for
all t ∈ [0, T ] and L ∈ [0, Hr),

(7.43)
∣∣∣A(N)

θ(N),η(t)− R̃(t)
∣∣∣ ≤ C(N)

1 (t, L) + C
(N)

2 (t, L) + C3(t, L),
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where C
(N)

i (t, L), i = 1, 2, and C3(t, L) are defined, for t ∈ [0,∞), by

C
(N)

1 (t, L) .=

∣∣∣∣∣∣
∫ t

0

∫ (Q
(N)

(s)+ι(N)(s))∧Fη
(N)
s (L)

0

hr((F η
(N)
s )−1(y))dy

 ds(7.44)

−
∫ t

0

(∫ Q(s)∧Fηs (L)

0

hr((F ηs)−1(y))dy

)
ds

∣∣∣∣∣ ,
(7.45) C

(N)

2 (t, L) .=

∣∣∣∣∣
∫ t

0

(∫ Q
(N)

(s)+ι(N)(s)

(Q
(N)

(s)+ι(N)(s))∧Fη
(N)
s (L)

hr((F η
(N)
s )−1(y))dy

)
ds

∣∣∣∣∣ ,
and

(7.46) C3(t, L) .=
∫ t

0

(∫ Q(s)

Q(s)∧Fηs (L)

hr((F ηs)−1(y))dy

)
ds.

As a precursor to the proof of (7.40) of Proposition 7.2, we first establish some
path properties of the limiting queue measure η in Lemma 7.3 and some estimates
in Lemma 7.4. These two preliminary results will be used in Lemma 7.5 to show
that for any L ∈ [0, Hr), limN→∞ supt∈[0,T ]

∣∣∣C(N)

1 (t, L)
∣∣∣ = 0 in the case when hr

is continuous. Next, Lemma 7.6 extends this to include general hr that is locally
integrable in [0, Hr). All these results are then combined to prove Proposition 7.2.

Lemma 7.3. For every L ∈ [0, Hr), ηt is continuous at L for almost every t ≥ 0.
Moreover, for t ∈ (0,∞) and L ∈ [0, Hr), if ηt({L}) > 0, then ηt(L,L+ ε) > 0 for
all sufficiently small ε.

Proof. It was shown in Corollary 4.2 that (η,E) satisfies (3.51) for every bounded
Borel measurable function f . For every L ∈ [0, Hr), substituting f = 11L in (4.2),
we obtain

ηt({L}) =
∫

[0,Hr)

11{L}(x+ t)
1−Gr(x+ t)

1−Gr(x)
η0(dx)(7.47)

+
∫

[0,t]

11{L}(t− s)(1−Gr(t− s)) dE(s).

It is easy to see that the right-hand side of the above display is zero except when
η0({L − t}) > 0 if t ≤ L or when E(t − L) − E((t − L)−) > 0 if t > L. Since
the jump times of both η0 and E are at most countable, (7.47) shows that ηt is
continuous at L for almost every t ≥ 0.

Next, suppose ηt({L}) > 0. Then by (7.47), at least one of the following two
inequalities must hold:

(7.48)
∫

[0,Hr)

11{L}(x+ t)
1−Gr(x+ t)

1−Gr(x)
η0(dx) > 0

or

(7.49)
∫

[0,t]

11{L}(t− s)(1−Gr(t− s)) dE(s) > 0.

If (7.48) holds, then it must be that L−t ∈ [0, Hr), (1−Gr(L))/(1−Gr(L−t)) > 0
and η0({L− t}) > 0. By Assumption 3.2 and the continuity of (1−Gr(·+ t))/(1−
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Gr(·)), it then follows that for all sufficient small ε > 0,

(7.50)
∫

[0,Hr)

11(L,L+ε)(x+ t)
1−Gr(x+ t)

1−Gr(x)
η0(dx) > 0.

Substituting f = 11(L,L+ε) into (3.51) in Corollary 4.2 shows that ηt(L,L + ε) is
greater than or equal to the left-hand-side of (7.50), and so the lemma is established
in this case. On the other hand, suppose (7.49) holds. In this case, t − L > 0,
1 − Gr(t − L) > 0 and E(t − L) − E((t − L)−) > 0. By Assumption 3.2 and the
continuity of 1 − Gr(t − ·), for all sufficiently small ε > 0, 1 − Gr(t − ·) is strictly
positive on (L,L+ ε) and E((t− L)−)−E(t− L− ε) > 0. Another application of
(3.51) of Corollary 4.2, with f = 11(L,L+ε), shows that

ηt(L,L+ ε) ≥
∫ t

0

11(L,L+ε)(t− s)(1−Gr(t− s)) dE(s) > 0,

and the proof of the lemma is complete. �

Lemma 7.4. Let T ∈ [0,∞) and L ∈ [0, Hr). The following estimates hold.
(1) For m ∈ [0, Hr) and every ` ∈ L1

loc[0, H
r) with support in [0,m], there

exists L̃(m,T ) <∞ such that

(7.51)

∣∣∣∣∣
∫ T

0

〈`, ηs〉 ds

∣∣∣∣∣ ≤ L̃(m,T )
∫

[0,Hr)

|`(x)|dx.

(2) Suppose h is a measurable function such that C̃hL
.= supx∈[0,L] |h(x)| < ∞.

Then, P-a.s.,

(7.52) sup
N

sup
s∈[0,T ]

∫ L

0

h(x)η(N)
s (dx) ≤ C̃hL sup

N

(
〈1, η(N)

0 〉+ E
(N)

(T )
)
<∞.

Proof. It was established in Lemma 5.16 of [17] that inequality (7.51) holds with η
replaced by the fluid age measure ν associated with a many-server queue without
abandonments. The proof follows directly from Proposition 4.15 and the estimate
(5.46) of [17]. Since the dynamic equations (2.28) and (3.51) for η(N) and η, respec-
tively, are exactly analogous to the dynamic equations for ν(N) and ν. the estimate
(5.46) of [17] can be shown to hold for η using the same argument as in [17]. When
combined with Proposition 4.15 of [17], this shows that (7.51) holds. The estimate
(7.52) follows directly from (2.13) and Assumption 3.1. �

Lemma 7.5. For T ≥ 0 and all but countably many L ∈ [0, Hr), given any con-
tinuous function h on [0,∞), as N →∞, for every realization,

sup
t∈[0,T ]

∣∣∣∣∣∣
∫ t

0

∫ (Q
(N)

(s)+ι(N)(s))∧Fη
(N)
s (L)

0

h((F η
(N)
s )−1(y))dy

 ds(7.53)

−
∫ t

0

(∫ Q(s)∧Fηs (L)

0

h((F ηs)−1(y))dy

)
ds

∣∣∣∣∣→ 0.

Proof. Fix ω ∈ Ω. To ease the notation, we shall suppress ω from the notation.
From the convergence of η(N) to η and Q

(N)
to Q, it follows that, as N → ∞,

η
(N)
s

w→ ηs and Q
(N)

(s) → Q(s) for almost every s ≥ 0. Also, by Lemma 7.3,
ηs is continuous at L for almost every s ≥ 0. Let s ≥ 0 be a time at which
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η
(N)
s

w→ ηs and Q
(N)

(s) → Q(s) as N → ∞ and ηs is continuous at L. Then,
as N → ∞, F η

(N)
s (x) → F ηs(x) for x = L and all but a countable number of

x ∈ [0, Hr). Therefore, by Theorem 13.6.3 of [29], we have (F η
(N)
s )−1 → (F ηs)−1

on [0, F ηs(Hr−)) in the M1 topology. For s ∈ [0, T ], we now show that, as N →∞,
(7.54)∫ (Q

(N)
(s)+ι(N)(s))∧Fη

(N)
s (L)

0

h((F η
(N)
s )−1(y))dy →

∫ Q(s)∧Fηs (L)

0

h((F ηs)−1(y))dy.

From the inequality
∣∣ι(N)

∣∣ ≤ 1/N , we immediately see that

(7.55) (Q
(N)

(s) + ι(N)(s)) ∧ F η
(N)
s (L)→ Q(s) ∧ F ηs(L), as N →∞.

We now consider the following two cases.
Case 1. Q(s)∧F ηs(L) < F ηs(Hr−). In this case, due to (7.55), for all sufficiently
large N , (Q

(N)
(s) + ι(N)(s))∧F η(N)

s (L) < F ηs(Hr−). For each n ∈ N, by Theorem
11.5.1 of [29] and the continuity of h, we obtain for each t < F ηs(Hr−),

lim
N→∞

sup
u∈[0,t]

∣∣∣∣∫ u

0

h((F η
(N)
s )−1(y))dy −

∫ u

0

h((F ηs)−1(y))dy
∣∣∣∣ = 0.

By the case assumption, this implies, in particular, that,

lim
N→∞

∣∣∣∣∣
∫ Q(s)∧Fηs (L)

0

h((F η
(N)
s )−1(y))dy −

∫ Q(s)∧Fηs (L)

0

h((F ηs)−1(y))dy

∣∣∣∣∣ = 0.

On the other hand, (7.55) and the continuity of h show that

lim
N→∞

∫ Q(s)∧Fηs (L)

(Q
(N)

(s)+ι(N)(s))∧Fη
(N)
s (L)

h((F η
(N)
s )−1(y))dy = 0

Together, the last two assertions imply (7.54).
Case 2. Q(s) ∧ F ηs(L) = F ηs(Hr−). We first claim that in this case

(7.56) Q(s) = F ηs(L) = F ηs(Hr−).

Indeed, F ηs(L) ≤ F ηs(Hr−) because F ηs is non-decreasing and L < Hr, while
Q(s) ≤ ηs[0, Hr) = F ηs(Hr−) by (3.44). On the other hand, the reverse in-
equalities Q(s) ≥ F ηs(Hr−) and F ηs(L) ≥ F ηs(Hr−) hold by the case assump-
tion, and so the claim follows. Now, define L̄

.= (F ηs)−1(F ηs(Hr−)). Then
L = (F ηs)−1(F ηs(L)) by (7.56). Hence, L ≤ L and

(7.57) F ηs(L̄) = F ηs(L) = F ηs(Hr−).

This implies ηs(L,Hr) = 0, and from the second assertion of Lemma 7.3, it follows
that

(7.58) ηs({L}) = 0.

The change of variables formula and (7.57) then yield

(7.59)
∫ Q(s)∧Fηs (L)

0

h((F ηs)−1(y))dy =
∫

[0,Hr)

h(x)ηs(dx) =
∫

[0,L̄]

h(x)ηs(dx).
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Also, by Proposition 5.5 and another application of the change of variables formula,
we have

(7.60)

∫ (Q
(N)

(s)+ι(N)(s))∧Fη
(N)
s (L)

0

h((F η
(N)
s )−1(y))dy

=
∫

[0,χ(N)(s−)]

11[0,L](x)h(x)η(N)
s (dx).

Expanding the term on the right-hand side of (7.60) and using the inequality L ≤ L,
we obtain∫

[0,χ(N)(s−)]

11[0,L](x)h(x)η(N)
s (dx)(7.61)

=
∫

[0,L̄]

11[0,L](x)h(x)η(N)
s (dx) +

∫
(χ(N)(s−)∧L̄,χ(N)(s−)]

11[0,L](x)h(x)η(N)
s (dx)

−
∫

(χ(N)(s−)∧L̄,L̄]

11[0,L](x)h(x)η(N)
s (dx).

By (7.59) and (7.60), the left-hand side and the first term on the right-hand side of
(7.61), respectively, equal the left-hand side and right-hand side of (7.54). There-
fore, to prove (7.54) it suffices to show that the second and the third terms on
the right-hand side of (7.61) converge to zero, as N →∞. Recall the constant C̃hL
defined in Lemma 7.4. Note that C̃hL <∞ since h is continuous. Therefore, the sec-
ond term on the right-hand side of (7.61) is bounded above by C̃hLη

(N)
s (χ(N)(s−)∧

L̄, χ(N)(s−)]. By (7.58), Portmanteau’s theorem and (7.57), it follows that

lim
N→∞

η(N)
s (χ(N)(s−) ∧ L̄, χ(N)(s−)] ≤ lim

N→∞
η(N)
s (L̄,Hr) = η[L̄,Hr) = 0.

On the other hand, the absolute value of the third term on the right-hand side of
(7.61) is bounded above by C̃hLη

(N)
s (χ(N)(s−)∧L̄, L̄]. We now argue by contradiction

to show that lim infN→∞ χ(N)(s−) ≥ L̄ and, consequently, that η(N)
s (χ(N)(s−) ∧

L̄, L̄] converges to zero as N →∞. Indeed, suppose this assertion were false. Then
there must exist a subsequence {Nk}k∈N such that limk→∞ χ(Nk)(s−) = L̄ − δ for
some δ > 0. Hence, for k large enough, χ(Nk)(s−) < L̄− δ/2. By Lemma A.2, we
have χ(Nk)(s−) ≥ χ(Nk)(s). Hence η(Nk)

s [0, L̄ − δ/2] ≥ Q
(Nk)

(s) by (2.6). Sending
k → ∞ and using the convergence η(Nk)

s ⇒ ηs, the fact that [0, L̄ − δ/2] is closed
and Portmanteau’s theorem, we obtain ηs[0, L̄− δ/2] ≥ Q(s). This contradicts the
definition of L̄, and hence completes the proof of (7.54).

Finally, we deduce (7.53) from (7.54) using the bounded convergence theorem,
whose application is justified by the bounds (7.59), (7.60) and the estimate (7.52).

�

We now generalize Lemma 7.5 to allow for a general locally integrable (not
necessarily continuous) function hr on [0, Hr).

Lemma 7.6. Let L < Hr, and let C
(N)

1 (t, L), t ∈ [0,∞), N ∈ N be defined as in
(7.44). Then for every T ∈ [0,∞), almost surely for L < Hr,

(7.62) lim
N→∞

sup
t∈[0,T ]

C
(N)

1 (t, L) = 0.
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Proof. Fix L < Hr. Since hr lies in L1
loc[0, H

r) and is nonnegative, there ex-
ists a sequence of nonnegative continuous functions {hrn}n≥1 on [0, Hr) such that∫ L

0
|hr(x) − hrn(x)|dx → 0 as n → ∞ and hrn has common compact support in

[0, Hr). For each n ∈ N, (7.62) holds with hrn in place of hr due to Lemma 7.5. Let
lrn = |hrn − hr| for each n ≥ 1. Then, in order to prove (7.62), it clearly suffices to
show that the following two limits hold: almost everywhere,

(7.63) lim
N→∞

sup
N

∫ T

0

∫ (Q
(N)

(s)+ι(N)(s))∧Fη
(N)
s (L)

0

lrn((F η
(N)
s )−1(y))dy

 ds = 0,

and

(7.64) lim
N→∞

∫ T

0

(∫ Q(s)∧Fηs (L)

0

lrn((F ηs)−1(y))dy

)
ds = 0.

We first consider (7.63). By Proposition 5.5, applied to h = lrn, and the same
scaling argument that was used to obtain (7.42), for every N,n ∈ N,

∫ T

0

∫ (Q
(N)

(s)+ι(N)(s))∧Fη
(N)
s (L)

0

lrn((F η
(N)
s )−1(y))dy

 ds

=
∫ T

0

(∫
[0,χ(N)(s−)∧L]

lrn(x)η(N)
s (dx)

)
ds ≤

∫ T

0

(∫
[0,L]

lrn(x)η(N)
s (dx)

)
ds.

By (2.2) and the representation of η(N) in (2.3), we have∫ T

0

(∫
[0,L]

lrn(x)η(N)
s (dx)

)
ds

≤ 1
N

0∑
j=−E(N)

0 +1

∫ T

0

lrn(w(N)
j (0) + s)11{w(N)

j (0)+s<L∧rj}
ds

+
1
N

E(N)(T )∑
j=1

∫ T

ζ
(N)
j

lrn(s− ζ(N)
j )11{s−ζ(N)

j <L} ds

≤ sup
N

(〈
1, η(N)

0

〉
+ E

(N)
(T )
)∫ L

0

lrn(x) dx.

Since supN
(〈

1, η(N)
0

〉
+ E

(N)
(t)
)
<∞ almost surely, due to Assumption 3.1, and

hrn converges in L1
loc[0, H

r) to hr, we obtain (7.63). On the other hand, observe
that, by (7.51) of Lemma 7.4 applied to l = lrn,∫ T

0

(∫ Q(s)∧Fηs (L)

0

lrn((F ηs)−1(y))dy

)
ds ≤

∫ T

0

(∫
[0,L]

lrn(x)ηs(dx)

)
ds

≤ L̃(L, T )
∫ L

0

lrn(x)dx.

By the convergence of hrn to hr in L1
loc[0, H

r), the last term on the right-hand side
of the above display converges to 0, as n→∞, and (7.64) follows. �
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Proof of Proposition 7.2. Given the discussion prior to Lemma 7.3 and, in
particular, (7.43), to complete the proof of the proposition, it only remains to show
that

lim
L→Hr

lim sup
N→∞

E

[
sup
t∈[0,T ]

C
(N)

i (t, L)

]
= 0, i = 1, 2,(7.65)

and

(7.66) lim
L→Hr

E
[
C3(T, L)

]
= 0.

For the case i = 1 in (7.65), this follows from Lemma 7.6 and the dominated
convergence theorem, whose application is justified because, by (7.59), (7.60) and
the fact that L̄ ≤ L,

E

[
sup
t∈[0,T ]

C
(N)

1 (t, L)

]
≤ E

[∫ T

0

(∫
[0,L]

hr(x)η(N)
s (dx)

)
ds

]

+E

[∫ T

0

(∫
[0,L]

hr(x)ηs(dx)

)
ds

]
,

which is bounded uniformly in N by (7.52) and Assumption 3.1.
Now, by Remark 5.2, an application of Lemma 5.8(1) of [17] (with ν, hs and Hs,

respectively, replaced by η, hr and Hr, respectively), shows that

(7.67) lim
L→Hr

sup
N

E

[∫ t

0

(∫
[L,Hr)

hr(x) η(N)
s (dx)

)
ds

]
= 0.

On the other hand, the definition of C
(N)

2 (T, L) in (7.45), when combined with
Proposition 5.5 and (7.60), shows that

sup
N

E
[
C

(N)

2 (T, L)
]
≤ sup

N
E

[∫ T

0

(∫
[L,Hr)

hr(x) η(N)
s (dx)

)
ds

]
.

Taking the limit, as L → Hr, and invoking (7.67), it follows that (7.65) holds for
i = 2. Finally, to show (7.66), we see that, by the definition of C3(T, L) in (7.46)
and the change of variables formula,

E
[
C3(T, L)

]
= E

[∫ t

0

(∫ Q(s)

Q(s)∧Fηs (L)

hr((F ηs)−1(y))dy

)
ds

]

≤
∫ t

0

(∫
[L,Hr)

hr(x)ηs(dx)

)
ds.

If hr is bounded, then (7.66) holds by simply applying the bounded convergence
theorem on the right-hand side of the equality in the above display. On the other
hand, suppose hr is lower-semicontinuous on (Lr, Hr) for some Lr < Hr. Then,
by Theorem A.3.12 of [7] and the fact that P a.s., η(N)

s
w→ ηs, as N → ∞, for a.e.

s ∈ [0, T ], this implies that for any such s and L > Lr,∫ t

0

(∫
[L,Hr)

hr(x)ηs(dx)

)
ds ≤ lim inf

N→∞

∫ t

0

(∫
[L,Hr)

hr(x)η(N)
s (dx)

)
ds.
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Integrating both sides over s ∈ [0, T ] and taking expectations, an application of
Fatou’s lemma yields

E
[
C3(T, L)

]
≤ lim inf

N→∞
E

[∫ t

0

(∫
[L,Hr)

hr(x)η(N)
s (dx)

)
ds

]
.

Taking the limit as L→ Hr, an application of (7.67) shows that (7.66) holds. �

We now prove the main limit result.

Proof of Theorem 7.1. Fix t ∈ [0,∞) such that ν(N)
t

w→ νt, η
(N)
t

w→ ηt, E
(N)

(t)→
E(t), X

(N)
(t) → X(t), R

(N)
(t) → R(t), A

(N)

·,ν (t) w→ A·,ν(t), D
(N)

· (t) w→ A·,ν(t),

A
(N)

·,η (t) w→ A·,η(t), S
(N)

· (t) w→ A·,η(t) as N →∞. Since Y
(N) → Y a.s., this occurs

for t outside a countable set. By (7.39), this implies that as N →∞,

(7.68) D
(N)

ϕ (t)→ Aϕ,ν(t) =
∫ t

0

〈ϕ(·, s)hs(·, s), νs〉 ds, ϕ ∈ Cb([0, Hs)× R+).

An analogous argument also implies that, as N →∞,

(7.69) S
(N)

ψ (t)→ Aψ,η(t) =
∫ t

0

〈ψ(·, s)hr(·, s), ηs〉 ds, ψ ∈ Cb([0, Hr)× R+).

In particular, when ϕ = ψ = 1, the above two displays imply that (3.39) holds.
Also, we immediately obtain that, as N →∞, 〈1, ν(N)

t 〉 → 〈1, νt〉 and 〈1, η(N)
t 〉 →

〈1, ηt〉. When combining with (2.15), (2.30), (2.14), (2.20), (2.12), (2.6), (7.41),
this implies that all the equations in Definition 3.3 are satisfied at time t except
(3.40) and (3.42).

It only remains to show that (3.40) and (3.42) are also satisfied at time t. We shall
just prove (3.42). The same argument will also show that (3.40) holds. Dividing
(2.28) by N , we have〈

ψ(·, t), η(N)
t

〉
=

〈
ψ(·, 0), η(N)

0

〉
+
∫ t

0

〈
ψx(·, s) + ψs(·, s), η(N)

s

〉
ds

−S(N)

ψ (t) +
∫

[0,t]

ψ(0, s)dE
(N)

(s).

Since η(N)
0

w→ η0 by Assumption 3.1(4), η(N)
s

w→ ηs for a.e. s ∈ [0, t], η(N)
t

w→ ηt
by our choice of t and ψ(·, t) and ψx(·, s) + ψs(·, s), s ∈ [0, t], are bounded and
continuous, as N →∞, we have〈

ψ(·, t), η(N)
t

〉
→ 〈ψ(·, t), ηt〉 and

〈
ψ(·, 0), η(N)

0

〉
→ 〈ψ(·, 0), η0〉 ,

and, by the bounded convergence theorem,∫ t

0

〈
ψx(·, s) + ψs(·, s), η(N)

s

〉
ds→

∫ t

0

〈ψx(·, s) + ψs(·, s), ηs〉 ds.

On the other hand, using an integration-by-parts argument, the facts that E
(N)

(0) =
0, E

(N) → E, E is non-decreasing and ψs(0, ·) is bounded and continuous on [0, t],
along with the bounded convergence theorem, we see that, as N →∞,∫

[0,t]

ψ(0, s)dE
(N)

(s)→
∫

[0,t]

ψ(0, s)dE(s).
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Combining the last four displays with (7.69), it follows that (3.42) holds. Then
it follows that all fluid equations are satisfied for all but countably many t. By
right-continuity (with respect to t) of each of the terms in all fluid equations, we
conclude that all fluid equations are a.s. satisfied for all t ∈ [0,∞). This completes
the proof of the desired result that (X, ν, η) satisfies the fluid equations. �

7.2. Proof of Theorem 3.8. This section is devoted to the proof of Theorem
3.8. Recall T (N)

t (s) in (2.17) and its fluid scaled version defined in (3.34). Observe
that the virtual waiting time defined in (2.18) can be rewritten in terms of the
fluid-scaled quantities as

W (N)(t) .= inf
{
s ≥ 0 : D

(N)
(t+ s)−D(N)

(t) + T (N)

t (s) > Q
(N)

(t)
}
.(7.70)

We first show that for each t ∈ [0,∞), T (N)

t ⇒ T t as N →∞, where T t is defined
in (3.57). Notice that a customer j who arrived into the system before time t and
has not reneged by time t must have a potential waiting time w(N)

j (u) > u− t for
all u > t sufficiently small. In addition, for that customer to have reneged from
the queue (before entering service) in the period [t, t + s], there must exist a time
u ∈ [t, t+s] such that the customer is still in queue (i.e., has not yet entered service)
or, equivalently, such that w(N)

j (u) < χ(N)(u−), the waiting time of the head-of-
the-line customer just prior to u, and the customer reneges, so that the slope of her
potential waiting time changes from one to zero. Therefore, for each s ∈ [0,∞),
T (N)
t (s) can be alternatively expressed as

T (N)
t (s) =

∑
u∈[t,t+s]

E(N)(u)∑
j=−E(N)

0 +1

11(
dw

(N)
j
dt (u−)>0,

dw
(N)
j
dt (u+)=0

)11{u−t<w(N)
j (u)≤χ(N)(u−)}.

Let

T (N),1
t (s) .=

∑
u∈[t,t+s]

E(N)(u)∑
j=−E(N)

0 +1

11(
dw

(N)
j
dt (u−)>0,

dw
(N)
j
dt (u+)=0

)11{w(N)
j (u)≤χ(N)(u−)}

and

T (N),2
t (s) .=

∑
u∈[t,t+s]

E(N)(u)∑
j=−E(N)

0 +1

11(
dw

(N)
j
dt (u−)>0,

dw
(N)
j
dt (u+)=0

)11{w(N)
j (u)≤u−t}.

It is easy to see that T (N)
t (s) = T (N),1

t (s) − T (N),2
t (s), T (N),1

t (s) = R(N)(t + s) −
R(N)(t), T (N),2

t (s) ≤ S(N)(t+s)−S(N)(t) and T (N),2
t (s+δ)−T (N),2

t (s) ≤ S(N)(t+
s+ δ)− S(N)(t+ s). Therefore, an application of Kurtz’ criteria in Proposition 6.2
shows that the relative compactness of the fluid scaled versions T (N),1

t and T (N),2

t

of T (N),1
t and T (N),2

t , respectively, follows from that of R
(N)

and S
(N)

established
in Lemma 6.3. By a straightforward adaption of the argument used in Proposition
7.2 to show the convergence of R

(N)
to R, we can conclude that T (N)

t ⇒ T t as
N →∞.

Recall the application of the Skorokhod representation theorem in Theorem 7.1
to assume, without loss of generality, that Y

(N)
converges a.s. to Y . Here, we

can also assume, in addition, that T (N)

t (s) → T t a.s., as N → ∞. Since Q is
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continuous at t and, by (7.39), A1,ν =
∫ ·

0
〈hs, νs〉ds is continuous by the integral

representation, and T t has continuous paths by definition, it follows that, almost
surely, Q

(N)
(t)→ Q(t) and for each T ∈ [0,∞), as N →∞,

sup
s∈[0,T ]

|D(N)
(t+ s)−A1,ν(t+ s)| → 0 and sup

s∈[0,T ]

|T (N)

t (s)− T t| → 0.

From (7.70), it is easy to see that W (N)(t) ≤ (D
(N)

)−1(D
(N)

(t) + Q
(N)

(t)) − t
for each N . By the tightness result established in Theorem 6.1, we know that
D

(N)
(t) + Q

(N)
(t) is bounded uniformly in N , and due to Lemma 4.10 of [24]

and the assumption that A1,ν is uniformly strictly increasing, we also know that

(D
(N)

)−1 →
(
A1,ν

)−1
uniformly on compact sets, as N → ∞. Hence, W (N)(t) is

bounded uniformly in N . Therefore, there exists a subsequence, W (Nn)(t), n ∈ N,
that converges to a limit in [0,∞), which we denote by W ∗. From (7.70) and
the right-continuity of D

(N)
, Q

(N)
and T (N)

t , we then have D
(Nn)

(t+W
(Nn)

(t))−
D

(Nn)
(t) + T (Nn)

t (W
(Nn)

(t)) ≥ Q(Nn)
(t). Sending n→∞, we obtain

(7.71) A1,ν(t+W ∗)−A1,ν(t) + T t(W ∗) ≥ Q(t).

Together with (3.58), this shows that W (t) ≤W ∗. Now, suppose that W (t) < W ∗,
and fix w such that W (t) < w < W ∗. Since A1,ν is uniformly strictly increasing
and T t is non-decreasing, the inequality W (t) < w implies that A1,ν(t + w) −
A1,ν(t) + T t(w) > Q(t). Therefore, for sufficiently large N , we have D

(N)
(t +

w) −D(N)
(t) + T (N)

t (w) > Q
(N)

(t) and hence W (N)(t) ≤ w. In turn, this implies
that W (Nn)(t) ≤ w for sufficiently large n ∈ N. Sending n → ∞ and using the
convergence of W (Nn)(t) to W ∗, we then obtain W ∗ ≤ w. This contradicts the
choice of w. Hence W (t) = W ∗, and this proves the desired result. �
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Appendix A. Explicit Construction of the State Processes

In this section, we construct all state processes and auxiliary processes described
in Section 2.2 from the initial data {E(N)

0 , X(N)(0), w(N)
j (0), a(N)

j (0), j = −E(N)
0 +

1, . . . , 0}, {α(N)
E (t), t ∈ [0,∞)}, {vj , j ∈ Z} and {rj , j ∈ Z}.

Fix N and, for simplicity, we omit the dependence on N in notation. Let E(0) =
0. The process E on [0,∞) can be obtained from αE using the relation (2.1). Let
` = 0, τ0 = 0, and let R(τ`) = D(τ`) = K(τ`) = 0,

(A.1) Q(τ`)
.= [X(τ`)−N ]+,

and for j > E(τ`), let wj(τ`) = aj(τ`) = 0. Now, for t ∈ [τ`,∞), define

(A.2) χ`(t) .= inf{x > 0 : ητ` [0, x] ≥ Q(τ`)}+ t− τ`.
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Also, for j = −E0 + 1, . . . , 0, . . . , E(τ`) and t ∈ [τ`,∞), let

w`j(t)
.= (wj(τ`) + t− τ`) ∧ rj ,

a`j(t)
.=
{

0 if wj(τ`) = rj or wj(τ`) ≤ χ`(τ`),
(aj(τ`) + t− τ`) ∧ vj if χ`(τ`) < wj(τ`) < rj ,

η`t
.=

E(τ`)∑
j=−E0+1

δwj(t)11n
dwj
dt (t+)>0

o,

ν`t
.=

E(τ`)∑
j=−E0+1

δaj(t)11n
daj
dt (t+)>0

o,

R`(t) .=
E(τ`)∑

j=−E0+1

∑
s∈[0,t]

11n
wj(s)≤χl(s−),

dwj
dt (s−)>0,

dwj
dt (s+)=0

o,

D`(t) .=
E(τ`)∑

j=−E0+1

∑
s∈[0,t]

11n
daj
dt (s−)>0,

daj
dt (s+)=0

o.
Next, define

τ`+1
.= inf{t > 0 : (D`(t)−D(τ`)) ∧ (R`(t)−R(τ`)) ∧ (E(t)− E(τ`)) > 0}.

For t ∈ [τ`, τ`+1), let Y (t) = Y `(t) for Y = wj , aj , j ∈ −E0+1, . . . , E(τ`), R, D, η, ν
and χ and set Y (t) = Y (τ`) for Y = X, Q, wj , aj , j > E(τ`). Moreover, define

X(τ`+1) .= X(τ`) + E(τ`+1)− E(τ`)−D(τ`+1) +D(τ`)
−R(τ`+1) +R(τ`),

ητ`+1

.= η`τ`+1
+ (E(τ`+1)− E(τ`))δ0,

and, if E(τ`+1) > E(τ`), then E(τ`+1) = E(τ`) + 1, and then let wj(τ`+1) .= 0 for
j ∈ {E(τ`) + 1, . . . , E(τ`+1)}. In this case, Q(τ`+1) and χ(τ`+1) can be defined via
the equations (A.1) and (A.2), but with ` replaced by ` + 1, and the procedure
can be reiterated. Now, max{` : τ` ≤ t} is bounded by E0 + E(t), and is therefore
a.s. finite. Therefore, τ` → ∞ as ` → ∞, and so the above procedure constructs
the above processes on [0,∞). K and S can then be defined, respectively, via the
equations (2.14) and (2.13).

For each j ≥ −E(N)
0 , by the construction, we have

wj(t) =
∑

E(`)≥j

11[τ`,τ`+1)(t)(wj(τ`) + t− τ`) ∧ rj

=
{
t ∧ rj if j = −E(N)

0 , . . . , 0,
(t− ζj) ∧ rj otherwise,

where ζj = inf{t > 0 : E(t) = j}. Hence the process wj defined above is indeed
the potential waiting time process of customer j. It is also not to hard to see that
the process aj defined above is the age process of customer j and satisfies (2.7).
We next show that the process χ constructed above satisfies (2.5). It is easy to see
that χ(0) = χ0(0) by (A.2) with t = 0 and ` = 0. The χ(0) satisfies (2.5) for t = 0.
When t ∈ [τ0, τ1), Q(t) = Q(0), ηt = η0

t , and χ(t) = χ0(t). Then we have

χ0(t) = inf{x > 0 : ητ0 [0, x] ≥ Q(τ0)}+ t− τ0 = inf{x > 0 : ηt[0, x] ≥ Q(t)}.
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Hence χ satisfies (2.5) on the interval [τ0, τ1). By the standard induction argument,
we can see that χ satisfies (2.5) for all t ≥ 0.

For each t ≥ 0, by the construction, we have

ηt =
∞∑
`=0

11[τ`,τ`+1)(t)
E(τ`)∑

j=−E0+1

δwj(t)11n
dwj
dt (t+)>0

o

=
∞∑
`=0

11[τ`,τ`+1)(t)
E(t)∑

j=−E0+1

δwj(t)11n
dwj
dt (t+)>0

o

=
E(t)∑

j=−E0+1

δwj(t)11n
dwj
dt (t+)>0

o.
This shows that the η constructed satisfies (2.3). A similar argument shows that
the processes ν, D and R constructed satisfy (2.8), (2.9) and (2.11), respectively.
Finally, K and S satisfy (2.14) and (2.13) by construction.

Recall that, for t ∈ [0,∞), F̃t is the σ-algebra generated by

(E0, X(0), αE(s), wj(s), aj(s), j ∈ {−E0 + 1, . . . , 0} ∪ N, s ∈ [0, t]}

and {Ft} is the associated completed, right-continuous filtration.

Lemma A.1. The processes wj , aj , j ≥ −E0+1 and E, R, D, η, ν, χ, X, Q, K, S
are càdlàg and {Ft}-adapted.

Proof. The càdlàg property of those processes follows from the construction. Now
we show that all the processes are {Ft}-adapted. Indeed, it follows immediately
from (2.1), (2.3), (2.8), (2.9) and (2.10) that E, η, ν, D and S are Ft-adapted. We
next show that χ is Ft-adapted. By equations (2.4) and (2.5) evaluated at time 0,
it follows that χ(0) is a function of X(0) and η0 and hence F0-adapted. Now, let
t > 0. For each ` ≥ 0, by the induction argument, χ`(t) is Ft-adapted and τ` is an
Ft-stopping time. Since χt = χ`t if t ∈ [τ`, τ`+1), χ is Ft-adapted. Equations (2.11)
and (2.12) show that R and X are Ft-adapted, and it follows from (2.4) and (2.14)
that Q and K are Ft-adapted. �

The next lemma establishes some basic properties of χ(t), the waiting time of
the head-of-the-line customer at time t, defined in (2.5).

Lemma A.2. χ is piecewise linear with downward jumps that occur when the
head-of-the-line customer either enters service (due to a departure from service)
or reneges from the queue. Hence, χ(t−) ≥ χ(t) for every t ∈ (0,∞). Moreover,
for every t > 0, there exists εt(ω) ∈ (0, t) such that for all t̃ ∈ (t − εt(ω), t),
χ(t−)− χ(t̃−) = t− t̃ > 0.

Proof. By the construction, χt = χ`t if t ∈ [τ`, τ`+1). Since χ` is linear on [τ`, τ`+1),
χ is piecewise linear. Also χ can only jump at τ`+1, ` ≥ 0. Based on the definition
of τ`+1, it is not hard to see that χ can only have a downward jump at τ`+1 when the
head-of-the-line customer either enters service (D`(τ`+1) − D(τ`) > 0) or reneges
from the queue (R`(τ`+1) − R(τ`) > 0). Then we have χ(t−) ≥ χ(t) for every
t ∈ (0,∞). The last statement of the lemma follows from the fact that χ is càdlàg
and piecewise linear. �



FLUID LIMITS OF MANY-SERVER QUEUES WITH RENEGING 47

Appendix B. Strong Markov Property

In this section we show that the state descriptor V (N) = (α(N)
E , X(N), ν(N), η(N))

is a strong Markov process with respect to the filtration {F (N)
t , t ≥ 0} defined in

Section 2.2.4. To ease the notation, we shall suppress the superscript (N) from the
notation.

Let MD[0, Hs) and MD[0, Hr) be the subsets of MF [0, Hs) and MF [0, Hr),
respectively, such that each measure in MD[0, Hs) and MD[0, Hr) takes the form∑k
i=1 δxi . Define

(B.1) V .=
{

(α, x, µ, π) ∈ R+ × Z+ ×MD[0, Hs)×MD[0, Hr) :
x ≤ 〈1, µ〉+ 〈1, π〉, 〈1, µ〉 ≤ N

}
,

where R+ is endowed with the Euclidean topology d, Z+ is endowed with the
discrete topology ρ, and MD[0, Hs) and MD[0, Hr) are endowed with the weak
topology, respectively. The space V is a closed subset of R+ × Z+ ×MF [0, Hs)×
MF [0, Hr) and is endowed with the usual product topology. Since R+ × Z+ ×
MF [0, Hs)×MF [0, Hr) is a Polish space, then the closed subset V is also a Polish
space. Now, denote

V (t) .= (αE(t), X(t), νt, ηt), t ≥ 0.

It is obvious that V is a V-valued process adapted to the filtration {FVt , t ≥ 0},
the natural filtration generated by V .

For each y, z ∈ V and t ≥ 0, let

(B.2) Pt(y, z) = P(V (t) = z|V (0) = y).

For any measurable function ψ defined on V and t ≥ 0, define the function Ptψ on
V as

(B.3) Ptψ(y) = E[ψ(V (t))|V (0) = y], y ∈ V.

Lemma B.1. The state descriptor V is strong Markov with respect to {Ft, t ≥ 0},
and hence is strong Markov with respect to {FVt , t ≥ 0}. Moreover, {Pt, t ≥ 0} in
(B.2) is the Markov semigroup of V .

Proof. To establish the strong Markov property, we shall identify V as a, so-called,
piecewise deterministic Markov process (cf. [13]). From the explicit pathwise con-
struction of V in Appendix A, it follows that V is a piecewise deterministic process
with jump times {τ1, τ2, . . .}. Each jump time is either the arrival time of a new
customers or the time of a service completion or the time to the end of a patience
time. Note that, due to the non-idling condition, the time of entry into service of
a customer must coincide with either the arrival time of that customer or the time
of service completion of another customer. Let τ0 = 0. For each integer n ≥ 0,
let Pn = V (τn). Then {(τn, Pn), n ≥ 0} forms a marked point process. For each
n ≥ 0, V evolves in a deterministic fashion on [τn, τn+1). For each t ≥ 0 and y ∈ V
with y = (α, x,

∑k
i=1 δui ,

∑l
j=1 δzi) and k ≤ N , define

φt(y) =

α+ t, x,

k∑
i=1

δui+t,

l∑
j=1

δzi+t

 .

It is easy to see that

φt+s(y) = φs(φt(y)), φ0(y) = y,
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and the map t 7→ φt(y) is continuous in the interval [0,∞). For each t ≥ 0, let

〈t〉 = max{n ≥ 1 : τn ≤ t},
with the convention that max ∅ = 0. We can see that

(B.4) V (t) = φt−τ〈t〉(Vτ〈t〉).

The jump dynamics is captured by {rt(y, C), t ≥ 0, y ∈ V, C ⊂ V}. For
each t ≥ 0, y ∈ V, C ⊂ V, rt(y, C) is the conditional probability that a jump
leads to a state in C, given that the jump occurs at time t from state y. Let
y = (α, x,

∑k
i=1 δui ,

∑l
j=1 δzi). Recall that there are only three types of jump

times for the process V . Given that V jumps at time t from state y, if we know
which type the jump time t is, then we know which state the process V jumps to.
For example, suppose that the number k in the expression of y is less than N , then,
at state y, there is at least one idle server. If the jump is due to the new arrival,
then the process V will jump to state (0, x+ 1,

∑k
i=1 δui + δ0,

∑l
j=1 δzi + δ0). Let

p1, p2, p3, respectively, be the conditional probability that the jump at time t is
due to the arrival of a new customer, service completion of a customer in service,
the end of patience time for some customer in the system, respectively, given that
the jump occurs at time t from state y. Then the probability measure rt(y, ·) can
be easily written from y and pi, i = 1, 2, 3.

The jump time dynamics is captured by the survivor functions {Hs,y(t) : 0 ≤
s ≤ t, y ∈ V}, where Hs,y(t) is the conditional probability that the time for the
next jump is more than time t given the state being at y at time s, in other words,
for y = (α, x,

∑k
i=1 δui ,

∑l
j=1 δzi),

Hs,y(t) =
1− F (α+ t− s)

1− F (α)

k∏
i=1

1−Gs(ui + t− s)
1−Gs(ui)

l∏
j=1

1−Gr(zj + t− s)
1−Gr(zj)

.

It is easy to see that Hs,y(t) satisfies

Hs,y(u) = Hs,y(t)Ht,φt−s(y)(u), s ≤ t ≤ u.
Then by Theorem 7.3.2 of [13], V is a piecewise deterministic Markov process
constructed from {(τn, Pn), n ≥ 0} using functions φt for the deterministic part,
survivor functions Hs,y for jump time distributions and transition probabilities rt
for the jumps. Thus it follows from Theorem 7.5.1 of [13] that V is a strong Markov
process. The second part of the lemma follows directly from the definition of the
{Pt, t ≥ 0} in (B.2). �
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