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Given an oblique reflection map Γ and functions ψ, χ ∈ Dlim (the space of R
K-valued functions that have finite

left and right limits at every point), the directional derivative ∇χΓ(ψ) of Γ along χ, evaluated at ψ, is defined
to be the pointwise limit, as ε ↓ 0, of the family of functions ∇ε

χΓ(ψ)
.
= ε−1 [Γ(ψ + εχ) − Γ(ψ)]. Directional

derivatives are shown to exist and lie in Dlim for oblique reflection maps associated with reflection matrices of
the so-called Harrison-Reiman class. When ψ and χ are continuous, the convergence of ∇ε

χΓ(ψ) to ∇χΓ(ψ) is
shown to be uniform on compact subsets of continuity points of the limit ∇χΓ(ψ) and the derivative ∇χΓ(ψ)
is shown to have an autonomous characterization as the unique fixed point of an associated map. Directional
derivatives arise as functional central limit approximations to time-inhomogeneous queueing networks. In this
case ψ and χ correspond, respectively, to the functional strong law of large numbers and functional central limits
of the so-called netput process. In this work it is also shown how the various types of discontinuities of the
derivative ∇χΓ(ψ) are related to the reflection matrix and properties of the function Γ(ψ). In the queueing
network context, this describes the influence of the topology of the network and the states (of underloading,
overloading or criticality) of the various queues in the network on the discontinuities of the directional derivative.
Directional derivatives have also been found useful for identifying optimal controls for fluid approximations of
time-inhomogoeneous queueing networks and are also of relevance to the study of differentiability of stochastic
flows of obliquely reflected Brownian motions.
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1. Introduction

1.1 Background and Motivation Most real-world queueing systems are time-inhomogeneous in
the sense that they evolve according to transition laws that themselves vary with time. However, the
majority of queueing research has been devoted to time-homogeneous models, in which the transition
laws are assumed to be independent of time. While such models may provide reasonable approximations
for slowly varying systems, they completely fail to capture many important phenomena such as surges in
demand, sudden node failures and periodicity. The explicit analysis of even time-homogeneous networks
is usually intractable. Instead, one usually resorts to appropriate asymptotic approximations that capture
the essential features of network behavior that are of interest. A commonly used asymptotic scaling is
one in which arrival and service rates are scaled proportionately, but the number of servers at each queue
is kept constant. Over the past two decades, much progress has been made on this kind of approximation
for time-homogeneous networks with fairly general arrival, service and routing processes that satisfy a
so-called heavy-traffic condition. In particular, under an additional initial assumption on the queues that
guarantees that the first-order asymptotic limit (or fluid limit) is trivially zero, it has been shown that the
second-order asymptotic limits associated with various classes of of time-homogeneous queueing networks
are reflected Brownian motions (RBMs) or reflected Lévy processes (see, for example, [4, 14, 23, 24, 25, 32]
and references therein). In contrast, the analysis of time-inhomogeneous networks remains challenging
even in a Markovian setting. In particular, there has been relatively little work done on second-order
approximations to time-inhomogeneous queueing networks with a fixed number of servers. Such networks
arise frequently as models of transportation, telecommunication and computer systems; see [9, 16, 20].

The single queue with time-varying arrival and service rates has been studied by various authors
under different assumptions [12, 17, 18, 19, 26, 27]. The detailed asymptotic analysis carried out in
Mandelbaum and Massey [17] is pathwise and uses strong approximations. It shows that the so-called
fluid limit or first-order approximation of a time-dependent Markovian queue alternates between phases
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of overloading, critical loading and underloading and that the second-order correction to the fluid limit
can have discontinuous paths and exhibits different characteristics in each of the three different phases of
loading. This second-order correction admits an interpretation as the directional derivative of the one-
dimensional reflection map Γ. It is natural to expect that such an interpretation would continue to hold
in the network setting, in the sense that the corresponding second-order corrections in the asymptotic
approximations to a class of time-inhomogeneous networks would take the form of directional derivatives
of associated multi-dimensional reflection maps (see Section 2.1 for a formal discussion of this connection).
The main objectives of this work are to introduce and characterize properties of directional derivatives
of the class of so-called Harrison-Reiman multi-dimensional reflection maps (which are associated with
single-class open queueing networks), and to illustrate the practical insights that can be obtained from
such an analysis.

The representation obtained in Mandelbaum and Massey [17] for the directional derivative of the one-
dimensional reflection map Γ relied heavily on the following explicit form for Γ obtained by Skorokhod:

Γ(ψ)(t) = ψ(t) + θ(t) (1)

for càdlàg functions ψ, where the constraining term θ that keeps Γ(ψ) non-negative is given by

θ(t) = max

(

sup
s∈[0,t]

[−ψ(s)] , 0

)

. (2)

In contrast, in the multi-dimensional setting there is no explicit expression for the oblique reflection map,
making characterization of its directional derivatives considerably more involved. In fact, derivatives of
reflection maps associated with even feedforward tandem networks cannot always be expressed simply
as a composition of directional derivatives of one-dimensional reflection maps (see Section 3.3.2 for fur-
ther discussion of this issue). The network setting also introduces additional complications due to the
dependence on network topology and leads to interesting new questions about when and how effects prop-
agate through the network. Consequently, new techniques need to be developed to analyze derivatives of
multi-dimensional reflection maps.

Another motivation for studying directional derivatives arises from the fact that, as shown in Cudina
and Ramanan [5], they are useful for the identification of optimal controls for fluid approximations to time-
inhomogeneous networks. Directional derivatives of multi-dimensional reflection maps are also potentially
useful for the study of differentiability of stochastic flows of multi-dimensional reflected diffusions in non-
smooth domains (see, for example, Deuschel and Zambotti [6] for the case of normal reflection in R

K
+ ).

1.2 Outline of the Paper The outline of the rest of the paper is as follows. The basic notation
used throughout the paper is first collected in Section 1.3. In Section 1.4 the definitions of the multi-
dimensional oblique reflection map and its directional derivative are introduced. The main results of
the paper, Theorems 1.1 and 1.2, are presented in Section 1.5. Theorem 1.1 establishes the existence of
directional derivatives ∇χΓ(ψ) of Harrison-Reiman reflection maps and, under additional conditions on
ψ and χ, also provides an autonomous characterization of the derivative. Theorem 1.2 derives necessary
conditions for the existence of discontinuities in the directional derivative when ψ and χ are continuous.
In the queueing network context, ψ and χ correspond, respectively, to the functional strong law of
large numbers and functional central limits of the so-called netput process. Indeed, Section 2 contains
a brief discussion of the connection between approximations to time-inhomogeneous queueing networks
and directional derivatives of multi-dimensional reflection maps. The examples presented in the section
show that the directional derivative can be explicitly calculated in many cases and also illustrate some
interesting features that arise in the multi-dimensional or network context. In the study of the optimality
of fluid limits of time-inhomogeneous networks (see, e.g., Cudina and Ramanan [5]), ψ typically represents
the fluid limit of the netput process that gives rise to the optimal path for a given control problem, while
χ corresponds to an arbitrary allowable perturbation of the path. On the other hand, in the context
of differentiability of stochastic flows, typically ψ is a sample path of a diffusion process and χ is a
vector representing the difference in two initial conditions. The rest of the paper is essentially devoted to
proving the two main results. General properties of Harrison-Reiman maps are summarized in Section
3.1 and the existence of the directional derivative is established in Section 3.2, with the proof of Theorem
1.1 presented in Section 3.4. Important ingredients of this proof are the notion of a generalized one-
dimensional derivative (which is introduced in Section 3.3) and the representation of the one-dimensional
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derivative obtained in Theorem 3.2 (whose proof is given in Section 5.2). The proof also relies on an
auxiliary result, which is established in Section 5.1. In Section 4 the discontinuities of the directional
derivative are analyzed when ψ and χ are continuous, culminating in the proof of Theorem 1.2 in Section
4.3.

1.3 Basic Notation In this section, for convenience, we compile all the common notation used
throughout the paper. For a, b ∈ R, let a ∨ b = max(a, b) and a ∧ b = min(a, b). Given a vector x ∈ R

K ,
xi or [x]i is used to denote the ith component of the vector. For a ∈ R

K , the norm |a| is defined by

|a|
.
= max

i=1,...,K
|ai| (3)

where, for ai ∈ R, |ai| denotes the absolute value of ai. Given a K × K matrix R, RT denotes its
transpose, σ(R) its spectral radius and Rij represents the entry in the ith row and jth column of R. The
matrix I represents the K ×K identity matrix, and {ei, i = 1, . . . ,K} is the standard orthonormal basis
in R

K . Inequalities of vectors and matrices should be interpreted componentwise. Vectors are always
expressed as column vectors. The K-dimensional orthant is denoted by R

K
+ :

R
K
+

.
=

{

x ∈ R
K : xi ≥ 0 for every i = 1, . . . ,K

}

. (4)

The notation ↑ (respectively, ↓) is used to denote monotone nondecreasing (respectively, nonincreasing)
convergence of a family of real numbers to a limit. We adopt the convention that the infimum and
supremum of an empty set are ∞ and −∞, respectively. The notation 0 is used to denote both the
number zero as well as the identically zero function – the use should be clear from the context.

Given a function f on [0,∞) that takes values in R
K , f i denotes the ith coordinate function. For any

R
K-valued function f and T < ∞, ||f ||T denotes the supremum norm: ||f ||T

.
= sups∈[0,T ] |f(s)|, where

| · | is the norm defined above in (3). In addition, the notation f is used to denote the supremum function:

f(t)
.
= sup

s∈[0,t]

f(s). (5)

The analysis in this paper involves the use of many different functions spaces, which are summarized
below:
Dlim the space of all functions on [0,∞) taking values in R

K that have finite left and right
limits for every t ∈ [0,∞);

D+
lim the subspace of functions f ∈ Dlim with f(0) ∈ R

K
+ ;

Dr the subspace of right continuous functions in Dlim;
Dℓ,r the subspace of functions that are either right continuous or left continuous at every

t ∈ [0,∞);
Dusc the subspace of functions in Dlim such that each coordinate function f i is upper

semicontinuous (i.e., f(t) ≥ f(t−) ∨ f(t+) for every t ∈ [0,∞));
Dc,lim the subspace of piecewise constant functions in Dlim with a finite number of jumps;
Dc the subspace of piecewise constant functions in Dr with a finite number of jumps;
I+ the subspace of functions in D+

lim such that each coordinate function is non-decreasing;
I+

0 the subspace of functions f ∈ I+ such that f(0) = 0;
C the subspace of continuous functions in Dlim;
BV the subspace of functions in Dlim that have bounded variation on every bounded

interval of [0,∞).

When the functions take values in R instead of R
K , then we will emphasize this by writing Dlim(R),

C(R), etc. For f ∈ BV, |f |t denotes the total variation norm on [0, t], with respect to the norm | · | on
R

K defined in (3). A function f ∈ Dlim is said to have a separated discontinuity at a point t ∈ [0,∞) if
for some i = 1, . . . ,K, f i(t) does not lie in the interval created by f i(t−) and f i(t+): that is, if

f i(t) 6∈ [f i(t−) ∧ f i(t+), f i(t−) ∨ f i(t+)].

For f ∈ Dlim, let Disc(f) (respectively LDisc(f), RDisc(f) and SDisc(f)) denote the set of points of
discontinuity (respectively left discontinuity, right discontinuity and separated discontinuity) of f . Clearly,
Disc(f) = LDisc(f)∪RDisc(f), and for f ∈ Dusc, it is easy to see that SDisc(f) = LDisc(f)∩RDisc(f).
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The left and right regularizations of any function g ∈ Dlim, denoted by gl and gr respectively, are
defined by

gl(s)
.
= g(s−) and gr(s)

.
= g(s+), s ∈ [0,∞). (6)

It is easy to see that gl(s−) = gl(s) = g(s−) and gl(s+) = g(s+), and likewise gr(s+) = gr(s) = g(s+)
and gr(s−) = g(s−). Thus gl ∈ Dl, gr ∈ Dr and

g ∈ Dl ⇒ gl = g, and g ∈ Dr ⇒ gr = g. (7)

Lastly, given a real-valued function f , a point t ∈ [0,∞) is said to be a point of strict left increase if
there exists δ > 0 such that f(s) < f(t) for every s ∈ [(t − δ)+, t), and of strict right increase if there
exists δ > 0 such that f(t) < f(s) for every s ∈ (t, t + δ]. Moreover, f is said to be flat to the left of t,
which is represented by the notation ∆f(t−) = 0, if there exists δ ∈ (0, t) such that f(s) = f(t) for all
s ∈ (t − δ, t] and, analogously, f is said to be flat to the right of t, which is denoted by ∆f(t+) = 0, if
there exists δ > 0 such that f(s) = f(t) for all s ∈ [t, t + δ). We will also use the shorthand notations
∆f(t−) 6= 0 and ∆f(t+) 6= 0, respectively, to denote the fact that f is not flat to the left and right of t.

1.4 Definition of the Oblique Reflection Map and its Directional Derivative In this section
we state the precise definitions of the oblique reflection map and its directional derivatives. Let R ∈ R

K×K

be a matrix whose ith column is the vector ri, which represents the constraint direction on the face
Fi = {x ∈ R

K
+ : xi = 0} of the boundary of the non-negative orthant R

K
+ . Roughly speaking, given

a trajectory ψ ∈ Dlim, the oblique reflection problem (ORP) associated with the constraint matrix R
defines a constrained version φ of ψ that is restricted to live in R

K
+ by a constraining term that pushes

along the direction ri only when φ lies on the face Fi. We will assume that for every i = 1, . . . ,K,
Rii = ri

i > 0. This ensures that from any point in the relative interior of the face Fi, the vector ri points
into the orthant R

K
+ . This condition is without loss of generality since it is clearly a necessary condition

for the existence of a constrained version φ of ψ that takes values in R
K
+ . The rigorous definition of the

ORP is as follows. Recall the definitions of D+
lim and I+

0 given in Section 1.3.

Definition 1.1 (Oblique Reflection Problem) Given R ∈ R
K×K with Rii > 0 for i = 1, . . . ,K

and ψ ∈ D+
lim, (φ, θ) ∈ D+

lim×I+
0 solve the oblique reflection problem associated with the constraint matrix

R for ψ if φ(0) = ψ(0), and if for all t ∈ [0,∞),

(i) φ(t) ∈ R
K
+ ;

(ii) φ(t) = ψ(t) + Rθ(t), where for every i = 1, . . . ,K
∫

(0,t]

1(0,∞)(φ
i(s))dθi(s) = 0. (8)

The condition φ(0) = ψ(0) is imposed for simplicity; it can be relaxed by allowing a jump in θ at 0. Note
that the condition (8) simply states that the constraining term θi can increase at time t only if φi(t) = 0.
From the definition above it is clear that one can without loss of generality assume that Rii = 1 for
i = 1, . . . ,K. Indeed, we shall assume this normalization throughout the rest of the paper. When a
unique solution to the ORP exists for every ψ ∈ D+

lim, we say the ORP is well-defined and refer to the
mapping Γ : ψ → φ as the reflection map (RM). We also use Θ : ψ → θ to denote the mapping that takes
ψ to the corresponding constraining term θ.

In this work we focus mainly on oblique reflection problems (ORPs) associated with reflection matrices
R that satisfy the so-called Harrison-Reiman (H-R) condition stated below as Definition 1.2, which was
first introduced by Harrison and Reiman [11]. As shown in Theorem 3.1, ORPs in this class are well-
defined, and in fact have Lipschitz continuous RMs (with respect to the uniform topology on path space
on both the domain and range).

Definition 1.2 (H-R condition) A constraint matrix R ∈ R
K×K is said to satisfy the H-R condition if

P
.
= I − R ≥ 0 and the spectral radius of the matrix P is less than one.

Remark 1.1 If R satisfies the H-R condition and P
.
= I −R, then there exists a diagonal matrix A with

strictly positive diagonal elements such that each row sum of the matrix P̃
.
= A−1PA is strictly less than

1 (see Lemma 3 of Veinnot [31]).
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Remark 1.2 The ORP was introduced by Harrison and Reiman [11] to characterize functional central
limits of single-class open queueing networks (see Figure 3). Single-class open queueing networks with
K queues in which, on average, a fraction qij of the departures from queue i are sent to queue j, and a

fraction 1 −
∑K

j=1 qij of the departures from queue i exit the network give rise to ORPs with an R
K×K

constraint matrix R given by

Rij
.
=

{

−qji, j 6= i,
1 otherwise.

We now precisely state what we mean by a directional derivative of the multi-dimensional reflection
map.

Definition 1.3 (Directional Derivative) Consider an ORP whose reflection map Γ is well defined
on Dlim. Given paths ψ ∈ D+

lim, χ ∈ Dlim, define

∇ε
χΓ(ψ)

.
=

1

ε
[Γ(ψ + εχ) − Γ(ψ)] , ε > 0. (9)

The derivative of Γ along χ evaluated at ψ is the pointwise limit of the sequence {∇ε
χΓ(ψ)}, as ε ↓ 0.

1.5 Main Results of the Paper

1.5.1 Existence of the derivative Mandelbaum and Massey [17] showed that when Γ is the one-
dimensional RM, ψ, χ are continuous, and Γ(ψ)(0) = ψ(0) = 0, then the directional derivative has the
explicit form

∇χΓ(ψ)(t) = χ(t) + sup
s∈Φ(t)

[−χ(s)] ∨ 0, (10)

where
Φ(t)

.
= {s ∈ [0, t] : φ(s) = 0 and θ(s) = θ(t)},

with φ = Γ(ψ) and θ defined as in (1) and (2), respectively. In reality, this was shown by Mandelbaum
and Massey [17] under the additional restrictions that ∇χΓ(ψ) has only a finite number of discontinuities
in any compact interval and φ(0) = 0. However, as shown in Theorem 3.2 (see also Whitt [33, Theorem
9.3.1]), these conditions can be relaxed. When ψ is the fluid limit of the netput process and χ is the
functional central limit of the (scaled and centered) netput process associated with a time-varying queue,
∇χΓ(ψ) characterizes the second-order approximation to the time-varying queue. In this case, φ = Γ(ψ)
has an interpretation as the fluid limit of the queue and θ as the corresponding cumulative potential
outflow lost (due to idleness of the server) during the period [0, t]. Thus, in this context, Φ(t) represents
the set of all times s in the interval [0, t] when the fluid queue was zero, but the server was fully utilized
in the interval [s, t]. Observe that when φ(0) = 0, due to the representation for the one-dimensional RM
given in (1) and (2), we have Γ(ψ)(t) = ψ(t) + θ(t) = ψ(t) + −ψ(t) ≥ 0 for every t ∈ [0,∞). Thus, Φ(t)
can be rewritten as Φ(t) = Φ−ψ(t), where for f ∈ Dlim, we set

Φf (t)
.
= {s ∈ [0, t] : f(s) = f̄(t)}. (11)

When ψ, χ ∈ Dlim are not necessarily continuous, the directional derivative of the one-dimensional RM can
be shown to still exist (see Theorem 3.2) but, in addition to sets of the form Φf , its explicit representation
also involves sets of the form

ΦL
f (t)

.
= {s ∈ [0, t] : f(s−) = f̄(t)}, (12)

Φ̃R
f (t)

.
= {s ∈ [0, t) : f(s+) = f̄(t)}. (13)

Now, consider the multi-dimensional setting when Γ is the RM associated with an ORP that has an
H-R constraint matrix R ∈ R

K×K and (φ, θ) solve the ORP for a given ψ ∈ Dlim. When the matrix R
is associated with an open queueing network of K queues, for i = 1, . . . ,K, θi represents the cumulative
potential outflow lost from the ith queue during [0, t], and the set

Φi(t)
.
=

{

s ∈ [0, t] : φi(s) = 0 and θi(s) = θi(t)
}

(14)

represents the times s ∈ [0, t] at which the ith fluid queue is zero but the ith server is fully utilized during
[s, t]. As stated below in Theorem 1.1, when ψ and χ are continuous, the directional derivative in the
multi-dimensional case can be expressed in terms of these sets. The proof of Theorem 1.1 is given in
Section 3.4. Recall, from Section 1.3, that ∆f(t+) 6= 0 denotes the condition that the function f is not
flat to the right of t, and also recall the convention that inf ∅ = ∞.
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Theorem 1.1 (Existence and Characterization of the Derivative) Let R ∈ R
K×K be a re-

flection matrix that satisfies the H-R condition stated in Definition 1.2, let P
.
= I − R and let Γ be the

associated RM. Then the following properties hold.

(i) Given ψ, χ ∈ Dlim, the directional derivative ∇χΓ(ψ) exists and lies in Dlim. In addition, for
every ψ ∈ Dlim, the derivative ∇χΓ(ψ) is Lipschitz in χ (with respect to the uniform topology on
both the domain and range). Furthermore, the following scaling property is satisfied: for every
α, β > 0,

∇αχΓ(βψ) = α∇χΓ(ψ). (15)

(ii) When ψ, χ ∈ C, the convergence of ∇ε
χΓ(ψ) to ∇χΓ(ψ) is uniform on compact subsets of conti-

nuity points of ∇χΓ(ψ). Moreover, if (φ, θ) solve the ORP for ψ, then

∇χΓ(ψ) = χ + Rγ(1)(ψ, χ), (16)

where γ(1)
.
= γ(1)(ψ, χ) lies in Dusc and is the unique solution to the system of equations

γi(t) =







0 if t ∈ (0, til),
sups∈Φi(t)

[

−χi(s) + [Pγ]i(s)
]

∨ 0 if t ∈ [til, t
i
u],

sups∈Φi(t)

[

−χi(s) + [Pγ]i(s)
]

if t ∈ (tiu,∞),
(17)

for i = 1, . . . ,K, with Φi defined as in (14) and

til
.
= inf{t ≥ 0 : φi(t) = 0}, (18)

tiu
.
= inf

{

t ≥ 0 : θi(t) > 0
}

. (19)

Remark 1.3 Note that the complementarity condition (8) ensures that tiu ≥ tiℓ. Also, the case when ψ, χ
are continuous and φ(0) = 0, θ(t) = 0 for every t ∈ (0,∞), corresponds to the case when all fluid queues
are initially empty and are subsequently always in heavy traffic or, equivalently, are always critically
loaded. In this case, tiℓ = 0, tiu = ∞, Φi(t) = [0, t], t ∈ [0,∞), for i = 1, . . . ,K, and hence γ(1) is the
unique solution to the system of equations

γi(t) = sup
s∈[0,t]

[

−χi(s) + [Pγ]i(s)
]

∨ 0, i = 1, . . . ,K.

It then follows from Theorem 3.1 (see also equations (13)-(15) and Theorem 1 of Harrison and Reiman
[11]) that the derivative is simply the reflected or constrained version of χ:

∇χΓ(ψ) = χ + Rγ(1) = Γ(χ),

which is consistent with the well-known reflected Brownian motion characterization of heavy traffic limits
of stationary open single-class queueing networks (see, [11, 25]).

1.5.2 Discontinuities of the derivative ∇χΓ(ψ) for continuous ψ, χ Theorem 1.1 shows that
even when ψ, χ ∈ C, convergence of ∇ε

χΓ(ψ) to ∇χΓ(ψ) is pointwise and is uniform only on compact
subsets of continuity points of the derivative ∇χΓ(ψ). In order to establish functional central limit
theorems for non-stationary queueing networks, it would be useful to establish convergence with respect
to stronger topologies than the pointwise topology. This requires an understanding of the structure of the
discontinuities of ∇χΓ(ψ). The next main result of the paper, Theorem 1.2, describes the various types
of discontinuities exhibited by the derivative. It turns out that discontinuities in ∇χΓ(ψ) can occur only
at points at which there is a change in certain regimes associated with the solution (φ, θ) to the ORP
with input ψ. These regimes, which are introduced in Definition 1.4 below, are described in terms of the
following set-valued functions. For t ∈ [0,∞), define

O(t)
.
= {i ∈ {1, . . . ,K} : φi(t) > 0},

U(t)
.
= {i ∈ {1, . . . ,K} : φi(t) = 0,∆θi(t+) 6= 0,∆θi(t−) 6= 0},

C(t)
.
= {1, . . . ,K} \ [O(t) ∪ U(t)]

EO(t)
.
= {i ∈ C(t) : ∃δ > 0 such that φi(s) > 0 ∀s ∈ (t − δ, t)}

SU(t)
.
= {i ∈ C(t) : ∆θi(t−) = 0,∆θi(t+) 6= 0}.

(20)

When ψ is the fluid limit of the so-called netput process associated with a queueing network that is
modelled by the ORP, then O(t) represents the set of queues that are overloaded at time t, U(t) is the
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set of queues that are underloaded (and therefore idling) at time t and C(t) is the set of queues that are
critical at time t (a critical queue is one that is empty, but whose server is working at full capacity).
Moreover, SU(t) represents the set of queues that are at the start of underloading and EO(t) the set of
queues that are at the end of overloading at time t. The terminology used in the following definition
relies on this interpretation of the various regimes of (φ, θ).

Definition 1.4 (Regimes of (φ, θ)) Given an ORP associated with an H-R reflection matrix, let (φ, θ)
be the solution to the ORP for a given input trajectory ψ ∈ Dlim. Then i ∈ I is said to be overloaded
(respectively critical, underloaded, at the start of underloading, at the end of overloading) at time t if and
only if i ∈ O(t) (respectively, i ∈ C(t), i ∈ U(t), i ∈ SU(t), i ∈ EO(t)).

Strong approximations for the uniformly accelerated Mt/Mt/1 queue with integrable average instan-
taneous arrival and service rates λ(·) and µ(·) were obtained in Mandelbaum and Massey [17]. The
second-order term in the expansion for the queue length process obtained in Mandelbaum and Massey
[17] admits an interpretation as the directional derivative ∇χΓ(ψ) of the one-dimensional RM Γ, where
ψ ∈ C is equal to the fluid netput process given by

ψ(t) =

∫ t

0

λ(s)ds −

∫ t

0

µ(s)ds, t ∈ [0,∞), (21)

In Mandelbaum and Massey [17], the queue φ = Γ(ψ) is said to be overloaded, critical or underloaded
depending on whether the traffic intensity function

ρ∗(t)
.
= sup

s∈[0,t]

∫ t

s
λ(r)dr

∫ t

s
µ(r)dr

, t ∈ [0,∞),

is greater than, equal to or less than 1, respectively. By comparing Proposition 7.2 of Mandelbaum
and Massey [17] with Lemma 4.2 of this paper, it can be shown that the regimes introduced above in
Definition 1.4 coincide with the definition given in Mandelbaum and Massey [17] for the one-dimensional
case when ψ has the particular form (21). However, Definition 1.4 allows for more general ψ ∈ C that are
not necessarily even of bounded variation and is also addresses the multi-dimensional setting.

Given a one-dimensional RM Γ, functions ψ of the form (21) and χ ∈ C, it was shown in Mandelbaum
and Massey [17] that under the additional assumption that the derivative has only a finite number of
discontinuities in a bounded interval, the one-dimensional derivative ∇χΓ(ψ) is either right or left con-
tinuous at every point. In the multi-dimensional setting, the situation is considerably more complex with
components of ∇χΓ(ψ) even admitting points with separated discontinuities (see case (S3) of Theorem
1.2). The following concept of critical and sub-critical chains captures the relevant aspects of the reflec-
tion matrix R (or, equivalently, of the topology of the associated network) that influence the nature of
discontinuities of the derivative ∇χΓ(ψ).

Definition 1.5 (Critical and Sub-critical Chains) Given an H-R constraint matrix R ∈ R
K×K ,

P
.
= I − R, associated RM Γ and ψ ∈ C, let φ

.
= Γ(ψ). Then a sequence j0, j1, j2, . . . , jm, with jk ∈

{1, . . . ,K} for k = 0, 1, . . . ,m, that satisfies Pjk−1jk
> 0 for k = 1, . . . ,m is said to be a chain. The

chain is said to be a cycle if there exist distinct k1, k2 ∈ {0, . . . ,m} such that jk1
= jk2

, the chain is said
to precede i if j0 = i and is said to be empty at t if φjk(t) = 0 for every k = 1, . . . ,m. For i = 1, . . . ,K
and t ∈ [0,∞), we consider the following two types of chains.

(i) An empty chain preceding i is said to be critical at time t if it is either cyclic or jm is at the end
of overloading at t.

(ii) An empty chain preceding i is said to be sub-critical at time t if it is either cyclic or jm is at the
start of underloading at t.

We now state the second main result of the paper, which specifies necessary conditions for the existence
of left and right discontinuities of ∇χΓ(ψ) when ψ, χ are continuous. The proof of Theorem 1.2 is given
in Section 4.3. In what follows t̃ku, k = 1, . . . ,K are times that are defined in (71).

Theorem 1.2 (Necessary Conditions for Discontinuities in ∇χΓ(ψ)) Given an H-R constraint
matrix R with associated reflection map Γ and functions ψ, χ ∈ C, the directional derivative ∇Γ

.
= ∇χΓ(ψ)

satisfies the following properties:
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(L) If ∇Γi has a left discontinuity at t ∈ (0,∞), either t ∈ {t̃ku, k = 1, . . . ,K} or one of the following
conditions must hold at t:
(a) i is at the end of overloading in which case

∇Γi(t−) < ∇Γi(t) = 0; (22)

(b) i is not underloaded and a critical chain precedes i; if, in addition, i is overloaded then

∇Γi(t) < ∇Γi(t−); (23)

(R) If ∇Γi has a right discontinuity at t ∈ [0,∞), then one of the following conditions must hold at
t:
(a) i is at the start of underloading in which case

∇Γi(t) > ∇Γi(t+) = 0; (24)

(b) i is not underloaded and a sub-critical chain precedes i; if i is also overloaded then

∇Γi(t) < ∇Γi(t+); (25)

(LR) If ∇Γi has both a right and left discontinuity at t ∈ [0,∞), then one of the following conditions
must hold at t:
(a) i is at the end of overloading, and a sub-critical chain precedes i, in which case

∇Γi(t−) < ∇Γi(t) = 0 < ∇Γi(t+);

(b) i is at the start of underloading and a critical chain precedes i, in which case

∇Γi(t−) > ∇Γi(t) > ∇Γi(t+) = 0;

(c) i is not underloaded and there exist both critical and sub-critical chains preceding i; if, in
addition, i is overloaded then the discontinuity is a separated discontinuity of the form

∇Γi(t) < min
[

∇Γi(t−),∇Γi(t+)
]

. (26)

Finally, if i is underloaded at t ∈ [0,∞) then ∇Γi(t−) = ∇Γi(t) = ∇Γi(t+) = 0, which implies t is a
point of continuity for ∇Γ.

2. Connection with Queueing Networks In Section 2.1 we provide a heuristic description of
how directional derivatives of multi-dimensional reflection maps arise in the characterization of second-
order (or functional central limit) approximations to non-stationary queueing networks. In Section 2.2
we present two examples to illustrate how the topology of a queueing network associated with a reflection
map Γ and the various states of the fluid (φ, θ) associated with a continuous netput process ψ can influence
the nature of discontinuities of the associated directional derivative ∇χΓ(ψ).

2.1 Directional Derivatives and Functional Central Limits Second-order or diffusion approx-
imations of many classes of queueing networks can be obtained by the following general procedure.
Consider a family of queueing networks defined in terms of their primitives (i.e., the random processes
defined on some probability space (Ω,F , P) that describe arrivals, services and routing, as well as the
scheduling rules). For each queueing network in the family, one constructs from the primitives a certain
netput process, X̃ε, where roughly speaking, the ith component of X̃ε represents the cumulative net
arrivals minus the potential services at the ith queue (see, for example, [4, 23, 24, 25, 32] for precise
definitions of netput processes associated with various queueing networks). The evolution of the corre-
sponding queue length process, Z̃ε, coincides with the evolution of the netput process X̃ε whenever all
queues are non-empty, but in general the queue length process is a more complicated functional of the
netput process: Z̃ε = Γ(Z̃ε(0) + X̃ε), where the functional Γ is the multi-dimensional oblique reflection
mapping associated with the queueing network. In many cases, the family of netput processes {X̃ε} can
be assumed to satisfy a functional strong law of large numbers (FSLLN) and functional central limit
theorem (FCLT). For example, for ε > 0, consider the so-called uniformly accelerated version X̄ε of
X̃ε, where X̄ε/ε2 is defined to be the Markovian process whose instantaneous transition rates are equal
to the instantaneous transition rates of X̃ε scaled by 1/ε2. (The references [5, 13, 18, 19, 20] contain
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further discussion on the uniform acceleration scaling applied to queueing networks.) Note that in the
time-homogeneous setting, X̄ε can equivalently be defined as

X̄ε(t)
.
= ε2X̃ε(t/ε2), t ∈ [0,∞).

The FSLLN for the family of netput processes then takes the form

X̄ε → X̄ as ε → 0,

where the limit is in the sense of P-a.s. convergence with respect to an appropriate topology on path
space (e.g., uniform convergence on compact sets). Similarly, the FCLT for the netput process takes the
form

X̂ε ⇒ X̂ as ε → 0, (27)

where the limit is in the sense of weak convergence and

X̂ε .
=

1

ε

[

X̄ε − X̄
]

(28)

is a rescaled centered version of the netput process that captures the fluctuations around its FSSLN limit.

In order to obtain a corresponding FSLLN and FCLT for the queue length process, in analogy with
X̄ε, Z̄ε is first defined to be the corresponding uniformly accelerated version of Z̃ε. Specifically, the
homogeneity of the reflection map Γ with respect to space and time can be used to show that Z

ε
can be

represented as
Z̄ε = Γ(Z̄ε(0) + X̄ε). (29)

Then, under the assumption that Z̄ε(0) → Z̄(0) as ε → 0, the FSLLN for the queue length process is
obtained by establishing the P-a.s. convergence

Z̄ε = Γ(Z̄ε(0) + X̄ε) → Z̄
.
= Γ(Z̄(0) + X̄) as ε → 0, (30)

where X̄ is the FSLLN limit of the netput process. The process Z̄ provides a first-order approximation to
the queueing network and is often referred to as the fluid limit of the queueing network. To capture the
fluctuations of the queue lengths around the fluid limit, one then considers the centered sequence {Ẑε}
of queue lengths defined by

Ẑε .
=

1

ε

[

Z̄ε − Z̄
]

for ε > 0. (31)

The above display, together with (28), (29) and (30), then yields the relation

Ẑε =
1

ε

[

Γ(Z̄ε(0) + X̄ε) − Γ(Z̄(0) + X̄)
]

=
1

ε

[

Γ
(

Z̄ε(0) + X̄ + εX̂ε
)

− Γ(Z̄(0) + X̄)
]

.

In many cases, using continuity properties of Γ and the FCLT (27), it is then possible to show that (with
respect to a suitable topology on path space) the limit Ẑ

.
= limε→0 Ẑε exists and satisfies

Ẑ = lim
ε→0

1

ε

[

Γ
(

Z̄(0) + X̄ + εX̂
)

− Γ(Z̄(0) + X̄)
]

= ∇X̂Γ(Z̄(0) + X̄), (32)

where ∇X̂Γ(X̄) is the directional derivative of the reflection map Γ (see Definition 1.3) in the direction

X̂, evaluated at Z̄(0) + X̄.

In summary, under appropriate conditions, the fluid limit or first-order approximation, Z̄, and the
functional central limit or second-order correction Ẑ to the fluid limit of the queue length process have
the representations

Z̄ = Γ(Z̄(0) + X̄) and Ẑ = ∇X̂Γ(Z̄(0) + X̄), (33)

where X̄ and X̂ are the functional strong law and functional central limits, respectively, of the netput
process. As explained in Remark 1.3, for time-homogeneous networks, under so-called heavy traffic
conditions, the representations for fluid and functional central limits for the queueing network take the
simpler, more familiar form Z̄ ≡ 0 and Ẑ = Γ(X̂). On the other hand, in order to analyze time-
inhomogeneous networks or transient behaviour in time-homogeneous networks (i.e., when Z̄(0) 6= 0),
the fluid limit is in general not trivial, and so the second-order approximation is no longer equal to the
image of X̂ under the reflection map, but instead involves a certain directional derivative of the oblique
reflection map.

This philosophy is likely to be applicable in other settings where the process of interest is not necessarily
given by a reflection map but another Lipschitz continuous map. In that setting as well, the directional
derivative of the corresponding map is likely to be useful for establishing functional central limits as well
as for identifying optimal controls of time-inhomogeneous fluid limits (an example of the latter can be
found in Cudina and Ramanan [5]).
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2.2 Illustrative Examples We provide two examples to illustrate how directional derivatives as-
sociated with two time-inhomogeneous networks can be computed. The first is a two-station tandem
queueing network, which is presented in Section 2.2.1, and the second is a three-station “join” network,
which is given in Section 2.2.2. In both examples, Q is the routing matrix of the network, R = I−QT the
associated reflection matrix and P

.
= I−R. Moreover, λi denotes the mean exogenous arrival rate to sta-

tion i and µi is the mean potential service rate at station i. The netput process, ψ, which represents the
cumulative net arrivals minus the cumulative potential services that the queues would have seen had they
been non-empty throughout, is then defined by the equations ψi(t) =

∫ t

0

(

λi(s) + [Pµ(s)]i − µi(s)
)

ds for
t ∈ [0, T ] and i = 1, . . . ,K.

1
λ

21(t) µ µ
1 2

Figure 1: A two-station tandem network.

2.2.1 A tandem queueing model Consider the two-station tandem queueing system illustrated
in Figure 1, which has routing matrix Q and reflection matrix R = I − QT given by

Q
.
=

[

0 1
0 0

]

and R
.
=

[

1 0
−1 1

]

. (34)

Since QT ≥ 0 and has spectral radius zero, R satisfies the Harrison-Reiman condition stated in Definition
1.2. Let Γ denote the associated reflection map (see Figure 2 for the geometry of the associated ORP).

2

0

r

r
1

ψ(t)

= (1,−1)

= (0,1)

Figure 2: The oblique reflection problem (ORP) associated with a tandem queueing network.

We consider a model in which there are no exogeneous arrivals to station 2, arrivals to station 1 occur
at a time-dependent mean rate of λ1(·) given by

λ1(t)
.
=

{

3 for t ∈ [0, 1),
1 for t ∈ [1, 3],

(35)

and the mean potential service rates at station 1 and station 2 are constant and given by µ1 = 2 and
µ2 = 1, respectively. If ψ is the netput process and (φ, θ) solve the ORP for ψ then, as shown in Figure
3, it is easy to see that ψ2(t) = t and θ2(t) = 0 for t ∈ [0, 3] and

ψ1(t) =

{

t for t ∈ [0, 1),
1 − (t − 1) for t ∈ [1, 3],

φ1(t) =







t for t ∈ [0, 1),
1 − (t − 1) for t ∈ [1, 2),

0 for t ∈ [2, 3],

θ1(t) =

{

0 for t ∈ [0, 2),
(t − 2) for t ∈ [2, 3],

φ2(t) =

{

t for t ∈ [0, 2),
2 for t ∈ [2, 3].
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λ

φ1

1 1

φ2

ν

0

0 0

0 2

2 2

21 3

3 3

31

11

1

1

2

3

2

1

2

Figure 3: The time-varying exogenous arrival rate λ1 to and departure rate ν1 from the first queue, along
with the contents φ1 and φ2 of the first and second queue in the tandem network.

The above relations also show that t1l = t2l = 0, t1u = 2, t2u = ∞ and, by the representation (14) for Φi,
we see that Φ2(t) = {0} for t ∈ [0,∞) and

Φ1(t)
.
=







{0} for t ∈ [0, 2),
{0, 2} for t = 2,

{t} for t ∈ (2, 3].

Now, fix χ ∈ C. Since ψ ∈ C, by Theorem 1.1 ∇Γ = ∇Γχ(ψ) = χ + Rγ, where γ = γ(1) is characterized
by (17), with the sets Φi, i = 1, 2, as given above. Thus, ∇Γ1(t) = χ1(t) + γ1(t), where

γ1(t) =







[−χ1(0)] ∨ 0 for t ∈ [0, 2),
[

−χ1(2)
]

∨ [−χ1(0)] ∨ 0 for t = 2,
−χ1(t) for t ∈ (2, 3];

while ∇Γ2(t) = χ2(t) + γ2(t) − γ1(t) = χ2(t) + γ2(0) − γ1(t), where

γ2(0) =
[

−χ2(0) + γ1(0)
]

∨ 0 =
[

−χ2(0) + [−χ1(0)] ∨ 0
]

∨ 0.

We now refer to the various types of discontinuities mentioned in Theorem 1.2. From the above expres-
sions, it is clear that at t = 2, [−χ1(2)] > [−χ1(0)] ∨ 0 is a necessary and sufficient condition for ∇Γ1

to have a left discontinuity (of type (La)) as well as for ∇Γ2 to have a left discontinuity (of type (Lb)),
while the reverse inequality, [−χ1(2)] < [−χ1(0)] ∨ 0, is necessary and sufficient for ∇Γ1 to have a right
discontinuity (of type (Ra)) as well as for ∇Γ2 to have a right discontinuity (of type (Rb)). Observe
that the necessary conditions mentioned in Theorem 1.2 are indeed satisfied since at t = 2, queue 1 is at
the end of overloading and at the start of underloading, while queue 2 is overloaded and has critical and
sub-critical chains preceding it.

2.2.2 A merge or join network This example servers to illustrate how a separated discontinuity
could arise in the directional derivative. Consider a scenario in which two upstream queues feed into a
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common buffer (see Figure 4). The upstream queues experience a surge in the arrival rate for an initial
period, and the arrival rate subsequently subsides to a lower rate. However, just as the surge ends,
the server at one of the upstream queues, queue 2, undergoes a partial failure, resulting in the queue
maintaining criticality. It is shown below that in such a scenario there can be a discontinuity in the
derivative of the downstream queue at the time congestion ends in the upstream queues.

There are no exogeneous arrival rates to queue 3 and the mean exogenous arrival rate λi to queue i
for i = 1, 2 is given by

λ1(t) =

{

1 for t ∈ [0, 1),
1/2 for t ∈ [1, 2],

and λ2(t) =







3/2 for t ∈ [0, 1/2),
1/2 for t ∈ [1/2, 1),
1/3 for t ∈ [1, 2].

Moreover, we assume that queues 1 and 3 have constant service rates µ1(t) = µ3(t) = 1 for t ∈ [0, 2],
while queue 2 has service rate

µ2(t) =

{

1 for t ∈ [0, 1),
1/3 for t ∈ [1, 2].

(36)

Since the departures from queues 1 and 2 feed into queue 3 (see Figure 4), the routing matrix Q and
reflection matrix R = I − QT are given by

Q =





0 0 0
0 0 0
1 1 0



 and R = I − QT =





1 0 −1
0 1 −1
0 0 1



 .

It is trivial to verify that QT is an H-R matrix. Let Γ denote the associated reflection map, ψ the netput
process and let φ = Γ(ψ). Then it follows from the definitions that

ψ1(t) =

{

0 for t ∈ [0, 1),

−
1

2
(t − 1) for t ∈ [1, 2],

θ1(t) =

{

0 for t ∈ [0, 1),
1

2
(t − 1) for t ∈ [1, 2],

and φ1, θ2 and θ3 are identically zero on [0, 2]. Moreover, φ2 = ψ2 and φ3 = ψ3 are given by

φ2(t) =



















1

2
t for t ∈ [0, 1/2),

1

4
−

1

2
(t − 1/2) for t ∈ [1/2, 1),

0 for t ∈ [1, 2],

φ3(t) =

{

t for t ∈ [0, 1),

1 −
1

6
(t − 1) for t ∈ [1, 2].

Figure 5 provides an illustration of the fluid limit φ of the three queues.

The above calculations also readily show that Φ3(t) = {0} for t ∈ [0, 2],

Φ1(t) =

{

[0, t] for t ∈ [0, 1],
{t} for t ∈ (1, 2],

and Φ2(t) =

{

{0} for t ∈ [0, 1),
{0} ∪ [1, t] for t ∈ [1, 2].

Note that at t = 1, queue 3 is overloaded and, since queue 2 is at the end of overloading and queue 1
is at the start of underloading at t = 1, the chain 2, 3 is a critical chain and 2, 1 is a subcritical chain
preceding 3. Thus the necessary condition for a separated discontinuity stated in (LRc) of Theorem 1.2
is satisfied. Below, explicit calculations are provided to show that the separated discontinuity can indeed
occur in this example.

By Theorem 1.1(ii) for χ ∈ C, the explicit form of ∇Γ = ∇χΓ(ψ) is given by

∇Γ1(t) = χ1(t) + sup
s∈Φ1(t)

[

−χ1(s)
]

, ∇Γ2(t) = χ2(t) + sup
s∈Φ2(t)

[

−χ2(s)
]

and ∇Γ3(t) = χ3(t) − γ1(t) − γ2(t) + γ3(t), with γ3(t) = sups∈Φ3(t)

[

−χ3(s) + [Pγ]3(s)
]

. Thus, we have

∇Γ3(t) = χ3(t) − sups∈Φ2(t)

[

−χ2(s)
]

− sups∈Φ1(t)

[

−χ1(s)
]

+sups∈Φ3(t)

[

−χ3(s) + supr∈Φ2(s)

[

−χ2(r)
]

+ supr∈Φ1(s)

[

−χ1(r)
]

]

.

From the above expressions it is straightforward to deduce that

∇Γ3(1) −∇Γ3(1−) =
[

χ2(1) − χ2(0)
]

∧ 0 and ∇Γ3(1) −∇Γ3(1+) = −χ1(1) − sup
s∈[0,1]

[−χ1(s)].
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Therefore, if χ2(1) < χ2(0) and sups∈[0,1]

[

−χ1(s)
]

> −χ1(1), then

∇Γ3(1) −∇Γ3(1−) = χ2(1) − χ2(0) < 0 and ∇Γ3(1) −∇Γ3(1+) = −χ1 − sup
s∈[0,1]

[

−χ1(s)
]

< 0,

which implies ∇Γ3 is neither right nor left continuous at t = 1. In fact, it has a separated discontinuity
at that point since ∇Γ3(1) < ∇Γ3(1−) ∧ ∇Γ3(1+), as anticipated by condition (LRc) of Theorem 1.2.
In the context of functional central limit theorems, χ will be a Brownian motion and so you expect the
conditions on χ to be satisfied with positive probability.

It is worthwhile to note that a separated discontinuity can arise only in the multi-dimensional setting,
and not in the one-dimensional setting. This has important ramifications for the mode of convergence of
∇ε

χ(ψ) to ∇χΓ(ψ) when ψ, χ are continuous. Specifically, as remarked earlier, it was shown in Mandel-
baum and Massey [17] that for the one-dimensional map, ∇ε

χ(ψ) converges to ∇χΓ(ψ) in the M1 topology
(see Whitt [32] for a definition of this topology). When ψ, χ are continuous, ∇ε

χ(ψ) is also continuous
for every ε > 0. Since Dl,r, the space of functions that are either left or right continuous at every point,
is complete under the M1 topology (cf., Whitt [32]), and continuous functions clearly lie in Dl,r, while
functions with separated discontinuities do not lie in Dl,r, this example demonstrates that one cannot in
general expect M1 convergence in the multi-dimensional setting.

3. Existence and Characterization of the Directional Derivative This section is devoted to
the proof of Theorem 1.1. Relevant properties of H-R ORPs with inputs ψ ∈ Dlim are first described in
Section 3.1, and then existence of the associated directional derivative is established in Section 3.2. In
Section 3.3 the notion of a generalized one-dimensional derivative is introduced and characterized, and
the proof of Theorem 1.1 is presented in Section 3.4.

3.1 Properties of the Oblique Reflection Map The ORP associated with an H-R matrix R ∈
R

K×K was introduced in Section 1.4. Here, we first establish a minor generalization of a well-known
result of Harrison and Reiman [11] to show that RMs Γ associated with H-R reflection matrices are well
defined on Dlim. Recall the notation f(t) = sups∈[0,t] f(s).

Theorem 3.1 (Solutions to H-R ORPs) Let R ∈ R
K×K be an H-R constraint matrix and let P

.
=

I−R. Given ψ ∈ D+
lim, there exists a unique solution (φ, θ) to the ORP associated with R for ψ. Moreover,

θ = Θ(ψ) is the unique fixed point of the map F (ψ, ·) : I0 → I0 given by

F i(ψ, θ)(t)
.
=

[

−ψi + [Pθ]i(t)
]

∨ 0, i = 1, . . . ,K. (37)

In other words, for i = 1, . . . ,K, θi satisfies

θi(t) =
[

−ψi + [Pθ]i (t)
]

∨ 0 . (38)

Furthermore, the maps Γ and Θ are Lipschitz continuous with respect to the uniform topology on Dlim,
i.e., there exists L = L(R) < ∞ such that for every ψ1, ψ2 ∈ Dlim and N < ∞,

||Γ(ψ1) − Γ(ψ2)||N ≤ L||ψ1 − ψ2||N and ||Θ(ψ1) − Θ(ψ2)||N ≤ L||ψ1 − ψ2||N . (39)

Lastly, if ψ ∈ C (respectively, Dc), then φ, θ ∈ C (respectively, Dc).

Proof. Since ψ ∈ D+
lim, we have −ψi(0) ≤ 0 for every i, and hence F (ψ, θ)(0) = 0. In addition,

F (ψ, θ) is clearly increasing and so F (ψ, θ) ∈ I0. Because Dlim is complete with respect to the sup norm,
the argument used in Harrison and Reiman [11] also shows that F (ψ, ·) is a contraction mapping that
maps I0 into I0, and thus has a unique fixed point. The proof of the fact that θ is a fixed point of
F (ψ, ·) if and only if θ = Θ(ψ) also follows from a straightforward generalization (from C to D+

lim) of the
corresponding argument used in Harrison and Reiman [11], and is thus omitted. Lipschitz continuity of
the maps Γ and Θ can be deduced from the explicit representation (37) for F i and the fact that the matrix
P is similar to a matrix whose row sums are strictly less than 1 (see Lemma 3.3 for similar arguments or
Theorem 2.2 of Dupuis and Ramanan [8] for an alternative proof of Lipschitz continuity when ψ ∈ Dr).
The last assertion of the lemma (which considers ψ ∈ C) holds due to the fact that C and Dr are closed
subspaces of Dlim (with respect to the topology of uniform convergence). The case when ψ ∈ Dc is easily
verified directly (see, for example, the argument in Dupuis and Ishii [7]). ¤
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3.2 Existence of the Directional Derivative In order to show the existence of the derivative or,
equivalently, to show the existence of a pointwise limit of the sequence ∇ε

χ(ψ) ∈ Dlim as ε ↓ 0, it turns
out to be more convenient to work with a closely related family of processes {γε(ψ, χ)}ε>0. This family
is introduced in Section 3.2.1 and is shown to have a pointwise limit γ(ψ, χ) in Section 3.2.2. In Section
3.2.3 the limit γ(ψ, χ) and the derivative ∇χΓ(ψ) are shown to lie in Dlim and satisfy certain continuity
and scaling properties.

3.2.1 A related family {γε}ε>0 of functions Given an ORP with H-R constraint matrix R, let

γε(ψ, χ)
.
= ε−1 [Θ(ψ + εχ) − Θ(ψ)] , ε > 0, (40)

where Θ is the mapping introduced after Definition 1.1. Using the fact that Γ(ψ) = ψ + RΘ(ψ) for
ψ ∈ Dlim, along with definition (9) of the sequence {∇ε

χΓ(ψ)}, one obtains the relation

∇ε
χΓ(ψ) = χ + Rγε(ψ, χ), ε > 0. (41)

Thus, in order to establish existence of the derivative, it clearly suffices to show that γε(ψ, χ) has a
pointwise limit as ε ↓ 0.

Now, fix ψ, χ ∈ Dlim. For conciseness, let θ
.
= Θ(ψ) and for ε > 0, let θε

.
= Θ(ψ+εχ) and γε

.
= γε(ψ, χ).

From (38), it follows that

θi =
[

−ψi + [Pθ]i
]

∨ 0 and θi
ε =

[

−ψi − εχi + [Pθε]i
]

∨ 0.

For i = 1, . . . ,K, define

ξi .
= ψi − [Pθ]i, (42)

and rewrite θi and θi
ε in terms of ξi as follows:

θi =
[

−ξi

]

∨ 0, θi
ε =

[

−ξi − εχi + [P (θε − θ)]
i
]

∨ 0.

Together with (40), this shows that for i = 1, . . . ,K,

γi
ε = γi

ε(ψ, χ) = ε−1
[

θi
ε − θi

]

= −ε−1ξi − χi + [Pγε]i ∨ 0 −−ε−1ξi ∨ 0. (43)

3.2.2 Pointwise convergence of {γε}ε>0 for H-R ORPs In this section some basic properties
of the families {γε}ε>0 and {∇ε

χΓ(ψ)}ε>0 are established. The existence of a pointwise limit is shown to
be a consequence of the uniform boundedness of the sequence {γε(t)}ε>0 proved in Lemma 3.1 and the
monotonicity property established in Lemma 3.3.

Lemma 3.1 (Uniform Boundedness) Let ∇ε
χΓ(ψ) and γε(ψ, χ) be defined as in (9) and (40), respec-

tively, and let L < ∞ be the constant that satisfies (39). Then for any ξ, χ, χ1, χ2 ∈ Dlim and T < ∞,
the following inequalities hold:

sup
ε>0

||∇ε
χ1

Γ(ψ) −∇ε
χ2

Γ(ψ)||T ≤ L||χ1 − χ2||T , sup
ε>0

||∇ε
χΓ(ψ)||T ≤ L||χ||T (44)

sup
ε>0

||γε(ψ, χ1) − γε(ψ, χ2)||T ≤ L||χ1 − χ2||T , sup
ε>0

||γε(ψ, χ)||T ≤ L||χ||T . (45)

Proof. The first and third inequalities follow directly from the Lipschitz continuity of the RM stated
in (39) and the definitions of ∇ε

χΓ(ψ) and γε given in (9) and (40), respectively. The second and fourth
bounds follow simply by choosing χ1 = χ and χ2 = 0 in the first and third bounds, respectively, and
noting that ∇ε

0Γ(ψ) = γε(ψ, 0) = 0. ¤

The proof of monotonicity will make repeated use of the following elementary inequality, whose simple
proof is included for completeness.

Lemma 3.2 Any two real-valued functions f and g that are defined on [0,∞) satisfy, for every T < ∞,

f(T ) ∨ 0 − g(T ) ∨ 0 ≤ f − g(T ) ∨ 0 ≤ |f − g(T )|. (46)
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Proof. If f ≤ 0, then the left-hand side of (46) is non-positive and so the first inequality in (46)
holds trivially. On the other hand, if f > 0, let tn ∈ [0, T ] be such that f ≤ f(tn) + 1

n
. Then we have

f ∨ 0 − g ∨ 0 ≤ f(tn) − g ∨ 0 +
1

n
≤ f(tn) − g(tn) +

1

n
≤ f − g ∨ 0 +

1

n
.

Since n is arbitrary, this shows that the first inequality in (46) holds. The second inequality in (46) is
trivially satisfied. ¤

Lemma 3.3 (Monotonicity) Given ψ, χ ∈ Dlim, let γε
.
= γε(ψ, χ) be defined by (40). Then for i =

1, . . . ,K, γi
ε is monotonically nonincreasing as ε ↓ 0, so that

0 < ε1 ≤ ε2 implies γi
ε1

(s) − γi
ε2

(s) ≤ 0, s ∈ [0,∞). (47)

Moreover, for every t ≥ 0, the limit γ(t)
.
= γ(ψ, χ)(t) = limε↓0 γε(t) exists.

Proof. Let 0 < ε1 ≤ ε2 and fix i ∈ {1, . . . ,K} and s ∈ [0,∞). Using the representation (43) for γi
ε

and making repeated use of the inequality (46), we obtain for t ∈ [0, s],

γi
ε1

(t) − γi
ε2

(t) = −ε−1
1 ξi − χi + [Pγε1

]i(t) ∨ 0 −−ε−1
1 ξi(t) ∨ 0

−−ε−1
2 ξi − χi + [Pγε2

]i(t) ∨ 0 + −ε−1
2 ξi(t) ∨ 0

= −ε−1
1 ξi − χi + [Pγε1

]i(t) ∨ 0 −−ε−1
2 ξi − χi + [Pγε2

]i(t) ∨ 0

−(ε−1
1 − ε−1

2 )
(

−ξi(t) ∨ 0
)

≤ −(ε−1
1 − ε−1

2 )ξi + [Pγε1
]i − [Pγε2

]i(t) ∨ 0 −−(ε−1
1 − ε−1

2 )ξi(t) ∨ 0

≤ [Pγε1
]i − [Pγε2

]i(t) ∨ 0,

where we have used the fact that (ε−1
1 − ε−1

2 ) > 0 in the penultimate line. By Remark 1.1, there exists a
diagonal matrix A with Aii > 0 for i = 1, . . . ,K, and δ > 0 such that the matrix P̃

.
= A−1PA satisfies

maxi=1,...,K

∑K

j=1 P̃ij ≤ 1 − δ. Define γ̃
.
= A−1γ. Then, P̃ is nonnegative (since P is nonnegative),

Pγ = AP̃ γ̃ and by the inequality derived above, we obtain for every t ∈ [0, s],

γ̃i
ε1

(t) − γ̃i
ε2

(t) =
1

Aii

[

γi
ε1

(t) − γi
ε2

(t)
]

≤
1

Aii

[AP̃ γ̃ε1
]i − [AP̃ γ̃ε2

]i(s) ∨ 0

= [P̃ γ̃ε1
]i − [P̃ γ̃ε2

]i(s) ∨ 0

≤
(

∑K

j=1 P̃ij

)

max
k=1,...,K

γ̃k
ε1

− γ̃k
ε2

(s) ∨ 0

≤ (1 − δ) max
k=1,...,K

γ̃k
ε1

− γ̃k
ε2

(s) ∨ 0.

Taking the supremum of the left-hand side of the above inequality over t ∈ [0, s] and then the maximum
over i = 1, . . . ,K yields the relation

max
k=1,...,K

γ̃k
ε1

− γ̃k
ε2

(s) ≤ (1 − δ) max
k=1,...,K

γ̃k
ε1

− γ̃k
ε2

(s) ∨ 0,

which implies maxk=1,...,K γ̃k
ε1

− γ̃k
ε2

(s) ≤ 0. Since γi = Aiiγ̃
i and Aii > 0, this implies (47).

Now the uniform boundedness of the sequence {γε} proved in Lemma 3.1 shows that for each s ∈
[0,∞), there exists a subsequence (which could depend on s) of {γε(s)} that converges to a limit. The
monotonicity property shows that this limit, which we denote by γ(s), is independent of the subsequence.
Thus, γ is the real-valued function that equals the pointwise limit of the sequence of functions {γε}, as
ε ↓ 0. ¤

3.2.3 Properties of the pointwise limit In this section we first show that the limit γ of Lemma
3.3 lies in Dlim. Note that this is not apriori obvious even if ψ and χ are assumed to be continuous
(which would in turn imply that the functions γε = γε(ψ, χ), ε > 0, are continuous) since the limit of
a monotone non-increasing sequence of real-valued continuous functions {fn} need not in general lie in
Dlim. For instance, define fn(t)

.
= sin(1/t) if t ∈ [1/(2nπ + π/2),∞) and fn(t)

.
= 1 otherwise, n ∈ N, and

let f(t)
.
= sin(1/t) if t ∈ (0,∞) and f(0)

.
= 1. As n → ∞, the sequence {fn}n∈N converges pointwise

monotonically down to f , but f does not lie in Dlim since it has no right limit at 0. However, the γε

possess special properties by virtue of the fact they are defined via ORPs, which allow us to show that
γ must lie in Dlim. The case when χ ∈ BV is proved in Lemma 3.5, which makes use of some general
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properties of functions, which are summarised in Lemma 3.4 and whose proof is relegated to Section 5.1.
The case of general χ ∈ Dlim is dealt with subsequently, in the proof of Theorem 1.1(i) below. Recall
that |f |T denotes the total variation of the function f on the interval [0, T ].

Lemma 3.4 Any two real-valued functions f and g that are defined on [0,∞) satisfy
∣

∣f ∨ 0 − g ∨ 0
∣

∣

T
≤ |f − g|

T
. (48)

Moreover, consider a sequence of functions {fn} ⊂ Dlim that converges pointwise to a function f . If
supn |fn|T < ∞ for every T < ∞ then f ∈ Dlim.

Lemma 3.5 (Uniformly BV) Given an H-R reflection matrix R and associated RM Γ, ψ ∈ Dlim and
χ ∈ BV, let γε

.
= γε(ψ, χ) be defined by (40). Then for every T ∈ [0,∞),

sup
ε>0

|γε|T < ∞. (49)

Moreover γ
.
= γ(ψ, χ), the pointwise limit of γε(ψ, χ) as ε ↓ 0, lies in Dlim.

Proof. Fix T < ∞, let P = I − R and fix ε > 0. By the representation (43) for γi
ε, the inequality

(48), with f = −ε−1ξi − χi + [Pγε]
i and g = −ε−1ξi, the triangle inequality and the fact that P is

non-negative, we obtain
∣

∣γi
ε

∣

∣

T
=

∣

∣

∣−ε−1ξi − χi + [Pγε]i ∨ 0 −−ε−1ξi ∨ 0
∣

∣

∣

T

≤
∣

∣−χi + [Pγε]
i
∣

∣

T
≤

∣

∣χi
∣

∣

T
+

∑K

j=1 Pij |γ
j
ε |T.

By Remark 1.1 there exists a diagonal matrix A (with Aii > 0) and δ > 0 such that the matrix P̃
.
=

A−1PA satisfies maxi=1,...,K

∑K
j=1 P̃ij ≤ 1 − δ. Multiplying both sides of the last display by Aii and

substituting for P in terms of P̃ (note that AjjP̃ij = AiiPij), we obtain the inequality

Aii

∣

∣γi
ε

∣

∣

T
≤ Aii

∣

∣χi
∣

∣

T
+

K
∑

j=1

P̃ijAjj

∣

∣γj
ε

∣

∣

T
,

which implies that

max
i=1,...,K

Aii

∣

∣γi
ε

∣

∣

T
≤ max

i=1,...,K
Aii

∣

∣χi
∣

∣

T
+ (1 − δ) max

i=1,...,K
Aii

∣

∣γi
ε

∣

∣

T
.

On rearrangement, this yields

max
i=1,...,K

Aii|γ
i
ε|T ≤

maxi=1,...,K Aii|χ
i|T

δ
,

from which we conclude that

sup
ε>0

|γε|T ≤ K sup
ε>0

max
i=1,...,K

|γi
ε|T ≤

K maxi=1,...,K Aii

δ mini=1,...,K Aii

|χ|
T

< ∞,

where the last inequality follows because of the assumption that χ ∈ BV. This proves (49).

Now, γ is also the pointwise limit of any subsequence {γεn
}n∈N and, clearly, supn∈N |γεn

|T < ∞ for
every T < ∞. Lemma 3.4 then allows us to conclude that γ ∈ Dlim. ¤

We now establish the first property of Theorem 1.1. The remaining properties are established in
Section 3.4.2.

Proof of Theorem 1.1(i). For any ψ, χ ∈ Dlim, Lemma 3.3 establishes the existence of the
pointwise limit γ(ψ, χ). Next, we show that γ(ψ, χ) lies in Dlim. Since Dc,lim is dense in Dlim with
respect to the topology of uniform convergence on compact sets (see, for example, Whitt [32]) and
clearly, Dc,lim ⊂ BV, there exists a sequence {χn}n∈N ⊂ BV such that χ is the limit (in this topology) of
χn, as n → ∞. Since χn ∈ BV, each γ(ψ, χn) lies in Dlim by Lemma 3.5. On the other hand, Lemma 3.1
shows that γ(ψ, χn) ∈ Dlim converges, as n → ∞, to γ(ψ, χ) in the uniform topology on every bounded
interval. Since Dlim is complete with respect to this topology, we deduce that γ

.
= γ(ψ, χ) ∈ Dlim. The

relation (41) then shows that the pointwise limit ∇χΓ(ψ) of ∇ε
χΓ(ψ) exists and is equal to χ+Rγ. Thus,

in particular, ∇χΓ(ψ) ∈ Dlim.
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For any fixed ψ ∈ Dlim, the Lipschitz continuity of the map χ 7→ ∇χΓ(ψ) is a direct consequence of
(44). Lastly, since ∇χΓ(ψ) = χ+Rγ(ψ, χ), in order to establish (15) it suffices to show that for α, β > 0,
γ(βψ, αχ) = αγ(ψ, χ). From (38) it is clear that for β > 0, Θ(βψ) = βΘ(ψ). Fix ε > 0. By (40) we then
see that

γε(βψ, αχ) = ε−1 [Θ(βψ + εαχ) − Θ(βψ)] = βε−1

[

Θ

(

ψ + ε
α

β
χ

)

− Θ(ψ)

]

.

Setting ε̃ = εα/β, we can rewrite the above equation as

γε(βψ, αχ) = αε̃−1 [Θ(ψ + ε̃χ) − Θ(ψ)] = αγε̃(ψ, χ).

Taking limits as ε → 0, and noting that then ε̃ → 0, we obtain the desired relation γ(βψ, αχ) = αγ(ψ, χ).
¤

3.3 The Generalized One-dimensional Derivative

3.3.1 A representation for the multi-dimensional derivative In the last section we showed
that given ψ, χ ∈ Dlim, the directional derivative has the form ∇χΓ(ψ) = χ+Rγ, where γ

.
= γ(ψ, χ) ∈ Dlim

is the pointwise limit of the monotonically non-increasing sequence {γε(ψ, χ)}. From the expression (43)
for γi

ε

.
= γi

ε(ψ, χ), it is clear that for every t ∈ [0,∞),

γi(t) = limε↓0

[

−ε−1ξi − χi + [Pγε]i(t) ∨ 0 −−ε−1ξi(t) ∨ 0
]

= limε↓0

[

F i
(

ε−1ξ + χ − Pγε, 0
)

(t) − F i
(

ε−1ξ, 0
)

(t)
]

.
(50)

Since P is non-negative, it follows that Pγ is the pointwise limit of the monotonically non-increasing
sequence {Pγε}. Thus γi has a representation as a one-dimensional pointwise limit of the form

lim
ε↓0

[

ε−1f + gε ∨ 0 − ε−1f ∨ 0
]

, (51)

where f
.
= −ξi and gε

.
= −χi + [Pγε]

i lie in Dlim(R) and gε monotonically converges pointwise down to
the function g = −χi + [Pγ]i in Dlim(R). If, instead, gε ≡ g were independent of ε, then (51) would
reduce to a limit of the form

lim
ε↓0

[

ε−1f + g ∨ 0 − ε−1f ∨ 0
]

. (52)

Under the assumption that f, g ∈ C(R) and the limit has a finite number of discontinuities on any compact
interval, the limit in (52) was shown in [17] to be equal to maxs∈Φf (t) g(s), where Φf is as defined in
(11). This representation was later generalized to the case f, g ∈ Dr(R) in [33, Theorem 9.3.1]. It may
be natural to conjecture that the limit in (51) is equal to the limit maxs∈Φf (t) g(s) of (52), but where
g ∈ Dlim(R) is now the pointwise limit of the sequence {gε}ε>0. If that were true, then the limit in (51)
could be identified simply by generalizing the results in [17, 33] to the case when f, g ∈ Dlim(R). However,
it turns out that the topology of pointwise convergence gε ↓ g is too weak for such a conjecture to hold
in general (see Remark 3.1(3) below for examples when the two limits fail to coincide). Thus a more
careful analysis is required in order to determine the correct limit in (51). This is carried out in Section
3.3.2. Fortunately, it turns out that the conjecture is true for the important case when f ∈ C(R) and
gε ∈ C(R) for all ε > 0, and in this case the one-dimensional limit takes a rather nice form (see Theorem
3.2). In the multi-dimensional case, when P 6= 0, (50) leads to a finite system of coupled equations that
implicitly describe γ. The additional justification required to establish that this system of equations
uniquely determines γ is provided in Section 3.4.

3.3.2 The form of the generalized one-dimensional derivative In order to describe the limit
in (51) we need to first introduce some definitions. For f, g, g1, g2 ∈ Dlim(R), define

H(f, g, g1, g2)(t)
.
=







0 for t ∈ Tℓ(f),
S(f, g, g1, g2)(t) ∨ 0 for t ∈ Tm(f),
S(f, g, g1, g2)(t) for t ∈ Tu(f),

(53)

where

Tℓ = Tℓ(f)
.
= {t ∈ [0,∞) : f̄(t) < 0}, (54)

Tm = Tm(f)
.
= {t ∈ [0,∞) : f̄(t) = 0}, (55)

Tu = Tu(f)
.
= {t ∈ [0,∞) : f̄(t) > 0}, (56)
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and
S(f, g, g1, g2)(t)

.
= sup

s∈ΦL
f
(t)

{g1(s)} ∨ sup
s∈Φf (t)

{g(s)} ∨ sup
s∈Φ̃R

f
(t)

{g2(s)} , (57)

with Φf , ΦL
f and Φ̃R

f defined as in (11), (12) and (13), respectively. Moreover, let

S1(f, g)
.
= S(f, g, g, g) and H1(f, g)

.
= H(f, g, g, g) (58)

and, likewise, let
S2(f, g)

.
= S(f, g, gl, gr) and H2(f, g)

.
= H(f, g, gl, gr), (59)

where gl and gr are the left and right regularizations of g, as defined in (6). It is easy to see that for
f ∈ Dlim(R) and t ∈ [0,∞), ΦL

f (t)∪Φf (t)∪ Φ̃R
f (t) 6= ∅ and hence S(f, g, g1, g2), S1(f, g) and S2(f, g) are

always finite. The following theorem provides a useful characterization of the generalized one-dimensional
derivative.

Theorem 3.2 (Generalization of the one-dimensional derivative) Consider a sequence {gε} ⊆
Dlim(R) such that supε>0 ‖gε‖N < ∞ for every N ∈ [0,∞) and for every s ∈ [0,∞)

ε1 ≤ ε2 ⇒ gε1
(s) ≤ gε2

(s).

Moreover, let g, g∗,l, g∗,r ∈ Dlim(R) be such that gε ↓ g ∈ Dlim(R), gε,l ↓ g∗,l and gε,r ↓ g∗,r pointwise as
ε ↓ 0, where gε,l and gε,r are respectively the left and right regularizations of gε. For f ∈ Dlim(R), if

γ̃ε
.
= ε−1f + gε ∨ 0 − ε−1f ∨ 0 (60)

then γ̃ε → γ̃ ∈ Dlim(R) pointwise as ε ↓ 0, where the generalized derivative takes the form

γ̃
.
= H(f, g, g∗,l, g∗,r), (61)

and H is given by (53). Moreover, if {gε}ε>0 ⊂ C(R) then the generalized derivative takes the simpler
form

γ̃ = H1(f, g), (62)

and if in addition f ∈ C(R), then γ̃ = H1(f, g) = H2(f, g) and

S1(f, g) = S2(f, g) = sup
s∈Φf (t)

[g(s)]. (63)

Lastly, if f ∈ Dlim(R) and gε → g in the uniform topology, then

γ̃ = H2(f, g). (64)

The proof of Theorem 3.2 is relegated to Section 5.2.2. Here, we make some observations on the
theorem.

Remark 3.1 (The generalized one-dimensional derivative)

(i) For f, g ∈ Dlim, the limit in (52) is equal to the function H2(f, g) defined in (59). Indeed,
when gε = g is independent of ε, then clearly g∗,l = gl and g∗,r = gr (see Lemma 5.3(ii)) and
by (59) we have H(f, g, g∗,l, g∗,r) = H(f, g, gl, gr) = H2(f, g). If, in addition, f, g ∈ C(R) then
ΦL

f (t) ∪ Φf (t) ∪ ΦR
f (t) = Φf (t) and g(s−) = g(s) = g(s+), so that

S2(f, g)(t) = sup
s∈Φf (t)

[g(s)] . (65)

Thus Theorem 3.2 contains as a special case the results in [17, Lemma 5.2] and [33, Theorem
9.3.1].

(ii) The notation Φ̃R
f rather than ΦR

f is used in the definitions of S, S1 and S2 in order to emphasize

that t 6∈ Φ̃R
f (t), in contrast with the sets ΦL

f (t) and Φf (t), which could contain t. In the definition

for S2(f, g) in [33, Theorem 9.3.1], however, the set Φ̃R
f is replaced by the set

ΦR
f (t)

.
= {s ∈ [0, t] : f(s+) = f(t)}, (66)
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which could contain t. This gives the correct expression when g ∈ Dr(R), which is the setting
considered in [33]. However, the following example shows that when g ∈ Dlim(R), S2 must be
defined with Φ̃R

f rather than with ΦR
f , even when f ∈ C(R).

Example 1. Let f(s)
.
= s1[0,1)(s) + 1[1,2](s) for s ∈ [0, 2], and for every ε > 0, let gε(s) =

g(s)
.
= 1(1,2] for s ∈ [0, 2]. Then f is continuous and g is left continuous and has finite right

limits. Moreover, from the definition of f it follows that ΦL
f (1) = Φf (1) = {1} and Φ̃R

f (1) = ∅,

while ΦR
f (1) = {1}. By the definitions of S and S2 given in (57) and (59), respectively, we then

have S2(f, g)(1) = g(1−) ∨ g(1) = 0, while for the modified case (i.e., with Φ̃R
f replaced by ΦR

f

in the definition of S2) we see that S2(f, g)(1) = g(1−) ∨ g(1) ∨ g(1+) = 1. However, by direct
verification it is easy to see in this simple example that

lim
ε↓0

[

ε−1f + gε(1) − ε−1f(1)
]

= lim
ε↓0

[

ε−1f + g(1) − ε−1f(1)
]

= g(1) = 0.

(iii) When f and gε, ε > 0, are continuous and gε ↓ g as ε ↓ 0, it follows from Theorem 3.2 (specifically,
(62) and (63)) that γ̃ = H1(f, g) = H2(f, g). Since the limit in (51) is given by γ̃ and, by Remark
3.1(i) above, H2(f, g) is the limit in (52), the two limits in (51) and (52) coincide in this special
case. However, the following two examples demonstrate that these two limits need not be equal
for general f, g, gε ∈ Dlim. In particular, Example 2 illustrates why the family of functions
{gε}ε>0 needs to be continuous, while Example 3 shows why f must be continuous, for the two
limits to coincide.
Example 2. Let f(s)

.
= s and g(s)

.
= 1 for s ∈ [0, 2]. Also, for ε > 0, let

gε(t)
.
=







1 for t ∈ [0, 1 − ε),
2 for t ∈ [1 − ε, 1),
1 for t ∈ [1, 2].

Then clearly f , g ∈ C(R) and each gε lies in Dr(R). Moreover, gε ↓ g pointwise, ΦL
f (1) =

Φf (1) = {1}, Φ̃R
f (1) = ∅ and the fact that gℓ,ε(1) = gε(1−) = 2 for every ε > 0 implies

g∗,l(1) = 2. Since Tu(f) = (0, 2], Theorem 3.2 shows that at t = 1, the limit in (51), is equal to
S(f, g, g∗,l, g∗,r)(1) = g∗,l(1) ∨ g(1) = 2. On the other hand, by Remark 3.1(i), the limit in (52)
at t = 1 equals H2(f, g)(1) = S2(f, g)(1) = S(f, g, gℓ, gr)(1) = g(1−) ∨ g(1) = 1 6= 2.
Example 3. Define f(s)

.
= s1[0,1), g(s)

.
= 1[1,2](s) for s ∈ [0, 2] and, for ε > 0, let

gε(s)
.
=











0 for s ∈ [0, 1 − ε),
s − (1 − ε)

ε
for s ∈ [1 − ε, 1),

1 for s ∈ [1, 2].

Then clearly each gε lies in C(R) and as ε ↓ 0, gε converges pointwise monotonically down to
the function g ∈ Dlim(R). Moreover, f ∈ Dlim(R), ΦL

f (1) = {1} and Φf (1) = Φ̃R(1) = ∅. By
Remark 3.1(i) above and the fact that Tu(f) = (0, 2], the limit in (52) at t = 1 is given by
H2(f, g)(1) = S2(f, g)(1) = g(1−) = 0. On the other hand, since each gε is continuous, by (62)
of Theorem 3.2, the limit in (51) is equal to H1(f, g)(1) = S1(f, g)(1) = g(1) = 1 6= 0.

3.4 The Multi-dimensional Derivative The main result of this section is the proof of Theorem
1.1, which is given in Section 3.4.2. First, in Section 3.4.1, we use the results of Sections 3.2 and 3.3 to
obtain an autonomous characterization of γ(ψ, χ) when either ψ, χ ∈ C or when ψ ∈ Dc and χ ∈ Dlim.

3.4.1 An autonomous characterization Fix ψ, χ ∈ Dlim and, as usual, let γε and ξ be de-
fined,respecitvely, via (40) and (42). Also, for i = 1, . . . ,K, let χi

l and χi
r be the left and right regular-

izations of χi, let γ∗,l and γ∗,r be the limits of the left and right regularized sequences {γε,l} and {γε,r},
respectively, and let γ be the pointwise limit of {γε} (which exists by Lemma 3.3). In addition, let the
functions H and Hj , j = 1, 2, be defined as in Section 3.3.2. Combining the characterization (50) of γi

as a generalized one-dimensional derivative with Theorem 3.2, it follows that for i = 1, . . . ,K,

γi(ψ, χ) = H
(

−ξi,−χi + [Pγ]i,−χi
l + [Pγ∗,l]i,−χi

r + [Pγ∗,r]i
)

. (67)

Since, in general, γ∗,l and γ∗,r depend on the structure of the sequence {γε(ψ, χ}, and are therefore not
uniquely determined by γ(ψ, χ), this does not lead to an autonomous characterization of γ(ψ, χ). However,
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we now show that under additional assumptions on ψ and χ, γ∗,l and γ∗,r are uniquely determined by
γ(ψ, χ). Specifically, consider the case when ψ, χ ∈ C. Then, by Theorem 3.1, θ, θε ∈ C and consequently
−ξ and γε ∈ C. Likewise, if ψ ∈ Dc and χ ∈ Dlim, Theorem 3.1 shows that ξ ∈ Dc. So it follows from
Theorem 3.2 that γ

.
= γ(ψ, χ) satisfies

γi = Hj

(

−ξi,−χi + [Pγ]i
)

, i = 1, . . . ,K, (68)

with j = 1 when ψ, χ ∈ C and j = 2 when ψ ∈ Dc and χ ∈ Dlim. In both cases, the system of equations
(67) reduces to an autonomous set of equations.

Lemma 3.6 Given an H-R matrix R, P
.
= I − R, and ψ, χ ∈ Dlim, for j = 1, 2, the system of equations

(68) has a unique solution γ(j)
.
= γ(j)(ψ, χ) ∈ Dlim. Moreover, for j = 1, 2, given any γ0,j ∈ Dlim, if the

sequence {γn,j} is defined recursively by

γn+1,j
.
= Hj

(

−ξi,−χi + [Pγn,j ]
i
)

then for every N < ∞, ||γ(j) − γn,j ||N → 0 as n ↑ ∞.

Proof. Fix ψ, χ ∈ Dlim, and N < ∞, let ξ be defined via (42) and recall from Lemma 3.1 that
γ(ψ, χ) is uniformly bounded on [0, N ] in Dlim (with respect to the sup norm). For j = 1, 2, consider the
mapping Λj : Dlim 7→ Dlim defined, for γ ∈ Dlim, by

[Λj(γ)]i
.
= Hj

(

−ξi, χi + [Pγ]i
)

, i = 1, . . . ,K.

For j = 1, 2 (and fixed ξ, χ), from the definition of Hj it is clear that Λj maps bounded sets of Dlim to
bounded sets of Dlim. We shall show below that each Λj is a contraction mapping on Dlim. Since Dlim

endowed with the sup norm metric is a complete metric space, the existence of a unique fixed point for
Λj and convergence of iterations of the map Λj from any starting point to this unique fixed point then
follows from standard theorems [30, Theorems 5.2.1 and 5.2.3].

To establish the contraction property we first consider the case when the maximum row sum of the
matrix P is equal to 1 − δ < 1. The general case can then be handled in the usual way using diagonal
similarity transforms (as in, for example, the proof of Lemma 3.5). Let γ1, γ2 ∈ Dlim. Then the definition
of H1, along with Lemma 3.2, shows that

||[Λ1(γ1)]
i − [Λ1(γ2)]

i||N = max
i=1,...,K

||Hi
1

(

−ξi,−χi + [Pγ1]
i
)

− Hi
1

(

−ξi,−χi + [Pγ2]
i
)

||N

≤ max
i=1,...,K

||[Pγ1]
i − [Pγ2]

i||N

≤ max
i=1,...,K

K
∑

k=1

Pik||γ
k
1 − γk

2 ||N

≤ (1 − δ) max
k=1,...,K

||γk
1 − γk

2 ||N ,

which proves the contraction property since 1 − δ < 1. The proof for Λ2 follows analogously and is thus
omitted. ¤

The next lemma, which establishes a useful equivalence, will make use of the following consequence of
the definition (42) of ξ, the fact that P = I − R and Theorem 3.1: for t ∈ [0,∞),

φi(t) = ψi(t) + [Rθ]i(t) = ψi(t) − [Pθ]i(t) + θi(t) = ξi(t) + −ξi(t) ∨ 0. (69)

Lemma 3.7 The set of equations in (68) with j = 1 coincides with the set of equations in (17). In
particular, for every t such that −ξi(t) ≥ 0, Φi(t) = Φ−ξi(t).

Proof. The equivalence is easily deduced from the following observations. Note that (69) implies
that −ξi(t) < 0 if and only if infs∈[0,t] φ

i(s) > 0 (which also implies θi(t) = 0); −ξi(t) = 0 if and only if

infs∈[0,t] φ
i(s) = 0 and θi(t) = 0; and −ξi(t) > 0 if and only if θi(t) > 0. Now, infs∈[0,t] φ

i(s) > 0 for all
s ∈ [0, tiℓ) and φi(tiℓ) = 0 where for the last equality, we used the fact that if ψ lies in Dr (respectively,
C), then φ, θ, ξ also lie in Dr (respectively, C). Hence, Tℓ(−ξi) = [0, tiℓ). A similar reasoning shows that
(tiu,∞) ⊆ Tu(−ξi) ⊆ [tiu,∞) and tiu ∈ Tu(−ξi) if and only if θi(tiu) > 0, which can take place only if
θi is not left continuous at tiu. In particular, this shows Tu(−ξi) = (tiu,∞) if ψ is continuous. Lastly,
from (69) it also follows that Φi(t) = Φ−ξi(t) for all t such that −ξi(t) ≥ 0 or, equivalently, for all
t ∈ Tu(−ξi) ∪ Tm(−ξi). ¤
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3.4.2 Proof of Theorem 1.1 Property (i) of Theorem 1.1 was proved at the end of Section 3.2.3,
where it was also shown that for ψ, χ ∈ Dlim, ∇χΓ(ψ) = χ + Rγ. Now, suppose ψ, χ ∈ C. From Theorem
3.2 (see also the discussion at the beginning of Section 3.4.1) and Lemma 3.6 it follows that γ(ψ, χ) = γ(1)

where γ(1) is the unique solution in Dlim to the corresponding system of equations (68). However, by
Lemma 3.7, these equations are equivalent to the equations in (68) with j = 1. Moreover, by Lemma 3.3
γ(1) is the decreasing limit of continuous functions γε. This immediately implies that the convergence is
uniform on compact subsets of continuity points of the limit, and that γ(1) is upper semicontinuous (see,
e.g., [17]). This completes the proof of the theorem.

4. Discontinuities of the Derivative for Continuous ψ, χ ∈ C Throughout this section we fix
an ORP with an H-R constraint matrix R ∈ R

K×K and ψ, χ ∈ C and, as usual, let ξi be defined as in (42).
For conciseness, we denote the corresponding unique solution γ(1) to the set of equations (17) simply by
γ. The main result of this section is the proof of Theorem 1.2, which is presented in Section 4.3. First,
in Section 4.1 we derive necessary and sufficient conditions for the existence of discontinuities in γi in
terms of properties of the set Φ−ξi . In Section 4.2, we provide equivalences between properties of the set
Φ−ξi and certain sets introduced in Definition 1.4, which allow a more physically intuitive description of
when discontinuities may occur.

4.1 Classification of the Discontinuities of γ(1) Theorem 4.1 provides necessary and sufficient
conditions for the existence of discontinuities in γi in terms of properties of the set functions Φ−ξi(·). We
first introduce some additional notation. For i = 1, . . . ,K, define

Ai .
= {s ∈ [til, t

i
u] : −χi(s) + [Pγ]i(s) > 0 and − ξi(s) = 0}, (70)

and let
t̃iu

.
= inf{t : t ∈ Ai} ∧ tiu (71)

Note that due to the convention that inf(∅) = ∞, if Ai = ∅ then t̃iu = tiu. In Lemma 4.1, we first establish
some properties of γi that will be used to prove Theorem 4.1.

Lemma 4.1 For i = 1, . . . ,K, the following properties hold.

(i) γi(t) = 0 for t ∈ [0, t̃iu).

(ii) If Ai = ∅ then γi(t̃iu) = γi(tiu) = 0. On the other hand, if Ai 6= ∅ then

γi(t̃iu) = −χi(t̃iu) + [Pγ]i(t̃iu) ≥ 0. (72)

Moreover, t̃iu ∈ LDisc(γi) implies t̃iu ∈ Φ−ξi(t̃iu) and (72) holds with a strict inequality.

(iii) For t ∈ (t̃iu,∞),
γi(t) = sup

s∈Φ
−ξi (t)

[

−χi(s) + [Pγ]i(s)
]

. (73)

(iv) For t ∈ (t̃iu,∞), if {t} 6= Φ−ξi(t) then t is a point of left increase for γi and

γi(t−) = sup
s∈Φ

−ξi (t)\{t}

[

−χi(s) + [Pγ]i(s)
]

, (74)

whereas if {t} = Φ−ξi(t) then

γi(t−) = −χi(t) + [Pγ]i(t−) ≤ −χi(t) + [Pγ]i(t) = γi(t). (75)

(v) For t ∈ [0,∞), t ∈ Disc(γi) implies t ∈ Φ−ξi(t) and

γi(t) =
[

−χi(t) + [Pγ]i(t)
]

∨ γi(t−). (76)

(vi) For t ∈ [t̃iu,∞), if Φ−ξi(r) ∩ [0, t] = ∅ for some r > t then

γi(t+) = γi(t), (77)

whereas if
Φ−ξi(s) ⊆ (t, s] for all s > t, (78)

then
γi(t+) = −χi(t) + [Pγ]i(t+). (79)
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Proof. Fix i ∈ {1, . . . ,K}. For t ∈ [tiℓ, t
i
u], the equality Φi(t) = Φ−ξi(t) established in Lemma 3.7

and the fact that −ξ(t) = 0 show that −ξi(s) = 0 for s ∈ Φi(t). Property (i) and the first assertion
of property (ii) of the lemma then follow directly from the characterization (17) for γi. Now suppose
Ai 6= ∅. Then, t̃iu < tiu and there must exist a sequence {sn}n∈N ⊂ [t̃iu, tiu] such that sn ↓ t̃iu, as n → ∞,
and for every n ∈ N, −ξi(sn) = 0 and −χi(sn) + [Pγ]i(sn)] > 0. Since sn ≤ tiu, this implies −ξi(sn) = 0.
and hence sn ∈ Φ−ξi(sn). By (17), it then follows that

γi(sn) = sup
s∈Φ

−ξi (sn)

[

−χi(s) + [Pγ]i(s)
]

∨ 0 ≥
[

−χi(sn) + [Pγ]i(sn)
]

> 0.

Taking limits as n → ∞ in the last expression, we obtain

γi(t̃iu+) ≥ −χi(t̃iu) + [Pγ]i(t̃iu+) ≥ 0. (80)

Now −χi(s)+ [Pγ]i(s) ≤ 0 for s < t̃iu and, due to the continuity of ξ, ξi(t̃iu) = 0, t̃iu ∈ Φ−ξi(t̃iu). Together
with (80) and the uppersemicontinuity of γ, this implies that

0 ≤ γi(t̃iu+) ≤ γi(t̃iu) = sup
s∈Φ

−ξi (t̃i
u)

[−χi(s)+[Pγ]i(s)]∨0 = [−χi(t̃iu)+[Pγ]i(t̃iu)]∨0 = [−χi(t̃iu)+[Pγ]i(t̃iu)],

where the nonnegativity of the last term follows from the last inequality in (80) and the upper semicon-
tinity of Pγ. This establishes (72). Now, suppose t̃iu ∈ LDisc(γi). Then it must be that Ai 6= ∅, and so
the above argument also establishes the last statement of property (ii).

For property (iii), it suffices to consider t ∈ (t̃iu, tiu] because the representations (73) and (17) coincide
for t ∈ (tiu,∞) by Lemma 3.7. Since −ξi(t) = 0 for t ∈ (t̃iu, tiu], Φ−ξi(·), and therefore γi is monotonically
non-decreasing on that interval. When combined with the representation (17) for γi and the fact that
γi(t̃iu) ≥ 0 by property (ii), this yields the representation (73).

For the fourth property, fix t > t̃iu and suppose {t} 6= Φ−ξi(t). Since Φ−ξi(t) ∩ [0, t) is non-empty,

this implies there exists s < t such that −ξi(s) = −ξi(t). Therefore, for every r ∈ [s, t], Φ−ξi(r) =
Φ−ξi(t) ∩ [0, r]. As a consequence,

γi(t−) = limr↑t lims∈Φ
−ξi (r)

[

−χi(s) + [Pγ]i(s)
]

= limr↑t sups∈Φ
−ξi (t)∩[0,r]

[

−χi(s) + [Pγ]i(s)
]

= sups∈Φ
−ξi (t)∩[0,t)

[

−χi(s) + [Pγ]i(s)
]

,

which proves (74). Now, consider the case when {t} = Φ−ξi(t). Let sn be an increasing sequence such
that sn ↑ t, and let un ∈ [0, sn] satisfy

un = min{u ∈ [0, sn] : −ξi(u) = −ξi(sn)}.

We claim that then un ↑ t. Indeed, since un is uniformly bounded, there exists a subsequence (which we
denote again by un) that converges to a limit u∗ ∈ [0, t]. Since ξi is continuous, clearly −ξi(sn) → −ξi(t)
and hence −ξi(un) → −ξi(t), as n → ∞. Therefore, u∗ ∈ Φ−ξi(t). Due to the assumption Φ−ξi(t) = {t},
we conclude that u∗ = t. Also, observe that

γi(sn) = max
s∈Φ

−ξi (sn)
[−χi(s) + [Pγ]i(s)] = max

s∈Φ
−ξi (sn)∩[un,sn]

[−χi(s) + [Pγ]i(s)].

Take limits as n ↑ ∞ on both sides of the above equality and use the fact that un ↑ t to obtain

γi(t−) = −χi(t) + [Pγ]i(t−) ≤ −χi(t) + [Pγ]i(t) = γi(t),

where the inequality is a consequence of the upper semicontinuity of [Pγ]i and, due to (73), the last
equality is a trivial consequence of the fact that {t} = Φ−ξi(t). This proves (75).

Due to properties (i) and (ii) and the fact that t̃iu ∈ Φ−ξi(t̃iu), to establish property (v), the relation
(76) needs to be verified only for t ∈ (t̃iu,∞). First, we establish the contrapositive of the first statement.
Suppose t 6∈ Φ−ξi(t). Then, since ξ ∈ C, there must exist δ > 0 such that for s ∈ [t − δ, t + δ],

−ξi(s) < −ξi(t) and Φ−ξi(s) = Φ−ξi(t), which in turn means that γi(s) = γi(t), thus showing that γi is
continuous at t. Hence t ∈ Disc(γi) only if t ∈ Φ−ξi(t). Along with the relations (73)–(75), this yields
(76) and thus property (v) follows.

To establish property (vi), first fix t ∈ [0,∞), and note that given a family of non-empty sets Au, u > t,
with the property that Au ⊆ (t, u],

lim
u↓t

sup
s∈Au

[

−χi(s) + [Pγ]i(s)
]

= −χi(t) + [Pγ]i(t+). (81)
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Suppose Φ−ξi(r) ∩ [0, t] 6= ∅ for some r > t. In this case, −ξi(r) = −ξi(t). Hence, for all u ∈ [t, r],
Φ−ξi(u) ∩ [0, t] = Φ−ξi(t) and Φ−ξi(u) ∩ (t, u] = Φ−ξi(r) ∩ (t, u]. The representation (73) for γi then
shows that for every u ∈ [t, r],

γi(u) = sup
s∈Φ

−ξi (t)

[−χi(s)+[Pγ]i(s)]∨ sup
s∈Φ

−ξi (r)∩(t,u]

[−χi(s)+[Pγ]i(s)] = γi(t)∨ sup
s∈Φ

−ξi (r)∩(t,u]

[−χi(s)+[Pγ]i(s)].

Taking limits as u ↓ t and invoking (81) and using the upper semicontinuity of γi we have γi(t) ≥ γi(t+) ≥
γi(t), which implies γi(t+) = γi(t). On the other hand, if (78) holds then (79) is a direct consequence of
(73) and (81) and the proof of the lemma is complete. ¤

We now state and prove the main result of the section.

Theorem 4.1 (Discontinuities of γ(1)) Let ∇Γ
.
= ∇χΓ(ψ) = χ + [Rγ]i. Then, for i = 1, . . . ,K,

γi(t) = 0 for t ∈ [0, t̃iu), and the following three properties hold for every t ∈ [tiu,∞).

(i) t ∈ LDisc(γi) if and only if t ∈ Φ−ξi(t) and one of the following conditions holds.

L1. t = t̃iu and 0 < −χ(t̃iu) + [Pγ]i(t̃iu). In this case, ∇Γi(t̃iu) = 0.

L2. t > t̃iu, Φ−ξi(t) 6= {t} and the following equality is satisfied:

sup
s∈Φ

−ξi (t)\{t}

[−χi(s) + [Pγ]i(s)] < −χi(t) + [Pγ]i(t). (82)

In this case, ∇Γi(t) = 0. Moreover, if t is not isolated in Φ−ξi(t) then t ∈ LDisc([Pγ]i) and
∇Γi(t−) ≥ ∇Γi(t).

L3. t > t̃iu, {t} = Φ−ξi(t) and t ∈ LDisc([Pγ]i). In this case, ∇Γi(t−) = ∇Γi(t) = 0.

(ii) t ∈ RDisc(γi) if and only if t ∈ Φ−ξi(t), Φ−ξi(s) ⊂ (t, s] for all s > t and one of the following
conditions is satisfied:

R1. Φ−ξi(t) 6= {t}, [Pγ]i is right continuous at t and

sup
s∈Φ

−ξi (t)\{t}

[−χi(s) + [Pγ]i(s)] > −χi(t) + [Pγ]i(t). (83)

In this case, γi is left continuous at t and ∇Γi(t) > ∇Γi(t+) = 0.

R2. Φ−ξi(t) 6= {t} and t ∈ RDisc([Pγ]i). In this case ∇Γi(t) ≥ ∇Γi(t+) = 0.

R3. {t} = Φ−ξi(t) and t ∈ RDisc([Pγ]i). In this case, ∇Γi(t) = ∇Γi(t+) = 0.

(iii) t ∈ LDisc(γi) ∩ RDisc(γi) = SDisc(γi) if and only if t ∈ Φ−ξi(t), Φ−ξi(s) ⊂ (t, s] for all s > t
and one of the following conditions holds:

S1. t ∈ RDisc([Pγ]i), and either t = t̃iu, or {t} 6= Φ−ξi(t) and (82) holds. In the latter case,
∇Γi(t) = ∇Γi(t+) = 0.

S2. {t} = Φ−ξi(t) and t ∈ LDisc([Pγ]i) ∩ RDisc([Pγ]i). In this case, ∇Γi(t−) = ∇Γi(t) =
∇Γi(t+) = 0.

Proof. In the proof below, we will make repeated use of the fact that ∇Γi(t) = χi(t) + [Rγ]i(t) =
χi(t) − [Pγ]i(t) + γi(t) proved in Theorem 1.1(ii), without explicit reference. The fact that γi(t) = 0 for
t ∈ [0, t̃iu) follows from property (i) of Lemma 4.1, and this also implies that γi(t̃iu−) = 0. By the definition
of t̃iu, −ξ(t̃iu) = 0 or, equivalently, t̃iu ∈ Φ−ξi(t̃iu). By property (ii) of Lemma 4.1, γi(t̃iu) > 0 = γi(t̃iu−) if
and only if γi(t̃iu) = −χ(t̃iu) + [Pγ]i(t̃iu) > 0, which proves assertion L1 of the theorem.

Now, fix t ∈ (t̃iu,∞). Then Lemma 4.1(v) shows that if t ∈ LDisc(γi) then t ∈ Φ−ξi(t) and γi(t) =
χi(t) + [Pγ]i(t) = 0, so that in this case ∇Γi(t) = 0. We consider two exhaustive sub-cases, namely
when t ∈ Φ−ξi(t) 6= {t} and {t} = Φ−ξi(t). In the first case, the fact that (82) holds if and only if
t ∈ LDisc(γi) follows from (74) and (76). If t is not isolated in Φ−ξi(t), then there must exist a sequence
{sn}n∈N ⊆ Φ−ξi(t) with sn ↑ t, and by (74) we have

γi(t−) = sup
s∈Φ

−ξi (t)\{t}

[−χi(s) + [Pγ]i(s)] ≥ lim
n→∞

−χi(sn) + [Pγ]i(sn) = −χi(t) + [Pγ]i(t−).
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Thus, we have shown that ∇Γi(t−) ≥ 0 = ∇Γi(t). On the other hand, recalling that γi is upper
semicontinuous and t ∈ LDisc(γi), we also have

−χi(t) + [Pγ]i(t) = γi(t) > γi(t−) ≥ −χi(t) + [Pγ]i(t−),

which implies t ∈ LDisc([Pγ]i). Now, consider the second case when {t} = Φ−ξi(t). Then (75) shows
that t ∈ LDisc(γi) if and only if [Pγ]i is discontinuous at t, as stated in L3. This completes the proof of
Theorem 4.1(i).

Next, consider the right discontinuities of γi. Clearly, RDisc(γi) ⊂ [t̃iu,∞). Properties (v) and
(vi) of Lemma 4.1 show that t ∈ Φ−ξi(t) and Φ−ξi(s) ⊂ (t, s] for all s > t are necessary conditions for
t ∈ RDisc(γi), and, moreover, that then γi(t+) = −χi(t)+[Pγ]i(t+), so that ∇Γi(t+) = 0. Furthermore,
due to the upper semicontinuity of [Pγ]i, it follows that

γi(t) = [−χi(t) + [Pγ]i(t)] ∨ sup
s∈Φ

−ξi (t)\{t}

[−χi(s) + [Pγ]i(s)] ≥ −χi(t) + [Pγ]i(t)

≥ χi(t) + [Pγ]i(t+) = γi(t+).
(84)

Now, suppose that [Pγ]i is right continuous. Then γi(t+) = −χi(t) + [Pγ]i(t) and so t ∈ RDisc(γi)
if and only if Φ−ξi(t) 6= {t} and (83) holds. A simple rearrangement of terms also shows that in this
case ∇Γi(t) > 0 and, since the conditions (82) and (83) are mutually exclusive, it follows that γi is left
continuous at t. On the other hand, if t ∈ RDisc([Pγ]i), then the second inequality in (84) is strict
and so we always have t ∈ RDisc(γi). Moreover, if γi(t) = −χi(t) + [Pγ]i(t) (as would be the case if
{t} = Φ−ξi(t)), then ∇Γi(t) = ∇Γi(t+) = 0 (as stated in R3), and otherwise ∇Γi(t) > ∇Γi(t+) = 0
(from which R2 follows).

Finally, we analyze the separated discontinuities of γi. Note that since γi ∈ Dusc, it follows that
SDisc(γi) = LDisc(γi) ∩ RDisc(γi). From properties (i) and (ii) of this theorem, which were proved
above, it is clear that, since the condition R1 is incompatible with both L1–L3, the only ways in which
a separated discontinuity can occur is if (a) R2 and either L1 or L2 are satisfied or (b) L3 and R3 hold,
from which property (iii) of the theorem follows immediately. ¤

4.2 Alternative Description of the Regimes of (φ, θ) In Definition 1.4, the regimes of (φ, θ)
were described in terms of properties of the solution (φ, θ) to the ORP for an input ψ. On the other hand,
as shown in Theorem 4.1, the analysis of the discontinuities of γ lead naturally to conditions involving
the sets Φ−ξi(t) defined in Section 3.3.2. The following lemma provides a link between these two sets of
conditions.

Physical Definition Equivalent Condition
Description in terms of (φ, θ) in terms of Φ−ξi

Overloaded φi(t) > 0 t 6∈ Φ−ξi(t)

Underloaded φi(t) = 0 {t} = Φ−ξi(t) and
∆θi(t−) 6= 0, ∆θi(t+) 6= 0 Φ−ξi(s) ⊂ (t, s] ∀s > t

Critical φi(t) = 0 and either t ∈ Φ−ξi(t) and either Φ−ξi(t) 6= {t} or
∆θi(t−) = 0 or ∆θi(t+) = 0 ∃s > t such that Φ−ξi(s) ∩ [0, t] 6= ∅

End of φi(t) = 0 and ∃δ > 0 such that t ∈ Φ−ξi(t), Φ−ξi(t) 6= {t},
Overloading φi(s) > 0 for s ∈ (t − δ, t] t is isolated in Φ−ξi(t)

Start of φi(t) = 0 t ∈ Φ−ξi(t),Φ−ξi(t) 6= {t}
Underloading ∆θi(t−) = 0 and ∆θi(t+) 6= 0 Φ−ξi(s) ⊂ (t, s] ∀s > t

Table 1: Equivalent Descriptions of the Regimes of (φ, θ)

Lemma 4.2 For i ∈ {1, . . . ,K}, let Φ−ξi(t) be as defined by (14) and let til be defined by (18). Then for
t ∈ [til,∞), the equivalences in Table 1 are satisfied.

Proof. The lemma follows essentially from the property proved in Lemma 3.7 that for t ≥ til, Φi(t) =
Φ−ξi(t), where Φi is as defined in (11). The first equivalence (for the overloaded state) is then an
immediate consequence of the fact that t ∈ Φi(t) if and only if φi(t) = 0. We now show that {t} = Φ−ξi(t)

if and only if φi(t) = 0 and ∆θi(t−) 6= 0. Indeed, {t} = Φ−ξi(t) implies −ξi(t) = −ξi(t) and ξi(s) < −ξi(t)
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for all s < t. In turn, this holds if and only if θi(s) = −ξi(s) < −ξi(t) = θi(t) for every s < t. Since
θi is non-decreasing, this is equivalent to the condition that θi is not flat to the left of t. By a similar
reasoning, it is easy to see that ∆θi(t+) 6= 0 if and only if Φ−ξi(s) ⊂ (t, s] for all s > t. Combining
the above equivalences, all the results of Table 1 can be obtained in a straightforward manner. The few
remaining details are left to the reader. ¤

4.3 Discontinuities of the Derivative We now combine the results of Theorem 4.1 and Lemma
4.2 to identify necessary conditions for discontinuities in ∇Γ to occur. We first establish a simple corollary
of Theorem 4.1 and then present the proof of Theorem 1.2.

Lemma 4.3 For i = 1, . . . ,K and t ≥ 0, we have the following two properties.

(i) [Pγ]i is left continuous at t if the following condition is satisfied: t /∈ {t̃ku, k = 1, . . . ,K} and

there is no critical chain preceding i at time t (85)

(ii) [Pγ]i is right continuous at t if the following condition is satisfied:

there is no sub-critical chain preceding i at time t. (86)

Proof. Fix t ∈ [0,∞) and i ∈ {1, . . . ,K} and suppose (85) holds. Define E to be the class of empty
chains i = j0, j1, . . . , jm preceding i at time t, and let

Ẽ
.
=

{

ij1, . . . , jm ∈ E : t ∈ LDisc(γjm)
}

.

We will argue by contradiction to show that in fact Ẽ = ∅. Since (85) is satisfied, by Definition 1.5(i) of
a critical chain it is clear that there are no cyclic chains in E . Thus, the maximum length of any chain
in E is bounded by K. Suppose Ẽ 6= ∅ and let m ∈ {1, . . . ,K − 1} be the largest integer such that there
exists a chain i, j1, . . . , jm ∈ Ẽ . Consider the set B

.
= {k : Pjmk > 0} and B̃

.
= {k ∈ B : φk(t) > 0}. By

Lemma 4.2, if k ∈ B̃ then t 6∈ φ−ξk(t) and so Theorem 4.1(i) shows that t 6∈ LDisc(γk). On the other

hand, if k ∈ B \ B̃ then i, j1, . . . jm, jk is an empty chain and the maximality of m allows us to conclude
once again that t 6∈ LDisc(γjk). Together, this implies that [Pγ]jm =

∑

k∈B Pjmkγk is left continuous at
t. Since t /∈ {t̃ku, k = 1, . . . ,K}, by Theorem 4.1(i) it is possible for t ∈ LDisc(γjm) only if t is isolated in
Φ−ξjm

(t) 6= {t}. However, by Lemma 4.2 this corresponds to jm being at the end of overloading, which
in turn implies that i, j1, . . . , jm is a critical chain, which is not possible due to (85). Thus, it must be
that Ẽ = ∅. Now, for all k with Pik > 0, either φk(t) = 0, in which case jk is an empty chain and
Ẽ = ∅ implies t 6∈ LDisc(γk); or φk(t) > 0, which is equivalent to t 6∈ Φ−ξk(t) by Lemma 4.2. In the
latter case, Theorem 4.1(i) shows that t 6∈ LDisc(γk). Together, this leads to the desired conclusion that
[Pγ]i =

∑

k:Pik>0 Pikγk is left continuous at t.

The proof of the second assertion is similar. Define Ẽ in an analogous fashion, but with LDisc replaced
by RDisc. Arguing as above, but this time using property (ii) instead of property (i) of Theorem 4.1, it
is possible to conclude that if i, j1, . . . , jm is a maximal chain in Ẽ then [Pγ]jm is right continuous at t.
By Theorem 4.1(ii) this can only occur if t ∈ Φ−ξjm (t) and Φξjm (s) ⊂ (t, s) for all s > t (note that here
we do not need to assume that t /∈ {t̃ku, k ∈ 1, . . . ,K}). By Lemma 4.2 this corresponds to jm being the
start of underloading and thus contradicts (86). This shows that Ẽ = ∅ in this case as well, and the rest
of the proof proceeds exactly as before. ¤

Proof of Theorem 1.2. Fix t ∈ (0,∞) and for simplicity, denote γ(1) simply by γ. By (16),
∇Γi = χi + [Rγ]i = χi + γi − [Pγ]i. Therefore, t ∈ LDisc(∇Γi) only if either t ∈ LDisc([Pγ]i) or
t ∈ LDisc(γi). Suppose t 6∈ {t̃ku, k = 1, . . . ,K} and t ∈ LDisc([Pγ]i). By Lemma 4.3(i), there must
exist a critical chain preceding i and, moreover, by L3 of Theorem 4.1(i) for t ∈ LDisc(∇Γi), one cannot
have Φ−ξi(t) = {t}. In particular, due to Lemma 4.2, this implies that i cannot be underloaded. This
corresponds to condition (Lb). If, in addition, i is overloaded, this means t 6∈ Φ−ξi(t) by Lemma 4.2, and
Theorem 4.1(i) then dictates that γi is left continuous at t. The inequality in (23) is then a direct result
of the upper semicontinuity of [Pγ]i. Next, suppose that t 6∈ LDisc([Pγ]i) (this holds, for example, if
there is no critical chain that precedes i), but t ∈ LDisc(γi). Invoking Theorem 4.1(i) once again (this
time condition L2) it follows that t ∈ LDisc(∇Γi) only if t is isolated in Φ−ξi(t) 6= {t}, and in this case
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(22) holds. By Lemma 4.2, the latter condition corresponds to the end of overloading, and this establishes
condition (La). This completes the proof of necessary conditions for left discontinuities.

The corresponding proof for right discontinuities is analogous. If i is underloaded at time t then
Theorem 4.1(ii) shows that t 6∈ RDisc(∇Γi). Thus, suppose that i is not underloaded at time t. If t ∈
RDisc([Pγ]i), then by Lemma 4.3(ii), there must exist a sub-critical chain preceding i. This corresponds
condition R(b). If, in addition, i is overloaded then t 6∈ Φ−ξi(t) and so Theorem 4.1(ii) implies that
t 6∈ RDisc(γi). The inequality (25) then follows from the upper semicontinuity of [Pγ]i. On the other
hand, if t 6∈ RDisc([Pγ]i) then for t ∈ RDisc(∇Γi) it must be that t ∈ RDisc(γi). By Theorem 4.1(ii),
this can only occur if condition R1 holds, which implies t ∈ Φ−ξi(t) 6= t and Φ−ξi(s) ⊂ (t, s] for all s > t.
As shown in Lemma 4.2, this is equivalent to the statement that i is at the start of underloading. This
scenario is addressed in condition R(a).

Now, for a left and right discontinuity to hold simultaneously, we can either have scenario L(a) and
R(b) holding at the same time, which corresponds to LR(a), or conditions L(b) and R(a) being satisfied,
which corresponds to LR(b) or conditions L(b) and R(b) holding, which corresponds to LR(c). The
remaining combination, L(a) and R(a) is excluded because, comparing conditions L2 and R1 of Theorem
4.1, it is clear that it is not possible to have both a left and right discontinuity at the end of overloading
and start of underloading. This completes the proof of the theorem. ¤

5. Proofs of Auxiliary Results We now provide the proof of Lemma 3.4 in Section 5.1 and the
characterization of the generalized one-dimensional derivative (i.e., the proof of Theorem 3.2) in Section
5.2.2.

5.1 Proof of Lemma 3.4 We start with the proof of (48). Note that f ∨ 0− g ∨ 0 is the difference
of two monotonic functions and thus lies in BV. Therefore, for every n ∈ N, there exists a partition
πn

.
= {0 = tn1 < tn2 < · · · < tnkn

= T} of [0, T ] such that

∣

∣f ∨ 0 − g ∨ 0
∣

∣

T
≤

kn
∑

i=1

αn
i +

1

n
,

where
αn

i

.
=

∣

∣f(tni ) ∨ 0 − g(tni ) ∨ 0 − f(tni−1) ∨ 0 + g(tni−1) ∨ 0
∣

∣ .

For any function h on [0, T ], let h(i)(s)
.
= h(tni−1 + s) − h(tni−1) for s ∈ [0, T − tni−1], and note that

h(tni ) = h(tni−1) + sup
s∈[0,tn

i
−tn

i−1
]

[

h(i)(s)
]

∨ 0. (87)

We can apply (87) with h = f ∨ 0 and h = g ∨ 0, to rewrite αn
i in the form

αn
i =

∣

∣

∣

∣

∣

sup
s∈[0,tn

i
−tn

i−1
]

f (i)(s) ∨ 0 − sup
s∈[0,tn

i
−tn

i−1
]

g(i)(s) ∨ 0

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

sup
s∈[0,tn

i
−tn

i−1
]

(

f (i)(s) − g(i)(s)
)

∨ 0

∣

∣

∣

∣

∣

,

where the inequality is obtained by first replacing f, g and the interval [0, T ] in (46) by f (i), g(i) and
the interval [0, tni − tni−1], respectively, and then taking absolute values on both sides. Substituting
h = (f − g) ∨ 0 in (87), we can reexpress the right-hand side of the last display to obtain

αn
i ≤

∣

∣f − g(tni ) ∨ 0 − f − g(tni−1) ∨ 0
∣

∣ .

Thus, we have

∣

∣f ∨ 0 − g ∨ 0
∣

∣

T
−

1

n
≤

kn
∑

i=1

αn
i ≤

kn
∑

i=1

∣

∣f − g(tni ) ∨ 0 − f − g(tni−1) ∨ 0
∣

∣ ≤
∣

∣f − g
∣

∣

T
.

Sending n → ∞, one obtains (48).

Next, let f be the pointwise limit of a sequence of functions {fn}n∈N in Dlim. To complete the proof
of the lemma, it suffices to establish the contrapositive that if f 6∈ Dlim, then there exists T < ∞ such
that supn |fn|T = ∞. If f 6∈ Dlim then there must either exist t ∈ (0,∞) such that f has no finite left
limit at t or there must exist t ∈ [0,∞) such that f has no finite right limit at t. We only consider the
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case when f does not have a finite left limit at a certain t ∈ (0,∞) since the other case follows by a
similar argument. In this case, by the Cauchy condition there must exist δ > 0 and sequences {si}i∈N

and {s′i}i∈N such that si ↑ t, s′i ↑ t and for every i ∈ N,

|f(si) − f(s′i)| ≥ 4δ. (88)

Further, we can assume without loss of generality that s1 < s′1 < s2 < s′2 < . . .. Since fn → f
pointwise, given any m ∈ N there exists N < ∞ such that for all n ≥ N , |fn(s) − f(s)| < δ for all
s ∈ {si, s

′
i, i = 1, . . . ,m}. Combining this inequality with (88) we conclude that |fn(si) − fn(s′i)| > δ for

every i = 1, . . . ,m and n ≥ N , and hence that

|fn|t ≥
m

∑

i=1

|fn(si) − fn(s′i)| ≥ mδ.

Taking first the limit superior in n of the left-hand side, and then letting m go to infinity, we conclude
that lim supn |fn|t = ∞ and hence supn |fn|t = ∞. This proves the contrapositive, and hence the lemma.

5.2 Proof of the Representation for the One-dimensional Derivative We now establish the
representation for the generalized one-dimensional derivative stated in Section 3.3.2. We will start with
three preliminary lemmas in Section 5.2.1 and present the proof in Section 5.2.2.

5.2.1 Preliminary lemmas The first two results summarize some elementary properties of func-
tions and the third result identifies conditions under which the functions g∗,ℓ and g∗,r of Theorem 3.2
can be completed determined by g, and do not rely on the family of functions {gε}ε>0.

Lemma 5.1 Consider a family of left (respectively, right) continuous functions {gε}ε>0 that converges
pointwise monotonically down to a function g ∈ Dlim as ε ↓ 0. If s is a point of left (respectively, right)
continuity for g, then given any real numbers {sε}ε>0 such that sε ↑ s (respectively, sε ↓ s) as ε → 0, it
follows that

lim
ε↓0

gε(sε) = g(s).

Proof. Fix s ∈ [0,∞). Given any δ > 0, by the pointwise convergence of {gε}ε>0, there exists κ0 > 0
such that for all κ ∈ (0, κ0), |gκ(s) − g(s)| < δ/2. Likewise, given any κ > 0, since either gκ is left
continuous and sε ↑ s, or gκ is right continuous and sε ↓ s, there exists ε0(κ) < κ such that for all
ε ∈ (0, ε0(κ)), |gκ(sε)− gκ(s)| < δ/2. Together, the last two inequalities show that given any δ > 0 there
exists κ0 > 0 such that for all κ < κ0 and ε < ε0(κ), |gκ(sε) − g(s)| < δ. Since gε converges pointwise
monotonically down to g, this implies that

g(sε) ≤ gε(sε) ≤ gκ(sε) ≤ g(s) + δ.

Taking limits as ε ↓ 0 and using the left continuity of g and the fact that sε ↑ s (or the right continuity
of g and the fact that sε ↓ s), one concludes that

g(s) ≤ lim inf
ε↓0

gε(sε) ≤ lim sup
ε↓0

gε(sε) ≤ g(s) + δ.

The statement of the lemma follows on sending δ ↓ 0. ¤

Lemma 5.2 Suppose f ∈ Dlim and the family of functions {gε, ε > 0} ⊆ Dlim is uniformly bounded, i.e.,

LN
.
= sup

ε>0
‖gε‖N < ∞ for every N ∈ [0,∞) . (89)

Then the following properties hold for any t ∈ [0,∞).

(i) There exists ε0 > 0 such that for all ε ∈ (0, ε0)

f(t) < 0 ⇒ ε−1f + gε(t) < 0 (90)

and, likewise,

f(t) > 0 ⇒ ε−1f + gε(t) > 0; (91)
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(ii) For any δ ∈ (0, Lt) and s ∈ [0, t], if

ε−1f + gε(t) ≤ ε−1f(s) + gε(s) + δ (92)

for some ε ∈ (0, δ/6Lt), then

f(t) ≤ f(s) + δ . (93)

Proof. Fix t ∈ [0,∞), let L
.
= Lt and choose ε0 = |f(t)|/2L. If f(t) < 0, then for ε ∈ (0, ε0)

ε−1f + gε ≤ ε−1f(t) + gε(t) = −ε−1
∣

∣f(t)
∣

∣ + gε(t) ≤ −2L + L < 0 ,

which establishes (90). A similar argument establishes (91).

Suppose there exists ε < δ/6Lt and s ∈ [0, t] such that (92) is satisfied. We now argue by contradiction
to show that then (93) must hold. Indeed, if f(s) < f(t) − δ, then choose s̃ ∈ [0, t] such that f(s̃) >
f(t) − δ/2. The last two inequalities together show that f(s̃) > f(s) + δ/2 which, along with (92), the
fact that δ < Lt and ε < δ/6Lt, implies that

ε−1f(s̃) + gε(s̃) − ε−1f + gε(t) ≥ ε−1f(s̃) + gε(s̃) −
(

ε−1f(s) + gε(s)
)

− δ

≥ ε−1 [f(s̃) − f(s)] − 2Lt − δ

>
ε−1δ

2
− 3Lt > 0,

which contradicts the definition of the supremum since s̃ ∈ [0, t]. Thus (93) must hold. ¤

The next lemma lists various conditions under which g∗,l and g∗,r of Theorem 3.2 do not depend on
the entire sequence {gε}ε>0, but can be determined just from g.

Lemma 5.3 Let {gε}ε>0, g, g∗,ℓ and g∗,r be the functions described in Theorem 3.2. Then the following
properties hold:

(i) g∗,l ≥ gl and g∗,r ≥ gr;

(ii) If gε = g is independent of ε, then g∗,l = gl and g∗,r = gr;

(iii) If {gε} ⊂ C then g∗,l = g∗,r = g;

(iv) If gε converges to g in the uniform topology, i.e., for every N < ∞ limε↓0 ||gε − g||N = 0, then
g∗,l = gl and g∗,r = gr.

Here, as usual gl and gr are, respectively, the left and right regularisations of g.

Proof. Fix t ∈ [0,∞). For every ε > 0, choose tε ∈ (t − ε, t) such that |gε(tε) − gε(t−)| < ε.
Then tε ↑ t as ε ↓ 0 and the monotonicity of the sequence of functions gε ensures that g(tε) ≤ gε(tε) <
gε(t−) + ε = gε,ℓ(t) + ε, where gε,ℓ is the left regularisation of gε. Taking limits as ε ↓ 0, it follows
that gl(t) = g(t−) ≤ g∗l (t). An analogous argument yields the inequality gr ≤ g∗r , thus establishing the
first property. The second property is a trivial consequence of the definitions and, due to the assumed
monotonicity of the sequence {gε}. If gε is right continuous for every ε > 0, there exists a family of
numbers sε ∈ [s,∞), ε > 0, such that sε ↓ s as ε ↓ 0 and |gε(sε)− gε,r(sε)| = |gε(sε)− gε(s+)| ≤ ε. Since
gε(sε) → g(s) as ε ↓ 0 by Lemma 5.1, this shows that g∗,r(s) = limε↓0 gε(s+) = g(s). The case when all
the gε are left-continuous is exactly analogous, and so property 3 follows.

To prove the fourth property, fix s ∈ [0,∞) and for ε ∈ (0, 1], choose sε ∈ [s, 2s] such that |gε(sε) −
gε(s+)| ≤ ε and sε ↓ s as ε ↓ 0. The uniform convergence of gε to g on the interval [0, 2s] implies that
given any δ > 0, there exists ε0 > 0 such that for all ε ∈ (0, ε0) and n ∈ N, g(sε)− δ ≤ gε(sε) ≤ g(tε) + δ.
This, in turn, implies that g(sε) − δ − ε ≤ gε(s+) ≤ g(sε) + δ + ε. Taking limits, first as ε ↓ 0, to obtain
the inequality

gr(s) − δ = g(s+) − δ ≤ g∗,r(s) ≤ g(s+) + δ = gr(s) + δ,

and then sending δ ↓ 0, we conclude that gr(s) = g∗,r(s). Since s is arbtirary, gr = g∗,r and an exactly
analogous argument shows that gl = g∗,l. ¤
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5.2.2 Proof of Theorem 3.2 We are now ready to prove the characterization of the generalized
one-dimensional derivative stated in Theorem 3.2.

First, note that the family of functions {gε}ε>0 has a pointwise limit g as ε ↓ 0 since for each s ∈ [0,∞),
{gε(s)}ε>0 is uniformly bounded and monotonically non-increasing. By the same token, since the left and
right regularized sequences {gε,l}ε>0 and {gε,r}ε>0 inherit the uniform boundedness and monotonicity
properties of {gε}ε>0, the corresponding limits g∗,l and g∗,r are also well defined.

Fix t ∈ Tu(f) or, in other words, fix t such that f(t) > 0. By assumption, L
.
= supε>0 ||gε||t is finite

and so, by relation (91) of Lemma 5.2, there exists ε0 > 0 such that ε−1f + gε(t) > 0 for all ε ∈ (0, ε0).
Hence, for all ε ∈ (0, ε0), we have γ̃ε(t) = ε−1f + gε(t) − ε−1f(t). Now, for each ε ∈ (0, ε0 ∧ 1/8), choose
sε ∈ [0, t] to satisfy

(

ε−1f + gε

)

(sε) ≥ ε−1f + gε(t) − 8Lε. (94)

Applying Lemma 5.2(ii), with δ = 8Lε ∈ (0, L) and s = sε, and using the definition of the supremum, it
follows that f(t) − 8Lε ≤ f(sε) ≤ f(t). Taking limits as ε ↓ 0, this yields the equality

lim
ε↓0

f(sε) = f(t). (95)

Moreover, by (94) we clearly also have

γ̃ε(t) = ε−1f + gε(t) − ε−1f(t) ≤ gε(sε) + 8Lε + ε−1
[

f(sε) − f(t)
]

≤ gε(sε) + 8Lε,

and therefore
lim sup

ε↓0
γ̃ε(t) ≤ lim sup

ε↓0
gε(sε). (96)

We now show that
lim sup

ε↓0
gε(sε) ≤ γ̃(t). (97)

Let {εn}n∈N be a sequence with εn ↓ 0 as n → ∞ such that

lim
n↑∞

gεn
(sεn

) = lim sup
ε↓0

gε(sε). (98)

Since {sεn
}n∈N ⊂ [0, t] is uniformly bounded, it can be assumed without loss of generality (by choosing a

subsequence if necessary) that there exists s0 ∈ [0, t] such that limn→∞ sεn
= s0. By choosing a further

subsequence if necessary, it can be assumed that either (i) sεn
= s0 for all n sufficiently large, or (i) does

not hold and either sεn
↑ s0 or sεn

↓ s0 as n → ∞. If (i) holds, then (95) implies f(s0) = f(t), so that
s0 ∈ Φf (t). In that case,

lim sup
ε↓0

gε(sε) = lim
n↑∞

gεn
(s0) = g(s0) ≤ sup

s∈Φf (t)

g(s) ≤ γ̃(t),

and (97) holds. On the other hand, suppose that (i) above does not hold, but instead sεn
↑ s0 as n ↑ ∞.

Then f(s0−) = f(t) by (95), and hence s0 ∈ ΦL
f (t). Fix δ > 0 and given εm > 0, choose N(m) ≥ m such

that for all n ≥ N(m), gεm
(sεn

) ≤ gεm
(s0−) + δ. The fact that {gεn

}n∈N is a monotone non-increasing
sequence as n ↑ ∞ then shows that for all n ≥ N(m), gεn

(sεn
) ≤ gεm

(s0−) + δ. Taking limits, first as
n ↑ ∞, and then as m ↑ ∞, yields

lim
n↑∞

gεn
(sεn

) ≤ lim
m↑∞

gεm
(s0−) + δ = lim

m↑∞
gεm,l(s0) + δ = g∗,l(s0) + δ.

Sending δ ↓ 0 in the above display, using (98) and the fact that s0 ∈ ΦL
f (t), it follows that

lim sup
ε↓0

gε(sε) = lim
n↑∞

gεn
(sεn

) ≤ g∗,l(s0) ≤ sup
s∈ΦL

f
(t)

g∗,l(s) ≤ γ̃(t).

Lastly, if (i) does not hold but sεn
↓ s0 as n ↑ ∞, it must be that s0 6= t (since sεn

∈ [0, t]) and, due to
(95), that f(s0+) = f(t). Thus s0 ∈ Φ̃R

f (t), and arguments similar to those given above yield the relation

lim sup
ε↓0

gε(sε) ≤ lim
ε↓0

gε(s0+) = lim
ε↓0

gε,r(s0) = g∗,r(s0) ≤ sup
s∈Φ̃R

f
(t)

g∗,r(s) ≤ γ̃(t).

This establishes (97) which, when combined with (96), shows that

lim sup
ε↓0

γ̃ε(t) ≤ γ̃(t). (99)
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In order to establish the reverse inequality, with lim sup replaced by lim inf, first note that for any
r ∈ Φf (t),

γ̃ε(t) = ε−1f + gε(t) − ε−1f(t) ≥ ε−1f(r) + gε(r) − ε−1f(t) = gε(r).

First take limits as ε ↓ 0 and then take the supremum over r ∈ Φf (t) to obtain

lim inf
ε↓0

γ̃ε(t) ≥ sup
r∈Φf (t)

[g(r)] . (100)

Next, if ΦL
f (t) 6= ∅, let r ∈ ΦL

f (t) and for each ε > 0 choose rε ∈ [r − ε, r] such that

ε−1
[

f(rε) − f(t)
]

> −
ε

2
and |gε(rε) − gε(r−)| <

ε

2
.

Then

γ̃ε(t) ≥ ε−1f(rε) + gε(rε) − ε−1f(t) > gε(r−) − ε.

Take limits as ε ↓ 0 and then take the supremum over r ∈ ΦL
f (t) to arrive at the inequality

lim inf
ε↓0

γ̃ε(t) ≥ sup
r∈ΦL

f
(t)

[

g∗,l(r)
]

.

Analogous arguments can be used to show that

lim inf
ε↓0

γ̃ε(t) ≥ sup
r∈Φ̃R

f
(t)

[g∗,r(r)] .

The last two displays, when combined with (100), yield the relation

lim inf
ε↓0

γ̃ε(t) ≥ sup
r∈ΦL

f
(t)

[

g∗,l(r)
]

∨ sup
r∈Φf (t)

[g(r)] ∨ sup
r∈Φ̃R

f
(t)

[g∗,r(r)] = γ̃(t).

Together with (99), this shows that limε↓0 γ̃ε(t) = γ̃(t) for t ∈ Tu(f).

Note that the arguments above showed, in fact, that for any t ∈ [0,∞),

lim
ε↓0

[

ε−1f + gε(t) − ε−1f(t)
]

=



 sup
s∈ΦL

f
(t)

[

g∗,l(s)
]

∨ sup
s∈Φf (t)

[g(s)] ∨ sup
s∈Φ̃R

f
(t)

[g∗,r(s)]



 . (101)

If t ∈ Tm(f) then f(t) = 0. Therefore, for such t, γ̃ε(t) = ε−1f + gε(t)∨0 =
[

ε−1f + gε(t) − ε−1(f)(t)
]

∨0.

Taking the maximum of both sides of (101) with zero and noting that in this case γ̃(t) is defined to be
the maximum of the right-hand side of (101) with zero yields the conclusion that limε↓0 γ̃ε(t) = γ̃(t). On
the other hand, if t ∈ Tℓ(f), then f(t) < 0. Since the family {gε} is uniformly bounded on [0, t], relation
(92) of Lemma 5.2 implies that for all ε sufficiently small ε−1f + g(t) < 0. Hence for all sufficiently small
ε > 0, γ̃ε(t) = 0. Since, by definition, γ̃(t) = 0 for t ∈ Tℓ(f), once again limε↓0 γ̃ε(t) = γ̃(t). This
completes the proof of (61) in Theorem 3.2.

When {gε} ⊂ C, g∗,l = g∗,r = g by Lemma 5.3(iii), and so H(f, g, g∗,l, g∗,r) = H(f, g, g, g) = H1(f, g)
and the identity (62) follows. If, in addition, f is continuous and so ΦL

f (t)∪ Φ̃R
f (t) ⊆ Φf (t) and thus (63)

holds. The last statement follows directly from Lemma 5.3(iv) and the definition of H2.
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Figure 4: A queueing network with a merge and time-varying arrival and sevice rates giving rise to a
separated discontinuity in the directional derivative at t = 1 (the colors red, green and blue represent,
respectively, overloading, criticality and underloading).
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Figure 5: The fluid limit of the non-stationary merge queueing network (the colors red, green and blue
represent, respectively, overloading, criticality and underloading).


