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Abstract

Given an oblique reflection map Γ and functions ψ, χ ∈ Dlim (the space of functions that
have left and right limits at every point), the directional derivative ∇χΓ(ψ) of Γ along χ,
evaluated at ψ, is defined to be the pointwise limit (as ε ↓ 0) of the family of functions

∇ε

χ
Γ(ψ)

.
=

1

ε
[Γ(ψ + εχ) − Γ(ψ)] .

Directional derivatives are shown to exist and lie in Dlim for oblique reflection maps of the so-
called Harrison-Reiman class. When ψ and χ are continuous, the convergence of ∇ε

χ
Γ(ψ) to

∇χΓ(ψ) is shown to be uniform on compact subsets of continuity points of the limit ∇χΓ(ψ)
and the derivative ∇χΓ(ψ) is shown to have an autonomous characterization as the unique
fixed point of an associated map. Motivation for the study of directional derivatives arises
from the fact that they characterize functional central limits of non-stationary queueing
networks. This work also shows how the various types of discontinuities of the derivative
∇χΓ(ψ) are related to the topology of the network as well as to the states (of underloading,
overloading or criticality) of the various queues in the network. The latter classification is
necessary for proving a stronger form of convergence of the functions ∇ε

χ
Γ(ψ) to the limit

∇χΓ(ψ), which is in turn useful for obtaining functional central limit theorems for non-
stationary queueing networks.
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1 Introduction

Most real-world queueing systems evolve according to laws that vary with time. However, the
majority of queueing research has been devoted to time-homogeneous models. While such mod-
els may provide reasonable approximations for slowly varying systems, they completely fail to
capture many important phenomena such as surges in demand, sudden node failures and pe-
riodicity. The explicit analysis of even stationary networks is usually intractable. Instead one
usually resorts to asymptotic approximations, which often capture the essential features of net-
work behaviour. A commonly used asymptotic approximation is the conventional heavy-traffic
approximation, where arrival and service rates are scaled proportionately but the number of
servers are kept constant [34, 37]. In recent years, much progress has been made on this kind of
approximations for stationary networks, under reasonably general assumptions on the arrival,
service and routing processes (see, for example, the survey [47] and papers cited therein). In con-
trast, the analysis of time-dependent networks remains challenging even in a Markovian setting.
In particular, there has been relatively little work done on non-stationary queueing networks
in the conventional heavy-traffic regime. Non-stationary networks for which the conventional
asymptotic regime is relevant arise frequently in models of transportation, telecommunication
and computer systems [9, 20, 31].

The single queue with time-varying arrival and service rates has been studied by various
authors under different assumptions [15, 22, 28, 29, 38, 39]. The detailed asymptotic analysis
carried out in [22] shows that the so-called fluid limit of a time-dependent Markovian queue
alternates between phases of overloading, critical loading and underloading, and also shows that
the functional central limit exhibits different characteristics in each of the three different phases
of loading. The analysis in [22] is pathwise and uses strong approximations to represent the
functional central limit of the time-dependent queue in terms of directional derivatives of the
one-dimensional reflection map Γ. (See also [10] for an insightful discussion of the use of strong
approximations in queueing theory.) The characterization of the directional derivative in [22]
relies heavily on the following explicit form of the one-dimensional reflection map Γ : C([0,∞) :
IR) → C([0,∞) : IR+) due to [42]:

Γ(ψ)(t) = ψ(t) + θ(t), (1.1)

where the constraining term θ that keeps Γ(ψ) in IR+ is given by

θ(t) =

[

sup
0≤s≤t

−ψ(s)

]

∨ 0. (1.2)

In contrast, in the multi-dimensional or network setting there is no explicit expression for the
reflection map, making characterization of its directional derivatives considerably more involved.
In fact derivatives of reflection maps associated with even feedforward tandem networks can-
not always be expressed simply as a composition of directional derivatives of one-dimensional
reflection maps (see Section 4.2.1 for further discussion of this fact). The network setting also
introduces additional complications due to dependence on network topology and leads to inter-
esting new questions about when and how effects propagate through the network. Consequently
new techniques need to be developed to analyze the network setting.

The main objectives of this work are to introduce and characterize properties of directional
derivatives of a class of multi-dimensional reflection maps associated with single-class open
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queueing networks, and to illustrate the practical insights that can be obtained from such an
analysis. In particular, existence of directional derivatives for the class of so-called Harrison-
Reiman reflection maps (see Theorem 1.1) is established and the dependence of the behaviour
of directional derivatives on both the states of loading in various queues in the network as well
as on the topology of the network is described (see Theorem 1.2 and the illustrative examples
in Section 2). As motivation for this work, a heuristic explanation of the connection between
directional derivatives of multi-dimensional reflection maps and functional central limit theorems
for stationary and non-stationary queueing networks is provided in Section 1.1. Properties of the
derivative established in this work are used to make this connection rigorous in [25]. Features
of the asymptotic analysis that are special to non-stationary networks are discussed in Section
1.2, while the main results of the paper are summarized in Section 1.3. Some basic notation and
a description of the organization of the rest of the paper is provided in Section 1.4.

1.1 Directional Derivatives and Functional Central Limits

Conventional diffusion approximations of queueing networks are often obtained by the following
general procedure [5, 6, 24, 36, 37, 45]. Consider a sequence of queueing networks defined in
terms of their primitives (i.e. the random processes defined on some probability space (Ω,F , P )
that describe arrivals, services and routing, as well as the scheduling rules). To each queueing
network in the sequence one constructs from the primitives a certain netput process X̃n such
that the evolution of X̃n coincides with the evolution of the queue length process Z̃n only when
all queues are non-empty. In general the queue length process is a complicated functional of the
netput process:

Z̃n = Fn(X̃n).

The sequence of netput processes {X̃n} is assumed to satisfy a functional strong law of large
numbers (FSLLN) and functional central limit theorem (FCLT). Specifically, if Xn is defined by

Xn(t)
.
= X̃n(nt) for t ∈ [0,∞), (1.3)

and

X̄n .
=

1

n
Xn, (1.4)

then the FSLLN, which characterizes the long-term mean behaviour of the netput process, is
given by

X̄n → X̄ as n→ ∞, (1.5)

where the limit is with respect to the topology of P -a.s. convergence. Similarly, the FCLT for
the netput process takes the form

X̂n → X̂ as n→ ∞, (1.6)

where the limit is with respect to the topology of weak convergence with respect to an appropriate
topology on path space (e.g. uniform convergence on compact sets), and

X̂n .
=

√
n

[

X̄n − X̄
]

(1.7)

is a rescaled centered version of the netput process that captures the fluctuations around its
mean. In order to obtain a corresponding FSLLN and FCLT for the queue length process, Zn
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and Z̄n are defined as in (1.3) and (1.4) respectively, with X replaced by Z. Homogeneity of
the functionals Fn with respect to space and time are first used to infer that

Z̄n = Fn(X̄n). (1.8)

The FSLLN for the queue length process is then obtained by establishing the convergence

Z̄n = Fn(X̄n) → F (X̄) as n→ ∞, (1.9)

where X̄ is the P -a.s. FSLLN limit of the netput process obtained in (1.5), F is the multi-
dimensional oblique reflection mapping associated with the queueing network (see Section 3.1
for a precise definition) and

Z̄
.
= F (X̄) (1.10)

is referred to as the fluid limit. Note that when Fn ≡ F , as is the case for a single station or
when the routing is deterministic (see [6] for details), and F can be shown to be continuous,
then the P -a.s. FSLLN (1.9) for the queue length process is a direct consequence of the FSLLN
(1.5) for the netput process.

In order to characterize the fluctuations of the queue lengths around the fluid limit, we
analyze limits of the centered sequence {Ẑn} of queue lengths defined by

Ẑn .
=

√
n

[

Z̄n − Z̄
]

. (1.11)

Substituting relations (1.7), (1.8) and (1.10) into the above display yields the relations

Ẑn =
√
n

[

Fn(X̄n) − F (X̄)
]

=
√
n

[

Fn(X̄n) − F (X̄n)
]

+
√
n

[

F (X̄n) − F (X̄)
]

=
√
n

[

Fn(X̄n) − F (X̄n)
]

+
√
n

[

F

(

X̄ +
1√
n
X̂n

)

− F (X̄)

]

.

In many cases it is possible to show that with respect to a suitable topology on path space

√
n

[

Fn(X̄n) − F (X̄n)
] → 0 as n→ ∞ (1.12)

[

F

(

X̄ +
1√
n
X̂n

)

− F

(

X̄ +
1√
n
X̂

)]

→ 0 as n→ ∞ (1.13)

and the limit

∇
X̂
F (X̄)

.
= lim

ε↓0

1

ε

[

F
(

X̄ + εX̂
)

− F (X̄)
]

(1.14)

exists. In such a situation, by setting ε
.
= 1/

√
n and Ẑε .

= Ẑn, the last four displays can be
combined to obtain

Ẑ
.
= lim

ε↓0
Ẑε = lim

ε↓0

1

ε

[

F
(

X̄ + εX̂
)

− F (X̄)
]

= ∇
X̂
F (X̄). (1.15)

The notation in (1.14) reflects the fact that ∇
X̂
F (X̄) represents the directional derivative of

the reflection map F in the direction X̂, evaluated at X̄. Note that, strictly speaking, the
claim that (1.15) follows from (1.12)-(1.14) depends on the topology in which the convergence
in (1.12)-(1.15) take place. It clearly holds if all limits takes place with respect to the topology
of uniform convergence on compact sets (u.o.c.). However, if the convergence in (1.15) takes
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place with respect to another topology on path space, as is indeed the case for non-stationary
networks, then a more careful analysis is required. We omit a discussion of these subtleties in
this heuristic motivational exposition, and instead refer the reader to [25] for more details.

In summary, under suitable assumptions, in the conventional heavy traffic asymptotic regime
the fluid limit and functional central limits of the queue length process are given by

Z̄ = F (X̄) and Ẑ = ∇
X̂
F (X̄), (1.16)

where F is the multi-dimensional oblique reflection map and ∇
X̂
F (X̄) is the directional deriva-

tive of F , as defined in (1.14). Thus we have indicated how directional derivatives of the oblique
reflection map arise naturally when establishing functional central limit theorems for queue-
ing networks in the conventional heavy traffic regime. The general philosophy of interpreting
functional central limit theorems as directional derivatives of a suitable mapping is also useful
in other settings. In particular, this interpretation is also valid in the so-called Halfin-Whitt
asymptotic regime [11] (see Section 7 for a brief discussion of this issue).

1.2 Stationary vs. Non-stationary Queueing Networks

As indicated in the last section, functional central limits of queueing networks in the conventional
heavy traffic regime often have an interpretation as directional derivatives of corresponding
reflection maps [25]. For stationary networks, the primitives describing the queueing networks
are time-independent. In this case, under so-called heavy-traffic conditions, the fluid limit X̄
of the netput process is trivial (i.e. X̄ ≡ 0, where 0 represents the function that is identically
zero). Since the reflection map F is homogeneous (i.e. F (αg) = αF (g) for all α > 0 and g in the
domain of F ), it follows that F (0) = 0 (where the latter 0 is again the zero function) and hence
the directional derivative ∇

X̂
F evaluated at X̄ = 0 is simply the function F evaluated at X̂.

As a result the representation for fluid and functional central limits for the queueing network in
(1.16) takes the simpler, more familiar form

Z̄ ≡ 0 and Ẑ = F (X̂).

Thus in the stationary setting, the heavy traffic diffusion limit is simply F (X̂). In constrast, in
most interesting cases the fluid limit of a non-stationary queueing network is not trivial, since
each node in the network varies dynamically with time between periods of overloading, criticality
and underloading. As a consequence the functional central limit is not in general equal to the
image of X̂ under the reflection map, and hence a complete characterization of the directional
derivatives of the multi-dimensional reflection map is required.

Another difference between the stationary and non-stationary settings is that the asymptotic
scalings Xn defined in (1.3) to approximate stationary networks are not adequate in the non-
stationary setting. This is because the stationary scaling approximates the present behaviour of
the system by its behaviour at infinity, consequently erasing all the dynamic behaviour that is of
interest in the presence of non-stationarity (see [1, 2, 13, 19] for some discussion of this issue in
the context of non-stationary queues with periodic evolution). Building on earlier work in [17]
and [31], a time-inhomogeneous analogue to steady state analysis involving the perturbation of
transition probabilities was proposed in [28], where it was referred to as uniform acceleration.
The perturbation analysis was then extended to the sample-path level using the theory of strong
approximations in [22]. This approach involves scaling all the average instantaneous transition
rates of the Markovian model by a factor of 1/ε. As ε ↓ 0 each rate increases, or is accelerated,
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in absolute terms, while the ratio of any two rates relative to each other is held fixed. Uniform
acceleration enables a dynamic asymptotic analysis of non-stationary queueing models, and it
coincides with the usual (heavy traffic or steady state) approximations when applied to stationary
models. As a result, in [25] the characterization of functional central limits for non-stationary
networks in terms of directional derivatives of reflection maps is carried out within the asymptotic
framework of uniform acceleration.

1.3 Main Results of the Paper

As mentioned in Section 1.1, given ψ, χ ∈ Dlim, the derivative ∇χΓ(ψ) is defined to be the
unique limit of the family of functions

∇ε
χΓ(ψ)

.
= ε−1 [Γ (ψ + εχ) − Γ (ψ)] , (1.17)

where Γ is the oblique reflection mapping. In [22] it was shown that in the one-dimensional case
where Γ is given by (1.1), if ψ, χ are continuous, then

∇χΓ(ψ)(t) = χ(t) + sup
s∈Φ(t)

[−χ(s)] ∨ 0,

where
Φ(t)

.
= {s ∈ [0, t] : Γ(ψ)(s) = 0 and θ(s) = θ(t)},

and θ is defined by (1.2). (In reality, this was shown in [22] under the additional restriction
that ∇χΓ(ψ) has only a finite number of discontinuities in any compact interval, but as shown
in Theorem 4.7 and [46, Theorem 9.3.1], this condition can be relaxed.) When ψ and χ are the
fluid and functional central limits of the netput process associated with a time-varying queue,
then ∇χΓ(ψ) characterizes the functional central limit of the time-varying queue. In this case
Γ(ψ) has an interpretation as the fluid limit of the queue and θ as the corresponding cumulative
potential outflow lost (due to idleness of the server) during the period [0, t]. Thus Φ(t) represents
the set of all times s in the interval [0, t] when the fluid queue was zero, but the server was fully
utilized in the interval [s, t].

In the multi-dimensional setting there exist analogous quantities θi(t) (see Definition 3.1 for
a rigorous definition), which represents the cumulative potential outflow lost from the ith queue
during [0, t], and sets

Φi(t)
.
=

{

s ∈ [0, t] : Γ(ψ)i(s) = 0 and θi(s) = θi(t)
}

, (1.18)

of the times s ∈ [0, t] at which the ith fluid queue is zero but the ith server is fully utilized
during [s, t]. The first main result of this work, Theorem 1.1, characterizes the multi-dimensional
derivative in terms of these quantities. The H-R class of constraint matrices mentioned in the
statement of the theorem is defined in Section 3.1 and includes constraint matrices that model
Jackson networks with single-class customers in which arrivals and services are allowed to be
time-varying. Throughout the paper C denotes the class of IRK-valued continuous functions on
[0,∞) and Dlim is the space of IRK-valued functions on [0,∞) that have left and right limits at
every point t ∈ [0,∞).

Theorem 1.1 Let R be an H-R constraint matrix in IRK×K , let P
.
= I − R and let Γ be the

associated oblique reflection map. Given ψ, χ ∈ Dlim, the family of functions ∇ε
χ(ψ) defined in
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(1.17) converges pointwise to a limit ∇χΓ(ψ), which lies in Dlim. Moreover when ψ, χ ∈ C, the
convergence in (1.17) is uniform on compact subsets of continuity points of ∇χΓ(ψ) and

∇χΓ(ψ) = χ+Rγ(ψ, χ),

where γ
.
= γ(ψ, χ) is the unique solution to the system of equations

γi(t) =











0 if t ∈ (0, til)
sups∈[ti

l
,t]

[−χi(s) + [Pγ]i(s)
] ∨ 0 if t ∈ [til, t

i
u)

sups∈Φi(t)

[−χi(s) + [Pγ]i(s)
]

if t ∈ [tiu,∞)

(1.19)

for i = 1, . . . ,K, where Φi is defined by (1.18) and

til
.
= inf{t > 0 : Γ(ψ)i(t) = 0}

tiu
.
= sup{t > 0 : θ̇i(t+) > 0}

are the first times that queue i becomes empty and underloaded respectively. In particular the
derivative ∇χΓ(ψ) is Lipschitz in χ and also satisfies for α, β > 0

Γαχ(βψ) = αΓχ(ψ).

Remark. Note that if all queues are initially empty and are subsequently always under heavy-
traffic (i.e. they are always critically loaded with Γ(ψ)i(t) = 0 and θ̇i(t+) = θ̇i(t−) = 0), then
til = 0, tiu = ∞ and Φi(t) = [0, t] for every i = 1, . . . ,K and t ∈ [0,∞). In this case γ is the
unique solution to the system of equations

γi(t) = sup
s∈[0,t]

[

−χi(s) + [Pγ]i(s)
]

∨ 0 for i = 1, . . . ,K.

By Theorem 3.2 (see also [14]) this implies that the derivative is simply the reflected or con-
strained version of χ:

∇χΓ(ψ) = Γ(χ),

which is consistent with the well-known reflected Brownian motion characterization of heavy-
traffic limits of stationary open single-class queueing networks [14, 37].

A slightly more general version of Theorem 1.1 is stated as Theorem 4.10 and proved in
Section 4.2. The representation for Φi given in (1.18) follows from Theorem 4.10, relation (4.21)
and Lemma 5.1(1). Since even when ψ, χ ∈ C the convergence in Theorem 1.1 is uniform
only on compact subsets of continuity points of the derivative ∇χΓ(ψ), in order to establish
convergence with respect to stronger topologies it is necessary to understand the structure of
the discontinuities of ∇χΓ(ψ). The next main result of the paper, Theorem 1.2, describes the
various types of discontinuities exhibited by the derivative, and identifies necessary conditions for
a discontinuity to take place. The examples in Section 2 demonstrate that each of the different
types of discontinuities mentioned in the theorem does indeed occur for some oblique reflection
problem associated with a non-stationary Jackson network. The various regimes referred to in
the theorem are introduced in Sections 5.1 and 5.2. Roughly speaking, i is said to be overloaded,
critical or underloaded if the ith queue in the network is respectively non-empty, empty but with
a fully utilized server or empty with a server having spare capacity. (A precise definition of these
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terms is given in Definition 5.1.) Likewise, a critical (sub-critical) chain is said to precede i if
there is either a loop of empty buffers that contains i, or there exists a sequence of empty
buffers with the property that the first buffer is at the end of overloading (respectively start
of underloading), the last buffer is i and each buffer in the sequence (when non-empty) routes
its contents to the next buffer in the sequence with positive probability. (See Definition 5.2 for
a precise description of these chains.) We now state Theorem 1.2, whose proof is presented in
Section 5.2.

Theorem 1.2 Given a constraint matrix R satisfying the H-R condition with associated reflec-
tion map Γ, and given functions ψ, χ ∈ C, the following are necessary conditions for the existence
of discontinuities in the directional derivative ∇Γ

.
= ∇χΓ(ψ) at t ∈ [0,∞).

(L) If ∇Γi has a left discontinuity then either
(a) i is at the end of overloading, in which case

∇Γi(t−) < ∇Γi(t) = 0; (1.20)

or
(b) i is not underloaded and a critical chain precedes i, in which case

∇Γi(t−) > ∇Γi(t). (1.21)

(R) If ∇Γi has a right discontinuity then either
(a) i is at the start of underloading, in which case

∇Γi(t) > ∇Γi(t+) = 0; (1.22)

or
(b) i is not underloaded and a sub-critical chain precedes i, in which case

∇Γi(t) < ∇Γi(t+). (1.23)

(LR) If ∇Γi is neither right nor left discontinuous, then either
(a) i is at the end of overloading and a sub-critical chain precedes i, in which case

∇Γi(t−) < ∇Γi(t) = 0 < ∇Γi(t+);

or
(b) i is at the start of underloading and a critical chain precedes i, in which case

0 = ∇Γi(t−) > ∇Γi(t) > ∇Γi(t+);

or
(c) i is not underloaded and there exist both critical and sub-critical chains preceding i, in
which case the discontinuity is a separated discontinuity of the form

∇Γi(t) < min
[

∇Γi(t−),∇Γi(t+)
]

. (1.24)
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Finally, if i is underloaded at t then ∇Γi(t−) = ∇Γi(t) = ∇Γi(t+) = 0 and if i is overloaded at
t then

∇Γi(t) ≤ min
[

∇Γi(t−),∇Γi(t+)
]

. (1.25)

Henceforth, we will use the notation “discontinuities of type (La), (Ra) etc.” to refer to the
different types of discontinuities described in Theorem 1.2 above.

As mentioned earlier, in [25] functional central limits for non-stationary queueing networks
are established and characterized in terms of the directional derivative of the reflection map.
This involves proving pathwise convergence of the pre-limit processes (1.17) to the derivative in
a topology that is strong enough to imply convergence of the corresponding stochastic processes.
As shown in [22], even in the one-dimensional setting this requires significant effort – in particular
convergence to the derivative can be established only in the Skorokhod M1 topology [33, 41].
The derivative of the one-dimensional reflection map is upper semicontinuous and lies in Dl,r,
the space of functions that are either right continuous or left continuous at every point. Thus it
exhibits discontinuities only of type (La) and (Ra), which happen only when the queue is empty
and is either at the end of overloading or at the start of underloading. In the multi-dimensional
setting, discontinuities in the ith component of the derivative can occur even when queue i is
overloaded. Thus the multi-dimensional setting is considerably more complicated and requires
the consideration of more general topologies. The properties derived in Theorems 1.2 and 5.2
of this paper are used in [25] to prove fundamental convergence results that are required to
establish functional central limit theorems for non-stationary queueing networks.

1.4 Organization of the Paper and Some Basic Notation

The organization of the rest of the paper is as follows. In Section 2 we provide several illustrative
examples to demonstrate some interesting features of directional derivatives associated with
various queueing networks. In Section 3 we first recall the definition and properties of the multi-
dimensional oblique reflection map, and then introduce the notion of a directional derivative
of the reflection map (Definition 3.3). In Section 4 we characterize the derivative for the so-
called Harrison-Reiman class of oblique reflection problems, which arise from open single-class
queueing networks [14, 37]. In Section 5 we derive properties of the derivative when ψ, χ ∈
C. Section 6 contains proofs of the main theorems, while Section 7 contains some concluding
observations. Section A of the Appendix contains proofs of some auxiliary results. When
considering functions with discontinuities, the function space of right continuous functions with
left limits (Dr) has been most commonly used in the literature. However, we will have cause to
use more general function spaces, whose definitions are given in Section B of the Appendix as
a convenient reference. In addition, each function space is defined for the first time it is used in
the paper.

We close this section with some other common notation used throughout the paper. For
a, b ∈ IR let a ∨ b = max(a, b) and a ∧ b = min(a, b). Given a vector x ∈ IRK , xi or [x]i will be
used to denote the ith component of the vector. For a ∈ IRK , we define the norm

|a| .= max
i=1,...,K

|ai| (1.26)

where, for ai ∈ IR, |ai| denotes the usual Euclidan norm. Given a K ×K matrix R, RT denotes
its transpose, σ(R) its spectral radius and Rij represents the entry in the jth column and ith
row of R. The matrix I represents the K × K identity matrix, and {ei, i = 1, . . . ,K} is the
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standard orthonormal basis in IRK . Inequalities of vectors and matrices should be interpreted
componentwise. Vectors will always be expressed as column vectors. We will deal with many
limits in this paper. The notation ↑ (↓) will be used to denote monotone nondecreasing (nonin-
creasing) convergence to a limit with respect to a particular topology, which will be made clear
in each context.

Given a function f on [0,∞) that takes values in IRK , f i denotes the ith coordinate function.
Moreover, for T <∞ ||f ||T denotes the supremum norm:

||f ||T .
= sup

s∈[0,T ]
|f(s)|,

where | · | is the norm defined above in (1.26). Given a real-valued function f , the notation f is
used to denote the supremum function:

f(t)
.
= sup

s∈[0,t]
f(s).

Finally for functions f of bounded variation |f |t denotes the total variation norm on [0, t] (with
respect to the norm | · | defined in (1.26) on IRK).

2 Illustrative Examples

In this section we characterize the directional derivatives associated with two concrete time-
dependent queueing networks that arise in applications

2.1 Periodic Arrivals to a Tandem Queue

There are many examples of transportation and computer systems whose mean arrival rates vary
periodically with time, e.g. depending on the time of day [31]. Approximations to these systems
in terms of average arrival rates over the whole period are clearly inadequate, and it is often of
particular interest to determine how the system behaves around points of sharp transitions in
the arrival rates. Here we examine a tandem queueing network with a periodic time-dependent
arrival rate and identify the associated directional derivatives.

2.1.1 The Tandem Queueing Model

Consider the tandem queueing system illustrated in Figure 3. The associated reflection map,
which is depicted in Figure 2, has routing matrix P T and reflection matrix R given by

P T .
=

[

0 0
1 0

]

and R
.
=

[

1 −1
0 1

]

. (2.1)

It is easy to verify that R satisfies the Harrison-Reiman condition (see Definition 3.2), and let
Γ denote the associated reflection map.

Note that there are K = 2 queues in the network. Suppose there are no exogeneous arrivals
to queue 2, and that the arrivals to queue 1 are governed by a non-homogeneous Poisson arrival
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process with a time-dependent mean rate λ that is periodic with period 4T and defined as
follows.

λ1(t)
.
=











4t+ 4T for t ∈ [0, T )
8T − 4(t− T ) for t ∈ [T, 3T )
4(t− 3T ) for t ∈ [3T, 4T ],

(2.2)

and λ1(t) = λ1(t mod 4T ) for t ∈ (4T,∞) (see Figure 1). Moreover, suppose the service rate is
constant and equal to µ1 = 5T at queue 1 and equal to µ2 = 4.5T at queue 2. Note that the

average arrival rate λ
1

to queue 1 over the period T is 4.

2.1.2 Fluid Limit

We now define ψ ∈ C to be the average netput process, so that ψi(t) represents the total
cumulative arrivals to minus the total service that would have taken place had both queues been
non-empty throughout the interval [0, t]. Thus for i = 1, 2

ψ̇1(t)
.
= λ(t) − µ1, and ψ̇2(t)

.
= (µ1 − µ2)

and let (φ, θ) be the solution to the oblique reflection problem defined by R with input ψ. Then
it can be easily verified that

φ̇1(t)
.
=



















0 for t ∈ (0, T/4)
4(t− T/4) for t ∈ (T/4, T )
3T − 4(t− T ) for t ∈ (T, (1 + α)T )
0 for t ∈ ((1 + α)T, 4T ),

and

φ1(t)
.
=



































0 for t ∈ [0, T/4)

2

(

t− T

4

)2

for t ∈ [T/4, T )

9T 2

8
+ 3T (t− T ) − 2(t− T )2 for t ∈ [T, (1 + α)T )

0 for t ∈ [(1 + α)T, 4T ),

where α
.
=

3

4
(1 +

√
2) < 2. The departure rate ν̇1 from the first queue is therefore

ν̇1(t)
.
=



















4t+ 4T for t ∈ [0, T/4)
5T for t ∈ [T/4, (1 + α)T )
8T − 4(t− T ) for t ∈ [(1 + α)T, 3T )
4(t− 3T ) for t ∈ [3T, 4T ].

Since the service rate at queue 2 is µ2 = 4.5T this implies that

φ̇2(t)
.
=



















































0 for t ∈ [0, T/8)

4

(

t− T

8

)

for t ∈ [T/8, T/4)

0.5T for t ∈ [T/4, (1 + α)T )

3.5T − 4(t− T ) =
(1 − 6

√
2)T

2
− 4(t− (1 + α)T ) for t ∈ [(1 + α)T, 3T )

4(t− 3T ) − 4.5T for t ∈ [3T, (1 + β)T )
0 for t ∈ [(3 + β)T, 4T ]
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and φ2(t) is equal to



































































0 for t ∈ [0, T/8)

2

(

t− T

8

)2

for t ∈ [T/8, T/4)

T 2

32
+
T

2

(

t− T

4

)

for t ∈ [T/4, (1 + α)T )

(25 + 12
√

2)T 2

32
+

(1 − 6
√

2)T (t− (1 + α)T )

2
− 2(t− (1 + α)T )2 for t ∈ [(1 + α)T, 3T )

17T 2

32
+ 2(t− 3T )2 − 4.5T (t− 3T ) for t ∈ [3T, (3 + β)T ]

0 for t ∈ [(3 + β)T, 4T ],

where β = 1/8 < 1. Note that the fluid arrival rate λ1 to queue 1 peaks at time t = T , while
the mean queue 1 content peaks at time t = 7T/4 and the mean queue 2 content peaks at time
t = (1 + α)T . Thus the time of peak congestion is delayed by an amount δ1 = 3T/4 at the first
queue and by an additional amount δ2 = 3

√
2T/4 > δ1 at the second queue. Figure 1 shows

plots of the queue lengths and arrival rates with time, and Figure 3 illustrates the different states
of the fluid limit of the tandem queue at various times during the interval [0, 4T ]. In contrast, if
the system were approximated by the time-averaged arrival rate over the period, which is equal
to 4T , the traffic intensities in both queues would be less than 1, and hence both queues would
be empty throughout the interval.

2.1.3 Directional Derivatives for the Tandem Queue

From the characterization of the directional derivatives given in Theorem 1.1 it follows that for
the oblique reflection problem associated with the H-R constraint matrix R specified in (2.1),

∇Γ1(t) = χ1(t) + sups∈Φ1(t)

[−χ1(s)
]

∇Γ2(t) = χ2(t) − sups∈Φ
−ξ1

(t)

[−χ1(s)
]

+ sups∈Φ2(t)

[

−χ2(s) + supr∈Φ1(s)

[−χ1(r)
]

]

.

The representation (5.2) for Φi(t), combined with the explicit expression for φ given above,
shows that

Φ1(t)
.
=































{t} for t ∈ [0, T/4)
{

T

4

}

for t ∈ [T/4, (1 + α)T )
{

T

4
, (1 + α)T

}

for t = (1 + α)T

{t} for t ∈ ((1 + α)T, 4T ],

Φ2(t)
.
=































{t} for t ∈ [0, T/8)
{

T

8

}

for t ∈ [T/8, (3 + β)T )
{

T

8
, (3 + β)TT

}

for t = (3 + β)T

{t} for t ∈ ((3 + β)T, 4T ].
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Together the last two displays show that ∇Γ1 is equal to



















0 for t ∈ [0, T/4)
χ1(t) − χ1(T/4) for t ∈ [T/4, (1 + α)T )
χ1((1 + α)T ) +

[−χ1(T/4) ∨ −χ1((1 + α)T )
]

for t = (1 + α)T
0 for t ∈ ((1 + α)T, 4T ].

and ∇Γ2 is equal to















































0 for t ∈ [0, T/8)
χ2(t) + χ1(t) − χ2(T/8) − χ1(T/8) for t ∈ [T/8, T/4)
χ2(t) + χ1(T/4) − χ2(T/8) − χ1(T/8) for t ∈ [T/4, (1 + α)T )
χ2(t) +

[

χ1(T/4) ∧ χ1((1 + α)T )
] − χ2(T/8) − χ1(T/8) for t = (1 + α)T

χ2(t) + χ1(t) − χ2(T/8) − χ1(T/8) for t ∈ ((1 + α)T, (3 + β)T )
0 ∨ [

χ2((3 + β)T ) + χ1((3 + β)T ) − χ2(T/8) − χ1(T/8)
]

for t = (3 + β)T
0 for t ∈ ((3 + β)T, 4T ].

We will refer to the general classification of discontinuities presented in Theorem 1.2 in order
to describe the discontinuities in the derivative of the particular tandem model considered in
this section. Note that queue 1 is both at the end of overloading and at the start of underloading
at time t = (1 + α)T . Thus at that time queue 2, though overloaded, has both a critical and
sub-critical chain preceding it (see Definition 5.2 for a precise description of chains). From the
above explicit expressions it is straightforward to see that ∇Γ1 has a left discontinuous upward
jump of type (La) at t = (1 + α)T if

χ1(T/4) > χ1((1 + α)T ) (2.3)

and exhibits a right continuous jump downward of type (Ra) if the opposite inequality holds. At
the same time, ∇Γ1 exhibits a left discontinuous jump downward at t = (1 + α)T of type (Lb)
if the inequality (2.3) holds and a right discontinuous upward jump of type (Rb) if the reverse
inequality is satisfied. Moreover, note that queue 2 is at the end of overloading and at the start
of underloading at t = (3 + β)T . Thus at t = (3 + β)T , ∇Γ2 has a left discontinuous downward
jump of type (Lb) if the inequality

χ1((3 + β)T ) + χ2((3 + β)T ) < χ1(T/8) − χ2(T/8)

is satisfied, and a right discontinuous jump upward of type (Rb) if the reverse inequality is
satisfied.

2.2 The Merge

2.2.1 Description of the Merge Model

We now consider a scenario in which two upstream queues feed into a common buffer (see
Figure 4). The upstream queues experience a surge in arrival rate for an initial period, which
then subsides to a lower rate. However, just as the surge ends, the server at queue 2 undergoes
a partial failure, resulting in the queue maintaining criticality. We show that in such a scenario
there can be a discontinuity in the derivative of the downstream queue at the time congestion
ends in the upstream queues.

14



We assume that queues 1 and 3 have constant service rates µ1(t) = µ3(t) = 1 for t ∈ [0, 2],
while queue 2 has service rate

µ2(t) =

{

1 for t ∈ [0, 1]
1/3 for t ∈ [1, 2]

(2.4)

The departures from queues 1 and 2 feed into queue 3. (see Figure 4). The exogenous arrivals
to queues are modeled by non-homogeneous Poisson processes with mean arrival rates λ ∈ C,
where

λ1(t) =

{

1 for t ∈ [0, 1]
1/2 for t ∈ (1, 2].

λ2(t) =











3/2 for t ∈ [0, 1/2)
1/2 for t ∈ [1/2, 1)
1/3 for t ∈ [1, 2],

λ3(t) = 0 for t ∈ [0, 2]

The routing and constraint matrices P ′ and R respectively are given by

P ′ =







0 0 0
1 0 0
1 0 0






and R =







1 −1 −1
0 1 0
0 0 1







It is trivial to verify that P is a H-R matrix. Let Γ denote the associated reflection map.

2.2.2 The Fluid Limit

Let the netput process ψ be constructed in the usual way:

ψi(t) =

∫ t

0

(

λi(s) − µi
)

ds for i = 1, 2

and

ψ3(t) =

∫ t

0

(

µ1 + µ2(s) − µ3
)

ds.

Let φ = Γ(ψ) be the fluid queue. Then it is easy to verify that

φ1(t) = 0 for t ∈ [0, 2]

θ1(t) =







0 for t ∈ [0, 1)

1 +
1

2
(t− 1) for t ∈ [1, 2].

φ2(t) =























1

2
t for t ∈ [0, 1/2)

1

4
− 1

2
(t− 1/2) for t ∈ [1/2, 1)

0 for t ∈ [1, 2].
θ2(t) = 0 for t ∈ [0, 2]

φ3(t) =







t for t ∈ [0, 1)

1 − 1

6
(t− 1) for t ∈ [1, 2]

See Figure 5 for an illustration of the fluid limit of the three queues.
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2.2.3 Directional Derivatives for the Merge Model

It is easy to see that

Φ1(t) =

{

[0, t] for t ∈ [0, 1]
{t} for t ∈ (1, 2]

Φ2(t) =

{

{0} for t ∈ [0, 1)
{0} ∪ [1, t] for t ∈ [1, 2]

Φ3(t) = {0} for t ∈ [0, 2]

Moreover, from Theorem 1.1 it follows that

∇Γ1(t) = χ1(t) + sups∈Φ1(t)

[−χ1(s)
]

.

∇Γ2(t) = χ2(t) + sups∈Φ2(t)

[−χ2(s)
]

∇Γ3(t) = χ3(t) − sups∈Φ2(t)

[−χ2(s)
] − sups∈Φ1(t)

[−χ1(s)
]

+ sups∈Φ3(t)

[

−χ3(s) + supr∈Φ2(s)

[−χ2(r)
]

+ supr∈Φ1(s)

[−χ1(r)
]

]

Hence it follows that if

χ2(1) < χ2(0) and sup
s∈[0,1]

[

−χ1(s)
]

> −χ1(1)

then
∇Γ3(1) −∇Γ3(1−) = χ2(1) − χ2(0) < 0

∇Γ3(1) −∇Γ3(1+) = − sups∈[0,1]

[−χ1(s)
] − χ1(1) < 0,

which implies ∇Γ1 has a separated discontinuity (i.e. it is neither right continuous or left con-
tinuous) at t = 1, and moreover observe that

∇Γ3(1) < ∇Γ3(1−) ∧∇Γ3(1+)

as expected from (LRc) of Theorem 1.2. It is significant that the separated discontinuity arises
only in the multi-dimensional setting, and not in the one-dimensional setting. This has important
ramifications for the convergence of ∇ε

χ(ψ) to ∇χΓ(ψ) when ψ, χ are continuous. Specifically,
as remarked earlier, it was shown in [22] that the convergence of ∇ε

χ(ψ) to ∇χΓ(ψ) takes place
in the M1 topology [45]. When ψ, χ are continuous, ∇ε

χ(ψ) is also continuous for every ε > 0.
Since the space Dl,r, the space of functions that are either left or right continuous at every
point, is complete under the M1 topology [45], and continuous functions clearly lie in Dl,r, while
functions with separated discontinuities do not lie in Dl,r, it is clear that one cannot in general
expect M1 convergence in the multi-dimensional case. Indeed, as shown in [25], in the network
setting under suitable assumptions convergence takes place in the (weak) M2 topology, but not
in general in the M1 topology.

3 The Multi-dimensional Reflection Map

In this section we give a precise definition of directional derivatives of the oblique reflection map.
In Section 3.1 we recall the definition of the oblique reflection problem and the reflection map,
in Section 3.2 we summarize known properties of the so-called Harrison-Reiman class of oblique
reflection maps and in Section 3.3 we introduce directional derivatives.
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3.1 The Oblique Reflection Problem

Let IRK
+ be the positive K-dimensional orthant given by

IRK
+
.
= {x ∈ IRK : xi ≥ 0 for every i = 1, . . . ,K}.

Let R ∈ IRK×K be a matrix whose ith column is the vector ri, which represents the constraint
direction on the face Fi = {x ∈ IRK

+ : xi = 0} of the boundary of the orthant. Roughly speaking,
given a trajectory ψ ∈ Dlim, the oblique reflection problem (ORP) associated with the constraint
matrix R defines a constrained version φ of ψ that is restricted to live in IRK

+ by a constraining
term that pushes along the direction ri only when φ lies on the face Fi. The rigorous definition
of the ORP is as follows. Here D+

lim represents the class of functions ψ in Dlim that satisfy
ψ(0) ∈ IRK

+ and I0 the subspace of functions in Dlim that have f(0) = 0 and each co-ordinate
non-decreasing.

Definition 3.1 (Oblique Reflection Problem) Given R ∈ RK×K , ψ ∈ D+
lim, (φ, θ) ∈ D+

lim×
I0 solve the oblique reflection problem associated with the constraint matrix R for ψ if φ(0) =
ψ(0), and if for all t ∈ [0,∞)

1. φ(t) ∈ IRK
+ ;

2. φ(t) = ψ(t) +Rθ(t), where for every i = 1, . . . ,K

∫ t

0
1(0,∞)(φ

i(s))dθi(s) = 0. (3.1)

Note that the condition (3.1) simply states that the constraining term θi can increase at time
t only if φi(t) = 0. From the definition above it is clear that one can without loss of generality
assume that Rii = 1 for i = 1, . . . ,K. Indeed, we shall assume this normalization throughout
the rest of the paper.

In this work we exclusively consider oblique reflection problems (ORPs) that satisfy Assump-
tion 3.1 introduced in Section 3.2, which in particular guarantees that whenever a solution to
the ORP exists for some ψ ∈ D+

lim, it is unique. We refer to the mapping Γ : ψ → φ as the re-
flection map (RM), and use Θ : ψ → θ to denote the mapping that takes ψ to the corresponding
constraining term θ.

Remark 3.1 The ORP was introduced in [14] to characterize functional central limits of single-
class open queueing networks (see Figure 3). Single-class open queueing networks with K queues
in which a fraction p′ij of the departures from queue i are sent to queue j, and a fraction

1 − ∑K
j=1 p

′
ij of the departures from queue i exit the network give rise to ORPs with a IRK×K

constraint matrix R given by

Rij
.
=

{

−p′ji for j 6= i

1 otherwise.
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3.2 Special Classes of Reflection Maps

It is well known that a necessary and sufficient condition for there to be solutions to the ORP
is that the constraint matrix R satisfy the so-called completely-S condition [3, 27]. However,
the derivative cannot be expected to exist if the RM is not even continuous. Thus all RMs
considered in this paper are assumed to satisfy the following regularity condition.

Assumption 3.1 (Lipschitz continuity of the RM) The matrix R of the ORP is completely-S
and is such that there exists L <∞ for which given solutions (φi, θi) to the ORP for ψi ∈ D+

lim,
i = 1, 2,

||φ1 − φ2|| ≤ L||ψ1 − ψ2|| and ||θ1 − θ2|| ≤ L||ψ1 − ψ2||.
The above assumption implies in particular that a unique solution to the ORP exists for every
ψ ∈ D+

lim, and consequently the RM Γ and the map Θ associated with the ORP satisfy

||Γ(ψ1) − Γ(ψ2)|| ≤ L||ψ1 − ψ2|| and ||Θ(ψ1) − Θ(ψ2)|| ≤ L||ψ1 − ψ2||. (3.2)

We largely focus on a subset of ORPs that satisfy the additional regularity conditions de-
scribed below in Definition 3.2. These ORPs have an additional monotonicity property that
proves useful for the characterization of directional derivatives of their RMs. We refer to this
class of RMs as the Harrison-Reiman class since they were introduced by Harrison and Reiman
in [14]. We also refer to a slight generalization of the H-R class as gH-R (or generalized Harrison-
Reiman). Recall that I is the K×K identity matrix and by convention Rii = 1 for i = 1, . . . ,K.

Definition 3.2 (H-R and gH-R condition) A constraint matrix R ∈ RK×K is said to satisfy the
gH-R condition if the spectral radius of the matrix P = |I −R| is less than one. Moreover, R is
said to satisfy the H-R condition if it satisfies the gH-R condition, and in addition P = I−R ≥ 0.

We now state a minor generalization of a well-known result about ORPs in the gH-R class.
Recall the notation f(t) = sups∈[0,t] f(s).

Theorem 3.2 (Harrison & Reiman [14]) Consider an ORP with constraint matrix R. If
R satisfies the H-R or gH-R condition, then it also satisfies Assumption 3.1. Moreover, if
P

.
= I −R, then given ψ ∈ D+

lim, θ = Θ(ψ) if and only if for i = 1, . . . ,K and t ∈ [0,∞)

θi(t) =
[

−ψi + [Pθ]i (t)
]

∨ 0 . (3.3)

In other words, θ is the unique fixed point of the map F (ψ, ·) : I0 → I0 given by

F i(ψ, θ)(t)
.
=

[

−ψi + [Pθ]i(t)
]

∨ 0 for i = 1, . . . ,K. (3.4)

Proof. It is easy to verify that F (ψ, θ) ∈ I0 whenever (ψ, θ) ∈ D+
lim×I0. Since Dlim is complete

with respect to the sup norm, the same argument as that used in [14] shows that F (ψ, ·) is a
contraction mapping that maps I0 into I0, and thus has a unique fixed point. It only remains
to show that θ is a fixed point of F (ψ, ·) if and only if θ = Θ(ψ). This also follows from a
straightforward generalization of the argument used in [14] for functions in C to functions in
D+

lim, and is thus omitted.

The following simple fact will be used in the sequel without explicit reference. Note that for
any (ψ, θ) ∈ D+

lim × I0, F (ψ, θ) = F (ψ − Pθ, 0). Therefore given the fixed point θ that satisfies
F (ψ, θ) = θ, one can also write

F (ψ − Pθ, 0) = F (ψ, θ) = θ .
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3.3 Directional Derivatives of the Reflection Map

Given a RM Γ that satisfies Assumption 3.1, we define directional derivatives of Γ as follows.

Definition 3.3 Consider an oblique reflection problem whose reflection map is Γ. Given paths
ψ ∈ D+

lim, χ ∈ Dlim, the derivative of Γ along χ evaluated at ψ is the pointwise limit of the
sequence {∇ε

χΓ(ψ)}, as ε ↓ 0, where ∇ε
χΓ(ψ) is defined by

∇ε
χΓ(ψ)

.
=

1

ε
[Γ(ψ + εχ) − Γ(ψ)] . (3.5)

4 Characterization of the Derivative

In Section 4.1 we show that the derivative introduced in Definition 3.3 exists and is uniquely
defined for any ψ ∈ D+

lim, χ ∈ Dlim when the ORP is of H-R type (see Theorem 4.6). Under ad-
ditional regularity conditions on ψ and χ, in Section 4.2 we derive autonomous characterizations
of the derivative.

4.1 Existence of the derivative ∇χΓ(ψ)

In order to show the existence of the derivative or, equivalently, to show the existence of a unique
pointwise limit of the sequence ∇ε

χ(ψ) ∈ Dlim as ε ↓ 0, it turns out to be more convenient to
work with a closely related sequence {γε(ψ, χ)}. This sequence is introduced in Section 4.1.1
and is shown to have a unique pointwise limit γ(ψ, χ) in Section 4.1.2. In Section 4.1.3 the limit
γ(ψ, χ) and the derivative ∇χΓ(ψ) are shown to lie in Dlim if the ORP is of H-R type.

4.1.1 A related sequence {γε}
Given an ORP with constraint matrix R recall the definition of the mapping Θ following Defi-
nition 3.1 in Section 3.1 and let

γε(ψ, χ)
.
= ε−1 [Θ(ψ + εχ) − Θ(ψ)] . (4.1)

Using the fact that Γ(ψ) = ψ +RΘ(ψ) for ψ ∈ Dlim, along with definition (3.5) of the sequence
{∇ε

χΓ(ψ)} one obtains the relation

∇ε
χΓ(ψ) = χ+Rγε(ψ, χ) . (4.2)

Thus, in order to establish the existence of and characterize the derivative, it clearly suffices to
examine the limiting behaviour of γε(ψ, χ) as ε ↓ 0.

Now suppose that the ORP is of gH-R type and let P
.
= |I − R|. Then, as stated in

Theorem 3.2, Assumption 3.1 is satisfied and so the associated RM Γ is well-defined on Dlim

and is Lipschitz continuous. Fix ψ, χ ∈ Dlim. For conciseness let θ
.
= Θ(ψ) and for ε > 0, let

θε
.
= Θ(ψ + εχ) and γε

.
= γε(ψ, χ). Then from (3.3) it follows that

θi =
[

−ψi + [Pθ]i
]

∨ 0 , (4.3)

and likewise
θi
ε =

[

−ψi − εχi + [Pθε]i
]

∨ 0 .
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Adding and subtracting [Pθ]i under the supremum on the right side of the above display, and
introducing the function

ξi .= ψi − [Pθ]i , (4.4)

one can rewrite
θi
ε =

[

−ξi − εχi + [P (θε − θ)]i
]

∨ 0. (4.5)

Multiplying the difference between (4.5) and (4.3) by ε−1, and using the definitions of F and γε

in (3.4) and (4.1) respectively, one infers that for i = 1, . . . ,K

γi
ε = γi

ε(ψ, χ) = −ε−1ξi − χi + [Pγε]i ∨ 0 −−ε−1ξi ∨ 0
= F i

(

ε−1ξ + χ, γε

) − F i
(

ε−1ξ, 0
)

= F i
(

ε−1ξ + χ− Pγε, 0
) − F i

(

ε−1ξ, 0
)

.

(4.6)

4.1.2 Pointwise convergence of {γε} for H-R ORPs

In this section some basic properties of the sequences {γε} and {∇ε
χΓ(ψ)} are established. Lemma

4.1 proves the uniform boundedness of these two sequences for ORPs that satisfy Assumption
3.1, and Lemma 4.2 proves a crucial monotonicity property of the sequence {γε} for ORPs in
the H-R class.

Lemma 4.1 (Uniform Boundedness) Given an ORP that satisfies Assumption 3.1 and has
an invertible constraint matrix R let ∇ε

χΓ(ψ) and γε(ψ, χ) be defined by (3.5) and (4.1) respec-
tively. Then there exists L <∞ such that for any ξ, χ1, χ2 ∈ Dlim and T <∞

sup
ε>0

||∇ε
χ1

Γ(ψ) −∇ε
χ2

Γ(ψ)||T ≤ L||χ1 − χ2||T ,

and
sup
ε>0

||∇ε
χΓ(ψ)||T ≤ L||χ||T .

In addition L <∞ can be chosen to also satisfy

sup
ε>0

||γε(ψ, χ1) − γε(ψ, χ2)||T ≤ L||χ1 − χ2||T ,

sup
ε>0

||γε(ψ, χ)||T ≤ L||χ||T . (4.7)

Proof. The first inequality follows directly from the Lipschitz continuity of the RM stated
in Assumption 3.1 and the definiton of ∇χΓ(ψ). The third inequality follows from the first
inequality and the fact that the norm of the matrix R is bounded away from zero since R is
invertible. The second and fourth bounds follow simply by choosing χ1 = χ and χ2 = 0 in the
first and third bounds respectively and noting that ∇ε

0Γ(ψ) = γε(ψ, 0) = 0, where the zeros here
represent the function that is identically zero. The last inequality is a direct consequence of the
third.

The uniform boundedness property proved in Lemma 4.1 shows that for every t > 0 the
sequence {γε(t)} must have a convergent subsequence. In the next lemma we establish an
additional monotonicity property that holds for H-R ORPs, which leads to the conclusion in
Corollary 4.3 that the sequence {γε(ψ, χ)} has a unique pointwise limit as ε ↓ 0.
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Lemma 4.2 (Monotonicity) Given an H-R ORP and ψ, χ ∈ Dlim, let γε
.
= γε(ψ, χ) be defined

by (4.1). Then each coordinate function γi
ε is monotonically nonincreasing as ε ↓ 0. In other

words for i = 1, . . . ,K,

0 < ε1 ≤ ε2 implies γi
ε1

(s) − γi
ε2

(s) ≤ 0 for s ∈ [0,∞). (4.8)

Proof. Let 0 < ε1 ≤ ε2 and fix i ∈ {1, . . . ,K} and s ∈ [0,∞). Using the representation (4.6)
for γi

ε and making repeated use of Lemma A.1, it follows that for 0 ≤ ε1 ≤ ε2

γi
ε1

(t) − γi
ε2

(t) = −ε−1
1 ξi − χi + [Pγε1

]i(t) ∨ 0 − ε−1
1 ξi(t) ∨ 0

−−ε−1
2 ξi − χi + [Pγε2

]i(t) ∨ 0 + ε−1
2 ξi(t) ∨ 0

= −ε−1
1 ξi − χi + [Pγε1

]i(t) ∨ 0 −−ε−1
2 ξi − χi + [Pγε2

]i(t) ∨ 0

−(ε−1
1 − ε−1

2 )
[

−ξi(t) ∨ 0
]

≤ −(ε−1
1 − ε−1

2 )ξi + [Pγε1
]i − [Pγε2

]i(t) ∨ 0 −−(ε−1
1 − ε−1

2 )ξi ∨ 0

≤ [Pγε1
]i − [Pγε2

]i(t) ∨ 0.

Hence, using the nonnegativity of P , observe that for t ∈ [0, s]

γi
ε1

(t) − γi
ε2

(t) ≤




K
∑

j=1

Pijγ
j
ε1

− γj
ε2

(t)



 ∨ 0

≤




K
∑

j=1

Pij max
k=1,...,K

γk
ε1

− γk
ε2

(s)



 ∨ 0.

First consider the case when P is substochastic, so that there exists δ > 0 that satisfies
maxi=1,...,K

∑K
j=1 Pij ≤ 1 − δ. If maxk=1,...,K γk

ε1
− γk

ε2
(s) ≤ 0, the above display automati-

cally implies that γε1
(t) = γε2

(t) for every t ∈ [0, s] and the lemma holds. Therefore we suppose
that

max
k=1,...,K

γk
ε1

− γk
ε2

(s) > 0. (4.9)

Then taking the supremum over t ∈ [0, s] on the left side and then the maximum over i on both
sides of the last display, results in the inequality

max
i=1,...,K

γi
ε1

− γi
ε2

(s) ≤ (1 − δ) max
i=1,...,K

γi
ε1

− γi
ε2

(s),

which implies that
max

i=1,...,K
γi

ε1
− γi

ε2
(s) ≤ 0,

and therefore contradicts the assumption (4.9). Thus it must be that

max
k=1,...,K

γk
ε1

− γk
ε2

(s) ≤ 0,

and the lemma is established for the case when P is substochastic.
Since the H-R condition implies that P has spectral radius less than one, P is similar to a

substochastic matrix through a strictly positive diagonal transformation [44], and so the proof
for the general H-R case can be obtained from the substochastic case using diagonal similarity
transforms (in a manner analogous to the proof of Lemma 4.4).

In the following corollary, Dusc denotes the space of upper semicontinuous functions in Dlim.
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Corollary 4.3 Given a H-R ORP and ψ, χ ∈ Dlim, there exists a unique pointwise limit γ of
the sequence {γε}, which is a bounded IRK-valued function. Moreover, if ξ, χ ∈ C, then γ ∈ Dusc

and the convergence of γε to γ is uniform over compact subsets of the set of continuity points of
γ. In particular, given any continuity point t of γ, lim

ε↓0
γε(tε) = γ(t) for any sequence tε → t.

Proof. The uniform boundedness of the sequence {γε} proved in Lemma 4.1 shows that for each
s ∈ [0,∞), there exists a subsequence (which could depend on s) of {γε(s)} that converges to a
limit. The monotonicity property shows that this limit is independent of the subsequence, and
by (4.7) of Lemma 4.1 the limit is finite. If ξ, χ ∈ C, then for each i = 1, . . . ,K, γi is the limit
of a non-increasing sequence of continuous functions and hence must be upper semicontinuous
[40, p. 196]. The last two statements of the corollary follow from Dini’s Theorem [40, p. 195],
which states that the monotone convergence of continuous functions to a limit must be uniform
on compact subsets of continuity points of the limit.

4.1.3 The limit γ of the sequence {γε} lies in Dlim

Corollary 4.3 established the existence of a pointwise limit γ for the sequence {γε} for H-R
ORPs and ψ, χ ∈ Dlim. However, even if ψ and χ are assumed to be continuous (which would
in turn imply that the functions γε = γε(ψ, χ), ε > 0, are continuous), it is not a priori obvious
that the pointwise limit γ of the sequence {γε} would lie in Dlim. In fact, as the example below
illustrates, the limit of a monotone non-increasing sequence of real-valued continuous functions
{fn} need not in general lie in Dlim. However, Lemma 4.4 and Corollary 4.5 exploit the special
structure that the sequence {γε} possesses by virtue of the fact that it is defined via an ORP in
order to prove that γ must lie in Dlim. As shown in Theorem 4.6, this leads to the existence of
a well-defined derivative for H-R ORPs.
Example. Consider the sequence of functions

fn(x) =

{

sin 1
|x| if |x| ∈ [1/(2nπ + π/2),∞) ,

1 if |x| ∈ [0, 1/(2nπ + π/2) .

It is easy to verify that {fn} forms a monotone decreasing sequence of continuous functions,
whose pointwise limit is

f(x) =

{

sin 1
|x| if x 6= 0,

1 if x = 0 .

The pointwise limit f clearly does not lie in Dlim since it has neither a left nor right limit at
x = 0.

The property proved in the next lemma, unlike the monotonicity property established in
Lemma 4.2, is not restricted to H-R ORPs, but holds for all gH-R ORPs. Recall that |f |T
denotes the total variation of the function f on the interval [0, T ] with respect to the norm | · |
on IRK defined in (1.26).

Lemma 4.4 (Uniformly BV) Given a gH-R ORP, ψ ∈ Dlim and χ ∈ BV, let γε
.
= γε(ψ, χ)

be defined by (4.1). Then for every T ∈ [0,∞)

sup
ε>0

|γε|T <∞. (4.10)

22



Proof. Fix T < ∞. Using the representation (4.6) for γi
ε and Lemma A.1 it follows that for

ε > 0
∣

∣

∣γi
ε

∣

∣

∣

T

=
∣

∣

∣−ε−1ξi − χi + [Pγε]i ∨ 0 −−ε−1ξi ∨ 0
∣

∣

∣

T

≤
∣

∣−χi + [Pγε]
i
∣

∣

T

≤
∣

∣χi
∣

∣

T
+

∑K
j=1 |Pij |

∣

∣γj
ε

∣

∣

T
.

Since the ORP is gH-R, the spectral radius of |P | is less than one. Thus there exists a strictly
positive diagonal matrix A (with ai

.
= Aii > 0) such that P̃

.
= A−1|P |A is a nonnegative

substochastic matrix, i.e. there exists δ > 0 such that maxi=1,...,K

∑K
j=1 P̃ij ≤ 1− δ. Multiplying

both sides of the last display by ai and substituting for |P | in terms of P̃ (note that ajP̃ij =
ai|Pij |), yields the inequality

ai

∣

∣

∣γi
ε

∣

∣

∣

T

≤ ai

∣

∣

∣χi
∣

∣

∣

T

+
K

∑

j=1

P̃ijaj

∣

∣

∣γj
ε

∣

∣

∣

T

,

which implies that

max
i
ai

∣

∣

∣γi
ε

∣

∣

∣

T

≤ max
i
ai

∣

∣

∣χi
∣

∣

∣

T

+ (1 − δ)max
i
ai

∣

∣

∣γi
ε

∣

∣

∣

T

,

which in turn can be rearranged to obtain

max
i
ai|γi

ε|T ≤ maxi ai|χi|T
δ

.

Thus

|γε|T ≤ Kmax
i

|γi
ε|T ≤ Kmaxi ai

δmini ai
|χ|

T
<∞,

where the last inequality follows because of the assumption that χ ∈ BV.

Corollary 4.5 Consider a gH-R ORP, ψ, χ ∈ Dlim and γε .
= γε(ψ, χ) defined by (4.1). If there

exists a subsequence of {γε} that converges pointwise to a limit function γ, then γ lies in Dlim.

Proof. Fix ψ ∈ Dlim and first consider the case when χ ∈ BV. By Lemma 4.4 it is clear that
for any gH-R ORP and T ∈ [0,∞) the total variations of the functions γε, ε > 0, over the
interval [0, T ] are uniformly bounded. The fact that any limit γ of a subsequence of {γε} is
uniformly bounded follows from (4.7) of Lemma 4.1. When combined with Lemma A.2, this
shows that γ ∈ Dlim. Now let χ ∈ Dlim. Since χ can be approximated in the uniform norm
by a sequence {χn} ⊂ BV, from Lemma 4.1 it follows that γ(ψ, χn) converges to γ(ψ, χ) in the
uniform norm. Since Dlim is complete with respect to the uniform norm and, as just proved
above, γ(ψ, χn) ∈ Dlim for every n, clearly γ(ψ, χ) ∈ Dlim.

Corollaries 4.3 and 4.5 and the relation (4.2) together yield the following theorem.

Theorem 4.6 (Existence of the Derivative for H-R ORPs) Given a H-R ORP with RM
Γ, constraint matrix R and ψ, χ ∈ Dlim, there exists a unique pointwise limit γ(ψ, χ) of the
sequence {γε(ψ, χ)} defined in (4.1). In addition, ∇χΓ(ψ)

.
= χ + Rγ(ψ, χ) is the directional

derivative of Γ along χ, evaluated at the point ψ, and ∇χΓ(ψ) ∈ Dlim. Furthermore, if ψ, χ ∈ C
then the convergence of ∇ε

χΓ(ψ) to ∇χΓ(ψ) is uniform over compact subsets of continuity points
of ∇χΓ(ψ) and ∇χΓ(ψ) ∈ Dusc.
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4.2 Useful representations of the derivative

Theorem 4.6 established that for H-R ORPs and ψ, χ ∈ Dlim the derivative has the form
∇χΓ(ψ) = χ + Rγ, where γ

.
= γ(ψ, χ) ∈ Dlim is the pointwise limit of the monotonically

non-increasing sequence {γε(ψ, χ)}. From the expression (4.6) for γi
ε
.
= γi

ε(ψ, χ), it is clear that
for every t ∈ [0,∞)

γi(t) = limε↓0

[

−ε−1ξi − χi + [Pγε]i(t) ∨ 0 −−ε−1ξi(t) ∨ 0
]

= limε↓0

[

F i
(

ε−1ξ + χ− Pγε, 0
)

(t) − F i
(

ε−1ξ, 0
)

(t)
]

.
(4.11)

Thus γi has a representation as a one-dimensional limit of the form

lim
ε↓0

[

F i(ε−1f + gε, 0) − F i(ε−1f, 0)
]

, (4.12)

where gε monotonically converges pointwise down to a function g ∈ Dlim as ε ↓ 0. If for every
ε > 0, gε ≡ g is independent of ε, then (4.12) reduces to

lim
ε↓0

[

F i(ε−1f + g, 0) − F i(ε−1f, 0)
]

. (4.13)

Limits of the form (4.13) were first analyzed in [22] for the case when f, g ∈ C and the limit has
a finite number of discontinuities on any compact interval, and later generalized in [46, Theorem
9.3.1] to include the case when f, g ∈ Dr, the subspace of right continuous functions in Dlim.
One may be tempted to conjecture that the limit in (4.12) is equal to the limit in (4.13) with
g ∈ Dlim equal to the pointwise limit of {gε}. If that were true, then the limit in (4.12) could
be identified simply by generalizing the results in [22, 46] to include the case when g ∈ Dlim.
However, it turns out that the topology of pointwise convergence gε ↓ g is too weak for such
a conjecture to hold in general (see Remark 4.8(3) for examples when the two limits fail to
coincide). Thus a more careful analysis is required in order to determine the correct limit in
(4.12). This is carried out in Section 4.2.1. Fortunately, it turns out that the conjecture is true
for the special case when f ∈ C and gε ∈ C for all ε > 0, and in this case the one-dimensional
limit takes a rather nice form (see Theorem 4.7).

When the reflection map is one-dimensional, P ≡ 0 in (4.11), and so in this case charac-
terization of the limit on the right-hand side is sufficient to determine γ(ψ, χ). However in the
multi-dimensional case, P 6= 0 and so (4.11) leads to a finite system of coupled equations that
implicitly determine γ. The additional justification required to establish that this system of
equations uniquely identifies γ is provided in Section 4.2.2.

4.2.1 Generalization of the one-dimensional derivative

In order to describe the limit in (4.12) we need to first introduce some definitions. Recall that
the left and right regularizations gl and gr of any function g ∈ Dlim are defined by

gl(s)
.
= g(s−) and gr(s)

.
= g(s+) (4.14)

for s ∈ [0,∞). It is easy to see that gl(s−) = gl(s) = g(s−) and gl(s+) = g(s+), and likewise
gr(s+) = gr(s) = g(s+) and gr(s−) = g(s−). Thus gl ∈ Dl, gr ∈ Dr and

g ∈ Dl ⇒ gl = g, and g ∈ Dr ⇒ gr = g. (4.15)
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Also, for f, g, g1, g2 ∈ Dlim, define

M(f, g, g1, g2)(t)
.
=











0 for t ∈ (0, tℓ),
S(f, g, g1, g2)(t) ∨ 0 for t ∈ [tl, tu],
S(f, g, g1, g2)(t) for t ∈ (tu,∞),

(4.16)

where

tℓ
.
= tℓ(f) = inf{t > 0 : f̄(t) = 0}, (4.17)

tu
.
= tu(f) = sup{t > 0 : f̄(t) = 0}, (4.18)

S(f, g, g1, g2)(t)
.
= sup

s∈ΦL
f
(t)

{g1(s)} ∨ sup
s∈Φf (t)

{g(s)} ∨ sup
s∈Φ̃R

f
(t)

{g2(s)} , (4.19)

ΦL
f (t)

.
= {s ∈ [0, t] : f(s−) = f̄(t)}, (4.20)

Φf (t)
.
= {s ∈ [0, t] : f(s) = f̄(t)}, (4.21)

Φ̃R
f (t)

.
= {s ∈ [0, t) : f(s+) = f̄(t)} (4.22)

Note that when f ∈ C then

S(f, g, g1, g2) = sup
s∈Φf (t)

[g1(s) ∨ g(s)] ∨ sup
s∈Φf (t)\{t}

[g2(s)] .

Let
S1(f, g)

.
= S(f, g, g, g), (4.23)

and note that
S1(f, g) = sup

s∈ΦL
f
(t)∪Φf (t)∪Φ̃R(t)

[g(s)] . (4.24)

Also, let
S2(f, g)

.
= S(f, g, gl, gr), (4.25)

and note that
S2(f, g) = sup

s∈ΦL
f
(t)

[g(s−)] ∨ sup
s∈Φf (t)

[g(s)] ∨ sup
s∈Φ̃R

f
(t)

[g(s+)]. (4.26)

Moreover, for j = 1, 2, let Mj(f, g) be defined as in (4.16) with S(f, g, g1, g2) replaced by Sj(f, g).
In the above definitions, we use the convention that inf ∅ = −∞. It is easy to see that for f ∈ Dlim

and t ∈ [0,∞), ΦL
f (t) ∪ Φf (t) ∪ Φ̃R

f (t) 6= ∅ and hence S(f, g, g1, g2), S1(f, g) and S2(f, g) are
always finite. Theorem 4.7 below characterizes the generalized one-dimensional derivative. Here
Dc and Dl are the subspaces of piecewise constant and left continuous functions, respectively, in
Dlim.

Theorem 4.7 (Generalization of the one-dimensional derivative) Consider a sequence
{gε} ⊆ Dlim(IR) such that

sup
ε>0

‖gε‖T <∞ for every T ∈ [0,∞) ,

and for every s ∈ [0,∞)
ε1 ≤ ε2 ⇒ gε1

(s) ≤ gε2
(s),
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and let g, g∗l , g
∗
r ∈ Dlim(IR) be such that gε ↓ g ∈ Dlim(IR), gε,l ↓ g∗l and gε,r ↓ g∗r pointwise as

ε ↓ 0, where gε,l and gε,r are respectively the left and right regularizations of gε, as defined in
(4.14). For f ∈ Dlim(IR), if

γ̃ε
.
= ε−1f + gε ∨ 0 − ε−1f ∨ 0 (4.27)

then γ̃ε → γ̃ ∈ Dlim(IR) pointwise as ε ↓ 0, where

γ̃
.
= M(f, g, g∗l , g

∗
r ), (4.28)

and M is given by (4.16). Moreover, when {gε, ε > 0} ⊂ C, then the generalized derivative takes
the simpler form

γ̃ = M1(f, g), (4.29)

and if in addition f ∈ C, then

γ̃ = M1(f, g) =











0 if t ∈ (0, tl),
sups∈Φf (t)[g(s)] ∨ 0 if t ∈ [tl, tu),

sups∈Φf (t)[g(s)] if t ∈ [tu,∞),
(4.30)

and
M1(f, g) = M2(f, g). (4.31)

Lastly, if f ∈ Dc and g ∈ Dlim then
γ̃ = M2(f, g). (4.32)

The proof of Theorem 4.7 is given in Section 6.1. Here we make some observations on the
theorem.

Remark 4.8 (The generalized one-dimensional derivative)

1. Note that the limit in (4.13) is given by S2(f, g) for f, g ∈ Dlim, where S2(f, g) is defined
by (4.26). Indeed, when gε = g is independent of ε, then clearly g∗l = gl and g∗r = gr (see
Lemma 6.1(1)), and so in this case by (4.25)

S(f, g, g∗l , g
∗
r ) = S(f, g, gl, gr) = S2(f, g).

If in addition f, g ∈ C, then ΦL
f (t) ∪ Φf (t) ∪ ΦR

f (t) = Φf (t) and g(s−) = g(s) = g(s+), so
that

S2(f, g)(t)
.
= sup

s∈Φf (t)
g(s). (4.33)

Thus Theorem 4.7 contains as a special case the results in [22, Lemma 5.2] and [46,
Theorem 9.3.1] (with ΦR

f replaced by Φ̃R
f in the latter result, as mentioned in greater

detail in Remark 4.8.2 below).

2. Note that the notation Φ̃R
f rather than ΦR

f is used in the definitions of S, S1 and S2 in

order to emphasize that t 6∈ Φ̃R
f (t), in contrast with the sets ΦL

f (t) and Φf (t), which could

contain t. In the definition for S2(f, g) in [46, Theorem 9.3.1], however, the set Φ̃R
f is

replaced by the set
ΦR

f (t)
.
= {s ∈ [0, t] : f(s+) = f(t)}, (4.34)
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which could contain t. The following example illustrates that if modified in this manner,
S2(f, g) no longer identifies the correct limit in (4.13) when g ∈ Dlim, even if f ∈ C. Thus
the correct definition of S2 is with Φ̃R

f rather than with ΦR
f .

Example 1. Let f(s)
.
= s1[0,1)(s) + 1[1,2)(s) for s ∈ [0, 2] and for every ε > 0 let gε(s) =

g(s)
.
= 1(1,2] for s ∈ [0, 2]. Then f is continuous and g is left continuous. Moreover, from

the definition of f it follows that ΦL
f (1) = Φf (1) = {1} and Φ̃R

f (1) = ∅, while ΦR
f (1) = {1}.

By (4.26) we have S2(f, g)(1) = g(1−)∨g(1) = 0, while for the modified case (i.e. with Φ̃R
f

replaced by ΦR
f in the definition of S2) we see that S2(f, g)(1) = g(1−)∨ g(1)∨ g(1+) = 1.

However, by direct verification it is easy to see in this simple example that

lim
ε↓0

[

ε−1f + gε(1) − ε−1f(1)
]

= lim
ε↓0

[

ε−1f + g(1) − ε−1f(1)
]

= g(1) = 0.

So clearly for this example Φ̃R
f (t) is the right set to be used in the definition of S2 in order

to obtain the correct limit in (4.13). An analysis of the proof of Theorem 4.7 reveals that
this is true in general.

3. By Theorem 4.7 it follows that when both f and {gε, ε > 0} are continuous, γ̃ = M1(f, g) =
M2(f, g). Since the limit in (4.12) is given by γ̃ and by Remark 4.8.1 above the limit in
(4.13) is given by M2(f, g), we see that the two limits in (4.12) and (4.13) coincide in this
special case. However, the following two examples demonstrate these two limits need not
be equal for general f, g, {gε} ∈ Dlim. Example 2 demonstrates the necessity of having gε

continuous, while the Example 3 shows why f must be continuous.
Example 2. Let f(s)

.
= s and g(s)

.
= 1 for s ∈ [0, 2]. Also, for ε > 0 let

gε
.
=











1 for t ∈ [0, 1 − ε)
2 for t ∈ [1 − ε, 1)
1 for t ∈ [1, 2]

Then clearly f and g are continuous and each gε is right continuous. Moreover, ΦL
f (1) =

Φf (1) = 1, Φ̃R
f (1) = ∅ and the fact that gε(1−) = 2 for every ε > 0 implies g∗l (1) = 2.

By Theorem 4.7 the limit in (4.12) is equal to S(f, g, g∗l , g
∗
r ) = g∗l (1) ∨ g(1) = 2, while by

Remark 4.8.1 above the limit in (4.13) is equal to S2(f, g) = g(1−) ∨ g(1) = 1, which is
clearly not equal to 2.
Example 3. On the interval [0, 2] define the functions f(s)

.
= s1[0,1), g

.
= 1[1,2] and

gε(s)
.
=















0 for s ∈ [0, 1 − ε)
s− (1 − ε)

ε
for s ∈ [1 − ε, 1)

1 for s ∈ [1, 2]

Then clearly {gε, ε > 0} is a sequence of continuous functions that converges pointwise
monotonically down to g, which is right continuous. Moreover f is also right continuous,
ΦL

f (1) = {1} and Φf (1) = Φ̃R(1) = ∅. By Remark 4.8.1 above the limit in (4.13) is given
by S2(f, g)(1) = g(1−) = 0. On the other hand since gε are continuous, by (4.29) the limit
in (4.12) is equal to S1(f, g) = g(1) = 1, which is clearly not equal to 0.
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4.2.2 Autonomous Characterizations of γ

In this section we show that for H-R ORPs Theorems 4.6 and 4.7 along with the relation (4.1)
uniquely characterize the limit γ when ψ, χ ∈ C or when ψ ∈ Dc and χ ∈ Dlim. Fix ψ, χ ∈ Dlim,
and as usual let γε and ξ be defined via (4.1) and (4.4) respectively. Also, for i = 1, . . . ,K let
χi

l and χi
r be the left and right regularizations of χi as defined in (4.14), let γ∗l and γ∗r be the

limits of the left and right regularized sequences {γε,l} and {γε,r} respectively, and let γ be the
unique pointwise limit of {γε} which exists by Corollary 4.3. Moreover, let the functions M and
Mj , j = 1, 2 be defined as in Section 4.2.1. Given the relation (4.11) and Theorem 4.7 it follows
that for i = 1, . . . ,K

γi(ψ, χ)(t) = M
(

−ξi,−χi + [Pγ]i,−χi
l + [Pγ∗l ]i,−χi

r + [Pγ∗r ]i
)

(t). (4.35)

Since in general γ∗l and γ∗r are defined in terms of the sequence {γε(ψ, χ}, and are not uniquely
determined by γ(ψ, χ) this does not lead to an autonomous characterization of γ(ψ, χ). However,
Theorem 4.7 identifies cases in which γ∗l and γ∗r are uniquely determined by γ(ψ, χ). Specifically
γ
.
= γ(ψ, χ) satisfies

γi = Mj

(

−ξi,−χi + [Pγ]i
)

for i = 1, . . . ,K (4.36)

with j = 1 when ψ, χ ∈ C and j = 2 when ψ ∈ Dc and χ ∈ Dlim.

Lemma 4.9 Given a matrix P whose spectral radius is less than one, let ψ, χ ∈ Dlim. Then for
j = 1, 2 the system of equations (4.36) has a unique solution γ(j)

.
= γ(j)(ψ, χ) ∈ Dlim. Moreover,

for j = 1, 2 given any γ0,j ∈ Dlim, if the sequence {γn,j} is defined recursively by

γn+1,j
.
= Mj

(

−ξi,−χi + [Pγn,j ]
i
)

then for every T <∞ ||γ(j) − γn,j ||T → 0 as n ↑ ∞.

Proof. Fix ψ, χ ∈ Dlim, and recall from Lemma 4.1 and Corollary 4.3 that γ(ψ, χ) is uniformly
bounded in Dlim (with respect to the sup norm). From the definition of M it is easy to see that
M maps bounded sets to bounded sets. We show below that M1 is a contraction mapping (with
respect to the sup norm topology) on Dlim. Since Dlim endowed with the sup norm metric is a
complete metric space, the existence of a unique fixed point for M1 then follows from standard
theorems [43, Theorems 5.2.1 and 5.2.3]. To establish the contraction property we first consider
the case when the maximum row sum of the matrix P is equal to δ < 1. The general case can
then be handled in the usual way using diagonal similarity transforms (see, for example, [44] or
the proof of Lemma 4.4). Let γ1, γ2 ∈ Dlim and fix T ∈ [0,∞]. Then the definition of M1 along
with Lemma A.1 yields

maxi=1,...,K supt∈[0,T ] |M i
1

(−ξi,−χi + [Pγ1]
i
) −M i

1

(−ξi,−χi + [Pγ2]
i
) |

≤ sups∈[0,T ] maxi=1,...,K |[Pγ1]
i(s) − [Pγ2]

i(s)|
≤ sups∈[0,T ] maxi=1,j...,K |∑K

k=1 Pik||γj
1(s) − γj

2(s)|
≤ δmaxj=1,...,K sups∈[0,T ] |γj

1(s) − γj
2(s)|,

which proves the contraction property since δ < 1. The proof for M2 follows analogously and is
thus omitted.

When combined with Corollary 4.3 and Theorem 4.7, Lemma 4.9 yields the following au-
tonomous characterization of the derivative for H-R SPs.
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Theorem 4.10 (Autonomous Characterizations of the Derivative) Given a H-R ORP
with constraint matrix R, RM Γ, and ψ, χ ∈ Dlim, let ξ be defined as in (4.4) and for j = 1, 2 let
γj(ψ, χ) ∈ Dlim be the unique solution to the system of equations (4.36). Then the directional
derivative ∇χΓ(ψ) lies in Dlim and satisfies

∇χΓ(ψ) =

{

χ+Rγ(1)(ψ, χ) if ψ, χ ∈ C,
χ+Rγ(2)(ψ, χ) if ψ ∈ Dc and χ ∈ Dlim.

(4.37)

Moreover, for ψ, χ ∈ C, ∇ε
χΓ(ψ) converges to ∇χΓ(ψ) uniformly on compact subsets of the

continuity points of ∇χΓ(ψ).

5 Properties of ∇χΓ(ψ) when ψ, χ ∈ C
In this section we derive properties of the directional derivative ∇χΓ(ψ) for H-R ORPs when
ψ and χ are continuous. The main result of this section is the proof of Theorem 1.2, which
classifies the discontinuities of ∇χΓ(ψ) ∈ Dlim when ψ, χ ∈ C. It turns out that there is a
connection between the points at which these discontinuities occur and points at which there is
a change in regime for the solution (φ, θ) to the ORP with input ψ. When the ORP and the
input trajectory ψ arise from a non-stationary network, this corresponds to a change in regime
of the fluid limit of the network. These different regimes are introduced in Section 5.1 and the
proof of Theorem 1.2 is presented in Section 5.2. The proof relies on the classification of the
discontinuities of γ(1)(ψ, χ) presented in Theorem 5.2. This classification is also used in [25]
to establish convergence of ∇ε

χΓ(ψ) to ∇χΓ(ψ) in topologies stronger than that of pointwise
convergence, and to prove functional central limits for non-stationary networks.

5.1 Regimes of the Fluid Limit (φ, θ)

As mentioned in the introduction, the study of directional derivatives is largely motivated by
its use in describing the behaviour of non-stationary queueing networks. In this setting, ψ has
the interpretation as the functional strong law of large numbers (FSLLN) limit of the so-called
netput process of a stochastic network, and χ represents the sample path of (a possibly time-
changed version of) the functional central limit of the netput process. In this context φ = Γ(ψ)
represents the fluid approximation to the queues in the network. The terminology of this section
reflects this interpretation.

A change in regime represents a transition at any one node from one of the states of under-
loading, criticality or overloading to another state. For single-class stationary networks these
three regimes correspond to the regions in which the traffic load parameter ρ (which is obtained
from the solution to the traffic equations of the queueing network [12]) is less than one, greater
than one, and equal to one. Since for stationary networks the traffic load parameter ρ is con-
stant, the regimes are independent of time. In particular, heavy-traffic diffusion approximations
of stationary networks correspond to the study of the critical regime, where ρ = 1. The situa-
tion is considerably more complicated for non-stationary queueing networks. As shown in [22],
for the non-stationary Mt/Mt/1 queue with average arrival and service rates of λ(t) and µ(t)
respectively at time t, the instantaneous effective load parameter

ρ(t)
.
=

∫ t
0 λ(s)ds

∫ t
0 µ(s)ds

,
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can be used to determine in which regime the system lies at time t. Although the corresponding
regimes can vary with time, in the single-queue case the regimes of underloading, overloading
and criticality (at time t) still correspond to when ρ(t) is less than one, greater than one and
equal to one. For the multi-dimensional network with time-dependent rates it is more convenient
to define the regimes in terms of the “fluid limit” of the queue length process. In particular,
given an input trajectory ψ and an ORP satisfying Assumption 3.1, let (φ, θ) be the solution to
the ORP for the input ψ. Then for t ∈ [0,∞) we define the following sets:

Over(t)
.
= {i ∈ I : φi(t) > 0}

Crit(t)
.
= {i ∈ I : φi(t) = 0, θ̇i(t−) = 0}

Under(t)
.
= {i ∈ I : φi(t) = 0, θ̇i(t−) > 0}.

Over(t−)
.
= ∪ε>0 ∩s∈(t−ε,t) Over(s)

Under(t+)
.
= ∪ε>0 ∩s∈(t,t+ε) Under(s)

(5.1)

Note that i lies in Over(t−) (respectively Under(t+)) if and only if there exists ε > 0 such that
i ∈ Over(s) for all s ∈ (t− ε, t) (respectively i ∈ Under(s) for all s ∈ (t, t+ ε)). We now define
various regimes of the fluid limit.

Definition 5.1 (Regimes of the Fluid Limit) Given an ORP satisfying Assumption 3.1, let
(φ, θ) be the solution to the ORP for a given input trajectory ψ. Then i ∈ I is said to be
overloaded (respectively critical, underloaded) at time t if and only if i ∈ Over(t) (respectively
i ∈ Crit(t), i ∈ Under(t)). Moreover, at time t i is said to be at the end of overloading
if and only if i ∈ Crit(t) ∩ Over(t−) and to be at the start of underloading if and only if
i ∈ Crit(t) ∩ Under(t+).

The regimes above are defined in terms of physical characteristics of the fluid limit. On the
other hand, analysis of the discontinuities of the derivative ∇χΓ(ψ) lead naturally to conditions
involving the sets Φ−ξi(t) defined in Section 4.2.1. Lemma 5.1 links these two sets of conditions
by providing equivalent definitions for the regimes introduced in Definition 5.1 in terms of the
sets Φ−ξi(t). The proof of the lemma is given in Section 6.2.1.

Lemma 5.1 Given an ORP satisfying Assumption 3.1 and ψ ∈ C let φ, θ and ξ be as defined
in Section 4.1.1 and for i ∈ I, let Φ−ξi(t) be given by (4.34). Then the following equivalences
are satisfied.

1. til = inf{t > 0 : φi(t) = 0} and tiu = inf{t > 0 : θ̇i(t+) > 0};

2. Φ−ξi(t) = Φi(t) for t ∈ [tiu,∞) , where

Φi(t)
.
=

{

s ∈ [0, t] : φi(s) = 0 and θi(s) = θi(t)
}

; (5.2)

3. (Overloaded) i is overloaded at t if and only if either t ∈ [0, til) or t 6∈ Φ−ξi(t);

4. (Critical) i is critical at t if and only if either t ∈ Φ−ξi(t) 6= {t} or t ∈ [til, t
i
u];

5. (Underloaded) i is underloaded at t if and only if t ∈ (tiu,∞) and {t} = Φ−ξi(t);

6. (End of Overloading) i is at the end of overloading at t if and only if either t = til or
t ∈ (tiu,∞), t ∈ Φ−ξi(t) 6= {t} and t is isolated in Φ−ξi(t) (i.e. there exists ε > 0 such that
Φ−ξi(t) ∩ (t− ε, t) = ∅);
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7. (Start of Underloading) i is at the start of underloading at t if and only if either t = tiu
or t ∈ (tiu,∞), t ∈ Φ−ξi(t) 6= {t} and Φ−ξi(s) ⊂ (s, t] for all s > t.

5.2 Classification of the discontinuities of ∇χΓ(ψ) when ψ, χ ∈ C
In this section the discontinuities of γ(1) are classified in terms of various conditions on the
sets Φi (see Theorem 5.2). In order to allow a physical interpretation of the conditions in a
stochastic network setting, the statement of the theorem also provides equivalent descriptions
of these conditions (as established in Lemma 5.1) in terms of the fluid limit regimes defined in
the last section. In Lemma 5.3 necessary conditions for the existence of discontinuities in γi

(1)
are shown to have an interpretation in terms of so-called critical and underloaded chains, which
are introduced in Definition 5.2. This interpretation is used to prove Theorem 1.2, which states
necessary conditions for the derivative ∇χΓ(ψ) to have various types of discontinuities.

Theorem 5.2 (Discontinuities of γ(1)) Given a H-R ORP with constraint matrix R ∈ IRK×K ,
and ψ, χ ∈ C, let γ

.
= γ(1)(ψ, χ) be the unique solution to the equation (4.36) with j = 1. More-

over, let ∇Γ
.
= ∇χΓ(ψ) and let tiu

.
= tu(−ξi) be defined as in (4.18) with ξi defined by (4.4).

Then γi(t) = 0 for t ∈ [0, til). Moreover, t ∈ [til,∞) is a point of left discontinuity for γi if and
only if one of the following properties hold.

L0. (End of Overloading) t = til and

−χ(til) + [Pγ]i(til) > 0, (5.3)

in which case ∇Γi(til) = 0. Moreover, ∇Γi(til−) < ∇Γi(til) if [Pγ]i is continuous at til.

L1. (End of Overloading) t ∈ Φi(t) 6= {t}, t is isolated in Φi(t) (i.e. there exists δ > 0 such
that (t− δ, t) ∩ Φi(t) = ∅),

sup
s∈Φi(t)\{t}

[−χi(s) + [Pγ]i(s)] < −χi(t) + [Pγ]i(t). (5.4)

and [Pγ]i is left continuous at t. In this case ∇Γi(t−) < ∇Γi(t) = 0.

L2. (End of Overloading) t ∈ Φi(t) 6= {t}, t is isolated in Φi(t), (5.4) holds and [Pγ]i is
left discontinuous. In this case ∇Γi(t) = 0.

L3. (Critical) t ∈ Φi(t) 6= {t}, t is not isolated in Φi(t) (i.e. there exists δ > 0 such that
(t− δ, t] ⊂ Φi(t)), (5.4) holds and [Pγ]i is left discontinuous at t. In this case ∇Γi(t−) ≥
∇Γi(t) = 0.

L4. (Underloaded) {t} = Φi(t) and [Pγ]i is left discontinuous at t. In this case ∇Γi(t−) =
∇Γi(t) = 0.

Similarly, γi is right continuous on [0, tiu) and t ∈ [tiu,∞) is a point of right discontinuity for γi

if and only if

R0. (Start of Underloading) t = tiu and either [Pγ]i is right continuous at tiu and

sup
s∈[ti

l
,tiu]

[

−χi(s) + [Pγ]i(s)
]

< 0,

or [Pγ]i is right discontinuous at tiu. In both cases, ∇Γi(t) > ∇Γi(t+) = 0.

31



R1. (Start of Underloading) t ∈ Φi(t) 6= {t}, Φ−ξi(s) ⊂ (t, s] for every s > t,

γi(t) > −χi(t) + [Pγ]i(t), (5.5)

and [Pγ]i is right continuous at t. In this case γi is left continuous at t and ∇Γi(t) >
∇Γi(t+) = 0.

R2. (Start of Underloading) t ∈ Φi(t) 6= {t}, Φ−ξi(s) ⊂ (t, s] for every s > t, (5.5)
holds and [Pγ]i is right discontinuous at t. In this case γi is left continuous at t and
∇Γi(t) > ∇Γi(t+) = 0.

R3. (Start of Underloading) t ∈ Φi(t) 6= {t}, Φi(s) ⊂ (t, s] for every s > t,

γi(t) = −χi(t) + [Pγ]i(t), (5.6)

and [Pγ]i is right discontinuous at t. In particular, (5.6) holds if γi is left discontinuous
at t. In this case ∇Γi(t) = ∇Γi(t+) = 0.

R4. (Underloaded) {t} = Φi(t) and [Pγ]i is right discontinuous at t. In this case ∇Γi(t) =
∇Γi(t+) = 0.

Finally, t ∈ [0,∞) is a point of both left or right discontinuity for γi if and only if t ∈ (tiu,∞)
and one of the following holds.

S1. (End of Overloading and Start of Underloading) Either L1 or L2 holds along with
R3. In this case ∇Γi(t) = ∇Γi(t+) = 0.

S2. (Start of Underloading) L3 holds along with R3. In this case ∇Γi(t−) ≥ ∇Γi(t) =
∇Γi(t+) = 0.

S3. (Underloaded) L4 holds along with R4. In this case ∇Γi(t−) = ∇Γi(t) = ∇Γi(t+) = 0.

The proof of the theorem is given in Section 6.2.3. We now use the classification of the
discontinuities of γ(1)(ψ, χ) in Theorem 5.2 to study continuity properties of the derivative
∇χΓ(ψ) = χ+Rγ(1)(ψ, χ). Before we prove the main theorem, Theorem 1.2, it will be useful to
introduce a couple definitions.

Definition 5.2 (Critical and Sub-critical Chains) Given a constraint matrix R ∈ IRK×K

satisfying Assumption 3.1, with P
.
= I − R and associated RM Γ and ψ ∈ C, let φ

.
= Γ(ψ).

Then a sequence i
.
= j0, j1, j2, . . . , jm with ji ∈ {1, . . . ,K} for i = 0, . . . ,m, is said to be an

empty chain preceding i at t if Pjkjk−1
> 0 and φjk(t) = 0 for k = 1, . . . ,m. An empty chain

preceding i is said to be critical at t if either

i. (End of Overloading) m is at the end of overloading or

ii. (Cycle) there exists k < m such that jk = jm.

Moreover, an empty chain preceding i is said to be sub-critical at t if k is at the start of
underloading for every k = 1, . . . ,m, and either

i. (Start of Underloading) m is at the start of underloading
or
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ii. (Cycle) there exists k < m such that jk = jm.

The following lemma shows that necessary conditions for γ(1)(ψ, χ) to have a discontinuity
can be phrased in terms of critical and sub-critical chains.

Lemma 5.3 (Physical conditions for discontinuities in γ) Given an ORP with H-R con-
straint matrix R, and ψ, χ ∈ C, and let γ

.
= γ(1)(ψ, χ) be the unique solution to the equation

(1.19). If γi is left discontinuous at t ∈ [0,∞) then i is either at the end of overloading or there
exists a critical chain preceding i at time t. Likewise, if γi is right discontinuous at t ∈ [0,∞)
then either i is at the start of underloading, or there exists a sub-critical chain preceding i at
time t.

Proof. This can be easily deduced from Theorem 5.2 and Definition 5.2.

We are now in a position to prove Theorem 1.2 stated in Section 1.3, which classifies the
discontinuities of the derivative ∇χΓ(ψ) when ψ, χ ∈ C. The conditions L1, R2 etc. mentioned
in the proof below refer to the notation in Theorem 5.2. For notational simplicity we omit the
explicit dependence of ∇χΓ(ψ) on χ and ψ.

Proof of Theorem 1.2. A basic observation is that since χ ∈ C, due to (6.8) it follows that
if ∇Γi has a (left) discontinuity, then either γi or [Pγ]i must have a left (right) discontinuity.
Also note that the upper semicontinuity of [Pγ]i (which follows from Corollary 4.3 and the fact
that P ≥ 0) ensures that if γi is left continuous, then

∇Γi(t) −∇Γi(t−) = [Pγ]i(t−) − [Pγ]i(t) ≤ 0, (5.7)

while if γi is right continuous, then

∇Γi(t) −∇Γi(t+) = [Pγ]i(t+) − [Pγ]i(t) ≤ 0. (5.8)

For (1.20) to hold, it follows from from (5.7) that γi must be left discontinuous and from
Theorem 5.2 that either L0, L1 or L2 must hold, from which L(a) follows. Likewise, if (1.21)
is satisfied then it follows from (5.7) and Theorem 5.2 that i is not underloaded and either γi

is left continuous or γi is left-discontinuous and L3 holds. In either case [Pγ]i must be left-
discontinuous, and so there exists γj with pji > 0 such that γj is left-discontinuous at t. By
Lemma 5.3 and Theorem 5.2 this implies that φj(t) = 0. and either j is at the end of overloading,
or has a critical chain preceding it. Since φj(t) = 0 and pji > 0 this implies that there is a critical
chain preceding i, which completes the proof of L(b).

The proof for right discontinuities follows in a similar fashion. By (5.8), if (1.22) holds
then γi must be right continuous, and so by Theorem 5.2 either R0, R1 or R2 must hold, thus
establishing R(a). Now observe that Theorem 5.2 implies that (1.23) cannot occur either i is
underloaded or when γi is right discontinuous, and so [Pγ]i must be right discontinuous. In
analogy with the argument given for left discontinuities, by Lemma 5.3 this guarantees the
existence of a sub-critical chain preceding i, and completes the proof of R(b). The conditions
[LR] can be easily deduced from the conditions for [L] and [R] and the observation that when
both [La] and [Ra] are satisfied, then ∇Γi is right continuous.

To establish the two remaining statements of the theorem, first note that the continuity
of ∇Γi when i is underloaded follows from L4 and R4 of Theorem 5.2. Secondly, note that if
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i is overloaded, then Theorem 5.2 shows that γi must be continuous. If in addition [Pγ]i is
continuous, then ∇Γi is continuous and (1.25) follows with equality. On the other hand by the
arguments given above it follows that if ∇Γi is discontinuous and i is overloaded, then either
(Lb), (Rb) or (LRc) must hold, from which (1.25) follows.

Finally the Lipschitz and homogeneity properties of the derivative are a straightforward con-
sequence of the explicit form of the derivative given in (1.19) and the scaling property of the
ORM: Γ(βψ) = βΓ(ψ) for β > 0. This concludes the proof of the theorem.

6 Proofs of the Main Theorems

6.1 Proof of Theorem 4.7

In this section we prove the representation for the generalized one-dimensional derivative pre-
sented in Section 4.2.1. We first establish a lemma that will be needed for the proof of the
theorem. The lemma identifies conditions under which the expression M(f, g, g∗l , g

∗
r ) defined in

(4.16) can be expressed purely as a function of f and g.

Lemma 6.1 Let the sequence {gε} satisfy the uniform boundedness and monotonicity properties
stated in Theorem 4.7, and let g∗l and g∗r be defined as in Theorem 4.7. Then the following
properties hold.

1. g∗l ≥ gl and g∗r ≥ gr.

2. If gε = g is independent of ε, then g∗l = gl and g∗r = gr.

3. If {gε} ⊂ C then g∗l = g∗r = g.

4. If gε converges to g in the uniform topology, i.e. for every T <∞

lim
ε↓0

||gε − g||T = 0,

then g∗l = gl and g∗r = gr.

5. For any s that is a point of left continuity for g,

g∗l (s) = gl(s),

and likewise for any s that is a point of right continuity for g

g∗r (s) = gr(s).

Proof. Fix t ∈ [0,∞). For every ε > 0 choose tε ∈ (t − ε, t) such that |gε(tε) − gε(t−)| < ε.
Then tε ↑ t and the monotonicity of the sequence gε dictates that g(tε) < gε(tε) < gε(t−) + ε.
Taking limits as ε ↓ 0 leads to the conclusion that gl(t) = g(t−) ≤ g∗l (t). An analogous argument
yields the inequality gr ≤ g∗r , thus establishing the first property. The next two properties follow
directly from the definitions and the assumed monotonicity of the sequence {gε}.
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To prove the fourth property, for ε ∈ (0, 1] choose tε such that tε ↓ s and |gε(tε)−gε(s+)| ≤ ε.
Then for any s ∈ [0,∞) uniform convergence of gε to g on the interval [0, 2s] implies that given
any δ > 0 there exists ε0 > 0 such that for all ε ∈ (0, ε0) and n ∈ IN ,

g(tε) − δ ≤ gε(tε) ≤ g(tε) + δ,

which in turn implies that

g(tε) − δ − ε ≤ gε(s+) ≤ g(tε) + δ + ε.

Taking limits as ε ↓ 0 yields the inequality

gr(s) − δ = g(s+) − δ ≤ g∗r (s) ≤ g(s+) + δ = gr(s) + δ,

and sending δ ↓ 0 leads to the conclusion that gr(s) = g∗r (s). An analogous argument can be
used to prove that gl = g∗l .

For the fifth property first note that if s is a point of left continuity for g then since g ∈ Dlim

has only a countable number of discontinuities, there exists a sequence {tn} of continuity points
of g such that tn ↑ s. Then clearly {tn} is a compact subset of the continuity points of g and
hence by Corollary 4.3 we know that gε converges uniformly to g on the subset {tn}, and hence
on the subset {tn} ∪ {s}. Using an argument similar to that used to prove the fourth property
above, it then follows that g∗l (s) = gl(s) = g(s−). The result when s is a point of right continuity
follows likewise.

Proof of Theorem 4.7. First note that the sequence {gε} has a unique pointwise limit g
since for each s ∈ [0,∞) {gε(s)} is uniformly bounded and monotonically non-increasing. By
the same token, the fact that the left and right regularized sequences {gε,l} and {gε,r} inherit
the uniform boundedness and monotonicity properties of {gε} establishes the existence of g∗l and
g∗r .

Let tℓ
.
= tℓ(f) and tu

.
= tu(f) be defined as in (4.17) and (4.18) respectively. Fix t > tu,

so that f(t) > 0. Since {gε} is uniformly bounded, relation (1.4) of Lemma A.3 guarantees the
existence of ε0 > 0 such that ε−1f + gε(t) > 0 for all ε ∈ (0, ε0). Hence for all ε ∈ (0, ε0) we
have

γ̃ε(t) = ε−1f + gε(t) − ε−1f(t) .

Let L = supε>0 ||gε||t, which is finite by assumption. For each ε ∈ (0, ε0) choose sε(t) ∈ [0, t] to
satisfy

(

ε−1f + gε

)

(sε(t)) ≥ ε−1f + gε(t) − 8Lε.

Then by Lemma A.3(2) and the definition of the supremum, it is clear that f(t) − 8Lε ≤
f(sε(t)) ≤ f(t), and consequently

lim
ε↓0

f(sε(t)) = f(t). (6.1)

Moreover, clearly

γ̃ε(t) ≤ gε(sε(t)) + 8Lε+ ε−1
[

f(sε(t)) − f(t)
]

≤ gε(sε(t)) + 8Lε,

and therefore
lim sup

ε↓0
γ̃ε(t) ≤ lim sup

ε↓0
gε(sε(t)). (6.2)
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We now show that
lim sup

ε↓0
gε(sε(t)) ≤ γ̃(t). (6.3)

Select a sequence {εn} with εn ↓ 0 such that

lim
n↑∞

gεn(sεn(t)) = lim sup
ε↓0

gε(sε(t)). (6.4)

Since {sεn(t)} ⊂ [0, t] is uniformly bounded, it can be assumed without loss of generality (by
choosing a subsequence if necessary) that there exists s0(t) ∈ [0, t] such that limn→∞ sεn(t) =
s0(t). By choosing a further subsequence if necessary, it can be assumed that either (i) sεn(t) =
s0(t) for all n sufficiently large, or (i) does not hold and either sεn(t) ↑ s0(t) or sεn(t) ↓ s0(t)
as n → ∞ If (i) holds, so that sεn(t) = s0(t) for all n ∈ IN sufficiently large, then (6.1) implies
f(s0(t)) = f(t), so that s0(t) ∈ Φf (t). In that case

lim sup
ε↓0

gε(sε(t)) = lim
n↑∞

gεn(s0(t)) = g(s0(t)) ≤ sup
s∈Φf (t)

g(s) ≤ γ̃(t),

and (6.3) holds. Now suppose that (i) above does not hold, but instead sεn(t) ↑ s0(t) as n ↑ ∞.
Then s0(t) ∈ ΦL

f (t) due to (6.1). Fix δ > 0 and given εm > 0 choose N(m) ≥ m such that for
all n ≥ N(m)

gεm(sεn(t)) ≤ gεm(s0(t)−) + δ.

The fact that {gεn} is a monotone non-increasing sequence as n ↑ ∞ then shows that for all
n ≥ N(m)

gεn(sεn(t)) ≤ gεm(s0(t)−) + δ.

Take limits as n ↑ ∞ and then m ↑ ∞ to obtain

lim
n↑∞

gεn(sεn(t)) ≤ lim
m↑∞

gεm(s0(t)−) + δ.

Send δ ↓ 0 in the above display, and use (6.4) and the definition of g∗l to conclude that

lim sup
ε↓0

gε(sε(t)) ≤ g∗l (s0(t)) ≤ sup
s∈ΦL

f
(t)

g∗l (s) ≤ γ̃(t).

Lastly if (i) does not hold but sεn(t) ↓ s0(t) as n ↑ ∞, it must be that s0(t) 6= t (since
sεn(t) ∈ [0, t]), and f(s0(t)+) = f(t) due to (6.1). Thus s0(t) ∈ Φ̃R

f (t), and arguments similar
to those given above yield

lim sup
ε↓0

gε(sε(t)) = g∗r (s0(t)) ≤ lim
ε↓0

gε(s0(t)+) ≤ sup
s∈Φ̃R

f
(t)

g∗r (s) ≤ γ̃(t).

This establishes (6.3), which when combined with (6.2) shows that

lim sup
ε↓0

γ̃ε(t) ≤ γ̃(t). (6.5)

In order to establish the reverse inequality, first note that for any r ∈ Φf (t)

γ̃ε(t) ≥ ε−1f(r) + gε(r) − ε−1f(t) = gε(r).
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Take limits as ε ↓ 0 and the supremum over r ∈ Φf (t) in the last display to obtain

lim inf
ε↓0

γ̃ε(t) ≥ sup
r∈Φf (t)

g(r). (6.6)

Now let r ∈ ΦL
f (t) and for each ε > 0 choose rε(t) ∈ [t− ε, t] such that

ε−1
[

f(rε(t)) − f(t)
]

> −ε
2

and |gε(rε(t)) − gε(r−)| < ε

2
.

Then
γ̃ε(t) ≥ ε−1f(rε(t)) + gε(rε(t)) − ε−1f(t)

> gε(r−) − ε.

Take limits as ε ↓ 0, recall the definition of g∗l and take the supremum over r ∈ ΦL
f (t) to show

that
lim inf

ε↓0
γ̃ε(t) ≥ sup

r∈ΦL
f
(t)

g∗l (r).

Analogous arguments show that

lim inf
ε↓0

γ̃ε(t) ≥ sup
r∈Φ̃L

f
(t)

g∗r (r).

The last two displays together with (6.6) yield

lim inf
ε↓0

γ̃ε(t) ≥ sup
r∈ΦL

f
(t)

[g∗l (r)] ∨ sup
r∈Φf (t)

[g(r)] ∨ sup
r∈Φ̃R

f
(t)

[g∗r (r)] = γ̃(t).

The last display along with (6.5) shows that for t > tu

lim
ε↓0

γ̃ε(t) = γ̃(t).

For t ∈ [tℓ, tu], note that f(t) = 0 and so

γ̃ε(t) = ε−1f + gε(t) ∨ 0 .

Using the same reasoning that was used for the case t > tu, it is possible to show that for
t ∈ [tl, tu],

lim
ε↓0

γ̃ε(t) =



 sup
s∈ΦL

f
(t)

{g∗l (s)} ∨ sup
s∈Φf (t)

{g(s)} ∨ sup
s∈Φ̃R

f
(t)

{g∗r (s)}


 ∨ 0 = γ̃(t) .

Lastly when t < tℓ, then ε−1f(t) < 0, and since the family {gε} is uniformly bounded, relation
(1.5) of Lemma A.3 implies that for all ε sufficiently small ε−1f + g(t) < 0. Hence for all
sufficiently small ε > 0, γ̃ε(t) = 0. Since γ̃(t) = 0 for t < tl, this completes the proof of (4.28)
in Theorem 4.7.

The identity (4.29) follows from (4.28), Lemma 6.1(3) and the definition of S1 in (4.23), while
the relation (4.30) follows directly from the definition of M1 and the fact that f is continuous.
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When f and gε are continuous, then ΦL
f (t) = Φf (t) and Φ̃R

f (t) = Φf (t) \ {t} and so from (4.26)
it follows that

S2(f, g) = sup
s∈Φf (t)

[g(s−) ∨ g(s)] ∨ sup
s∈Φf (t)\{t}

[g(s+)] .

However, since gε ↓ g and gε are continuous, g is upper semicontinuous and so g(s) ≥ g(s+) ∨
g(s−). Thus

S2(f, g) = sup
s∈Φf (t)

g(s) = S1(f, g),

from which (4.31) follows. Finally, uf f ∈ Dc it is easy to see that γε ↓ γ in the uniform topology,
and so (4.32) is a simple consequence of Lemma 6.1(4), (4.25) and (4.28).

6.2 Classification of the discontinuities of γ(1)

As shown in Theorem 4.10 for ORPs with H-R constraint matrices R, given any ψ, χ ∈ C, the
derivative ∇χΓ(ψ) satisfies ∇χΓ(ψ) = χ+Rγ(1)(ψ, χ), where γ(1)(ψ, χ) is the unique solution to
the system of equations (4.36) with j = 1. In this section we prove Theorem 5.2, which provides
a classification of the discontinuities of γ(1). In Section 6.2.1 we establish a correspondence
between the regimes introduced in Definition 5.1 and properties of the sets Φ−ξi(t), stated in
Lemma 5.1. In Section 6.2.2 we establish some preliminary lemmas required for the proof of
Theorem 5.2, which is presented in Section 6.2.3.

We now introduce some new notation used in this section. For t ∈ [0,∞) let Disc(t) (re-
spectively LDisc(t), RDisc(t) and SDisc(t)) denote the set of coordinates i such that γi

(1) has

a discontinuity (respectively left discontinuity, right discontinuity and separated discontinuity)
at t. Clearly

Disc(t) = LDisc(t) ∪RDisc(t) and SDisc(t) = LDisc(t) ∩RDisc(t).

The other notation used in this section has been made consistent with that used to define γ(1)

in Section 4.2.1, and thus this notation will not be explicitly redefined here. Finally, to simplify
notation, throughout the rest of this section we will use just γ to denote γ(1).

6.2.1 Characterization of Regimes

In Lemma 5.1 the various regimes in Definition 5.1 are equivalently characterized in terms of
conditions on the set Φi(t). Here we provide a proof of the lemma.
Proof of Lemma 5.1. Fix i ∈ I. Recall from (4.4) that for s > tiu ξ

i(s) = ψi(s) − [Pθ]i(s),
θi(s) = −ξi(s) ∨ 0 and

φi(s) = ξi(s) + θi(s) = ξi(s) + −ξi(s) ∨ 0.

It is clear from the definitions that −ξi(t) < 0 for t ∈ [0, til). This implies that θi(t) = 0

and φi(t) > 0, and hence that i is overloaded. For t ∈ [til, t
i
u), −ξi(t) = −ξi(t) = 0, and so

φi(t) = θi(t) = θ̇i(t−) = 0, which shows that i is critical at t.
It only remains to prove Lemma 5.1 for t > tiu. If t > tiu and s ∈ Φ−ξi(t) then s > tiu and

−ξi(t) = −ξi(s) = −ξi(s) > 0. Along with the last display this implies φi(s) = 0 and θi(s) =
θi(t). Conversely, if φi(s) = 0 and θi(s) = θi(t), then −ξi(s) = −ξi(s) = −ξi(t) ∨ 0 = −ξi(t),

38



where the last equality uses the fact that t ∈ [tiu,∞). Thus s ∈ Φ−ξi(t) and the proof of the
representation (5.2) is complete.

The representation (5.2) implies that t ∈ Φ−ξi(t) if and only if φi(t) = 0, and that s ∈
Φ−ξi(t) ∩ (0, t) implies θ̇i(t−) = 0, which establishes (3) and the “if” statement in (4). On the

other hand, if Φ−ξi(t) = {t} and t > tiu then φi(t) = 0 and θi(s) = −ξi(s) < −ξi(t) for every

s < t, which implies θ̇i(t−) > 0. This proves the “only if” statement in (4) and also establishes
(5).

From (4) it follows that for both the end of overloading and start of underloading t ∈
Φ−ξi(t) 6= {t}. Now from (3) we know that if i ∈ Over(s) for all s ∈ (t− δ, t), then s 6∈ Φ−ξi(s),
and therefore s 6∈ Φ−ξi(t). This implies that there exists δ > 0 such that (t− δ, t)∩Φ−ξi(t) = ∅,
so that t is isolated in Φ−ξi(t), which establishes (6). On the other hand, from (5) we know that
i ∈ Under(s) for s ∈ (t, t+ δ) if and only if Φ−ξi(s) = {s} for s ∈ (t, t+ δ), which in turn implies
that Φ−ξi(s) ⊂ (t, s] for every s ∈ (t, t + δ). This proves (7) and hence completes the proof of
the lemma.

6.2.2 Preliminary Lemmas

In this section we establish some results that are required for the proof of Theorem 5.2. For
i = 1, . . . ,K define

t̃iu
.
= inf{t ≥ til : −χi(t) + [Pγ]i(t) > 0 and −ξi(t) = 0}, (6.7)

where we adopt the convention inf ∅ = ∞.

Lemma 6.2 Suppose γ(1) and t̃iu are defined by (4.36) and (6.7) respectively. For i = 1, . . . ,K
γi

(1)(t) = 0 for t ∈ [0, t̃iu), and

γi
(1)(t) = sup

s∈Φ
−ξi (t)

[

−χi(s) + [Pγ]i(s)
]

(6.8)

for t ∈ [t̃iu,∞). Moreover, for t ∈ [0,∞), if i ∈ Disc(t) then t ∈ Φ−ξi(t) and

γi
(1)(t) = [−χi(t) + [Pγ]i(t)] ∨ γi

(1)(t−). (6.9)

Furthermore, if i ∈ LDisc(t) then

γi
(1)(t) = −χi(t) + [Pγ(1)]

i(t) > γi
(1)(t−), (6.10)

while if i ∈ RDisc(t) then Φ−ξi(s) ⊂ (t, s] for all s > t and

γi
(1)(t+) = −χi(t) + [Pγ(1)]

i(t+). (6.11)

Proof. For conciseness γ(1) will be denoted simply by γ for the entire proof. The claim that
γi = 0 for t ∈ [0, t̃iu) and the relation in (6.8) follow directly from the representation of γi given
in (1.19) and the definition of t̃iu. Note that γi has no points of right discontinuity in [0, t̃iu]. If
t̃iu = ∞ then γi(tiu) = 0 and there are no points of left discontinuity either in [0, t̃iu]. However,
if t̃iu <∞ is a point of left discontinuity for γi, then

γi(t̃iu−) = 0 < g(t̃iu) = −χi(t̃iu) + [Pγ]i(t̃iu),
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so that (6.10) is satisfied at t = t̃iu.
Thus it only remains to prove the lemma for t ∈ [t̃iu,∞), where the representation (6.8)

holds. Since ξ ∈ C, if t 6∈ Φ−ξi(t) there must exist δ > 0 such that

−ξi(s) < −ξi(t) and Φ−ξi(s) = Φ−ξi(t) for s ∈ [t− δ, t+ δ].

This implies that γi(s) = γi(t) for s ∈ [t − δ, t + δ], which establishes the continuity of γi at t.
Thus a necessary condition for γi to have a (right or left) discontinuity at t is that t ∈ Φ−ξi(t).
When combined with the representation (6.8) of γi, this implies that γi(t) ≥ −χi(t) + [Pγ]i(t).
Along with the inequality γi(t) ≥ γi(t−) for all t ∈ [0,∞) (which holds due to the upper
semicontinuity of γi proved in Theorem 4.6), this implies

γi(t) ≥ [−χi(t) + [Pγ]i(t)] ∨ γi(t−) if i ∈ Disc(t).

If i 6∈ LDisc(t) then γi(t) = γi(t−) which, together with the last display, implies (6.9). If
i ∈ LDisc(t) then either {t} = Φ−ξi(t) or t ∈ Φ−ξi(t) 6= {t}. In the former case the definition
of γi directly implies γi(t) = −χi(t) + [Pγi](t), which in turn implies (6.9). In the latter case
Φ−ξi(r) = Φ−ξi(t) ∩ [0, r] for all r < t sufficiently close to t, and hence

γi(t−) = lim
r↑t

γi(r) = lim
r↑t

sup
s∈Φ

−ξi (r)
[−χi(s) + [Pγ]i(s)] = sup

s∈Φ
−ξi (t)\{t}

[−χi(s) + [Pγ]i(s)].

Therefore
γi(t) = sup

s∈Φ
−ξi (t)

[−χi(s) + [Pγ]i(s)] = [−χi(t) + [Pγ]i(t)] ∨ γi(t−)

which, along with the fact that γi(t) ≥ γi(t−), establishes (6.9) and (6.10).
To prove (6.11), suppose i ∈ RDisc(t). If there exists δ > 0 such that −ξi(s) ≤ −ξi(t) for

s ∈ [t, t + δ], then for s ∈ (t, t + δ] Φ−ξi(s) = Φ−ξi(t) ∪ As where As ⊂ (t, t + δ]. This in turn
implies that for s ∈ (t, t+ δ]

γi(t) ≤ γi(s) = γi(t) ∨ sup
u∈As

[

−χi(u) + [Pγ]i(u)
]

.

Take limits as s ↓ t to obtain

γi(t) ≤ γi(t+) = γi(t) ∨
[

−χi(t) + [Pγ]i(t+)
]

≤ γi(t) ∨
[

−χi(t) + [Pγ]i(t)
]

= γi(t),

where the inequality in the above display holds because [Pγ]i is upper semicontinuous by Corol-
lary (4.3), and the last equality follows from (6.9). This shows that γi is right continuous
at t whenever −ξi is locally non-decreasing to the right of t. Thus a necessary condition for
i ∈ RDisc(t) is that there exist a sequence sn ↓ t such that for every n ∈ IN

−ξi(sn) > −ξi(t),

which in turn is equivalent to the condition that Φ−ξi(s) ⊂ (t, s] for all s > t. As a consequence,
for any sequence sn ↓ t

γi(sn) = sup
s∈Φ

−ξi (sn)
[−χi(s) + [Pγ]i(s)] = sup

s∈Φ
−ξi (sn)∩(t,sn]

[−χi(s) + [Pγ]i(s)].

Send sn ↓ t and observe that −χi is continuous at t to obtain (6.11).
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Lemma 6.3 Let γ
.
= γ(1) and t̃iu be defined by (4.36) and (6.7) respectively. If

{t} = Φ−ξi(t) for t ∈ [tiu,∞) (6.12)

then
γi(t−) = −χi(t) + [Pγ]i(t−), (6.13)

and
γi(t) = −χi(t) + [Pγ]i(t), (6.14)

and ∇χΓ(ψ)i is left continuous at t. If

Φ−ξi(s) ⊂ (t, s] for all s > t, (6.15)

then
γi(t+) = −χi(t) + [Pγ]i(t+). (6.16)

Moreover, if (6.12) holds along with (6.15), then t is a point of right continuity for ∇χΓ(ψ).

Proof. Suppose {t} = Φ−ξi(t) for some t ∈ [t̃iu,∞). Let sn be an increasing sequence such that
sn ↑ t, and let un ∈ [0, sn] satisfy

un = min{u ∈ [0, sn] : −ξi(u) = −ξi(sn)}.

We claim that then un ↑ t. Indeed, since un is uniformly bounded, there exists a convergent
subsequence (which we denote again by un) that converges to a limit u∗ ∈ [0, t]. Since ξi is
continuous, clearly u∗ ∈ Φ−ξi(t). Since Φ−ξi(t) = {t} by assumption, we conclude that u∗ = t.
Now observe that

γi(sn) = max
s∈Φ

−ξi (sn)
[−χi(s) + [Pγ]i(s)] = max

s∈Φ
−ξi (sn)∩[un,sn]

[−χi(s) + [Pγ]i(s)].

Take limits as n ↑ ∞ on both sides of the above equality and use the fact that un ↑ t to
obtain (6.13). The definition of γi automatically gives (6.14). Combining (6.13) with (6.14) one
observes that ∇Γi = γi − [Pγ]i + χi is left continuous at t.

If (6.15) holds then given a sequence sn ↓ t it follows that

γi(sn) = sup
s∈Φ

−ξi (sn)
[−χi(s) + [Pγ]i(s)] = sup

s∈Φ
−ξi (sn)∩(t,sn]

[−χi(s) + [Pγ]i(s)],

from which (6.16) follows. If in addition (6.12) holds, then (6.14) along with (6.16) shows that
∇χΓ(ψ) is right continuous.

6.2.3 Proof of Theorem 5.2

In this section we prove Theorem 5.2. The proof makes use of Lemma 5.1(2) to replace the sets
Φi in the statement of Theorem 5.2 by Φ−ξi .

Proof. For simplicity of notation, γ(1) is denoted by γ for the rest of the proof. Recall from
Lemma 6.2 that t ∈ Φ−ξi(t) is a necessary condition for γi to have a (right or left) discontinuity,
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and so assume for the rest of this proof that this condition holds. The proof is presented only
for the case t ∈ [t̃iu,∞), since the proof for t ∈ [til, t̃

i
u) is analogous.

We first analyze the left discontinuities of γi. In [22] properties of the one-dimensional
derivative were studied for the case when ψ, χ ∈ C. Consequently, when [Pγ]i is left continuous
at t, the fact that γi has a point of left discontinuity at t only if {t} 6= Φ−ξi(t) and t is isolated
in Φ−ξi(t) follows from [22, Lemmas 6.5 and 6.6]. Under this condition one has

γi(t−) = sup
s∈Φ

−ξi (t)\{t}
[−χi(s) + [Pγ]i(s)].

If (5.4) does not hold then clearly γi(t−) = γi(t) so that γi is continuous at t, while if (5.4) does
hold, then clearly i ∈ LDisc(t) and

γi(t) = −χi(t) + [Pγ]i(t),

which also implies that ∇Γi(t) = 0. The last two displays and the fact that [Pγ]i is continuous
then show that

∇Γi(t−) = γi(t−) − [Pγ]i(t−) + χi(t−) = γi(t−) − [Pγ]i(t) + χi(t) < 0,

which completes the justification of condition L1.
Now consider the case when [Pγ]i is left discontinuous. Suppose first that {t} = Φ−ξi(t).

Then (6.13) and (6.14) of Lemma 6.3 show that γi is left discontinuous, but ∇Γi is left continuous,
which establishes L4. Now suppose that t ∈ Φ−ξi(t) 6= {t}. Then

γi(t−) = sup
s∈Φ

−ξi (t)\{t}
[−χi(s) − [Pγ]i(s)],

and it follows that (5.4) is necessary and sufficient for i ∈ LDisc(t). Furthermore, in that case
clearly γi(t) = −χi(t) + [Pγ]i(t), so that ∇Γi(t) = 0, thus proving L2. If, in addition, t is not
isolated in Φ−ξi(t), i.e. there exists δ > 0 such that [t− δ, t] ⊂ Φ−ξi(t), then

γi(t−) ≥ sup
s∈[t−δ,t)

[−χi(s) − [Pγ]i(s)] ≥ −χi(t) + [Pγ]i(t−),

and so ∇Γi(t−) ≥ ∇Γi(t) = 0, which establishes L3. Note that when t is isolated in Φ−ξi(t)
there exist scenarios where ∇Γi(t) < ∇Γi(t−) and where ∇Γi(t) ≥ ∇Γi(t−).

We now consider the right discontinuities of γi. It follows from Lemma 6.2 that t ∈ Φ−ξi(t)
and Φ−ξi(s) ⊂ (t, s] are necessary conditions for i ∈ RDisc(t). The fact that t ∈ Φ−ξi(t) shows
that γi(t) ≥ −χi(t)+[Pγ]i(t), the upper semicontinuity of γi (which was proved in Corollary 4.3)
dictates that γi(t) > γi(t+), and (6.11) implies γi(t+) = −χi(t) + [Pγ]i(t+). When combined,
these three statements yield

∇Γi(t) ≥ ∇Γi(t+) = 0.

If [Pγ]i is right continuous at t, then the previous two statements clearly imply that i ∈ RDisc(t)
if and only if (5.5) holds (i.e. if γi(t) > −χi(t) + [Pγ]i(t)). If [Pγ]i is right discontinuous at t,
then the uppersemicontinuity of [Pγ]i (which follows from Corollary 4.3 and the non-negativity
of P ), the fact that t ∈ Φ−ξi(t), the definition of γ and (6.16) show that

γi(t) ≥ −χi(t) + [Pγ]i(t) > −χi(t) + [Pγ]i(t+) = γi(t+), (6.17)
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so that i ∈ RDisc(t). Now if (5.5) holds then clearly {t} 6= Φ−ξi(t) and also i 6∈ LDisc(t) by
(6.10) of Lemma 6.2. Moreover, in this case

∇Γi(t) > ∇Γi(t+) = 0.

This completes the proof of conditions R1 and R2. If {t} = Φ−ξi(t) then the first inequality in
(6.17) can be replaced by equality, and so ∇Γi(t) = ∇Γi(t+) = 0, which establishes conditions
R3 and R4.

Finally, a separated discontinuity can only happen when i ∈ LDisc(t) ∩RDisc(t). However
if conditions R1 or R2 are satisfied, then i 6∈ LDisc(t), and therefore a separated discontinuity
can only happen when the right discontinuity is of type R3 or R4. If R3 holds, then L4 cannot
be true, and thus one must have either L1, L2 or L3, which leads to conditions S1 and S2. On
the other hand if R4 holds and i ∈ LDisc(t), then L4 must hold, which results in S3. The
statements about ∇Γi in this case follow directly by combining the statements about ∇Γi made
for the relevant left and right discontinuous cases. This completes the proof of the theorem.

7 Conclusions

In this work we introduced the notion of the directional derivative of the multi-dimensional
oblique reflection map ∇χΓ(ψ). For the class of Harrison-Reiman oblique reflection problems,
which arise when analyzing models of open single-class Jackson queueing networks, and contin-
uous ψ, χ, we established an autonomous representation for ∇χΓ(ψ). This representation was
then used to identify properties of the derivative. In particular, we showed that the discontinu-
ities of the derivative have an intuitive interpretation in terms of transitions in the regimes of
Γ(ψ), the image of ψ under the reflection map Γ. We also presented examples to illustrate the
fact that the derivative can be explicitly calculated in many situations.

One of our main motivations for introducing the derivative is its connection with diffusion
approximations of non-stationary queueing networks and of stationary networks that exhibit
transient behaviour [25]. In this context, Γ(ψ) corresponds to the fluid limit of the network, and
jumps in the diffusion approximation occur at certain transitions of the fluid limit from one state
(of underloading, critical loading or overloading at a node) to another. In this work we showed
that these jumps are influenced by the topology of the network. In particular, fluctuations in
one part of the network can influence another part of the network at time t only if there is either
a path of empty buffers connecting one with the other, or there is a cycle in the network. It
would be of interest to understand the implications of the characterizations derived in this work
for the simulation of time-dependent networks. Another global objective is to use the qualitative
insights gained from these diffusion approximations to design appropriate controls for mitigating
undesired effects due to non-stationarity.

This work has concentrated on the conventional heavy-traffic regime. Another asymptotic
regime that has recently gained considerable attention is the so-called Halfin-Whitt regime [11],
where the number of servers is scaled along with the arrival rate while the service rate of each
server remains fixed (see [18] for a motivation of this regime). Functional strong laws and
functional central limits for a large class of time-dependent Markovian networks in the Halfin-
Whitt regime have been obtained in [23]. Notably, asymptotic analysis of the Halfin-Whitt
regime has been restricted to service durations that are exponential [11], of phase-type [35] and
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deterministic [16]. The complete analysis in the case of general service distributions remains an
important open problem. We believe that the general methodology of characterizing functional
central limits in terms of directional derivatives of an appropriate mapping, as outlined in
Section 1.1 for the conventional heavy traffic regime, may also be applicable to the Halfin-Whitt
asymptotic regime. The main difference lies only in the definitions of the processes X̄n and the
mapping F . Specifically, while for the conventional heavy traffic regime the mapping F is the
oblique reflection mapping, it can be shown (see, for example, [23, 26]) that in the Halfin-Whitt
regime with exponential service times, the appropriate mapping F is defined as follows: given
non-decreasing functions fA and fS , F (fA, fS) = q, where q is the unique function that solves
the integral equation

q(t) = q(0) + fA(t) −
∫ t

0
[q(r) ∧ 1] dfS(r) for t ∈ [0,∞),

in which dfS is the Lebesgue-Stieltjes measure on [0,∞) induced by fS . Indeed, when fA is the
functional strong law of large numbers limit of the normalized cumulative arrival process and
fS is the functional strong law of large numbers limit of the normalized sum of the cumulative
service processes of all N servers, respectively, then F (fA, fS) is the functional strong law of
large numbers limit (or fluid) limit of the queue length process [23]. Furthermore, the functional
central limit of the queue process can be expressed in terms of directional derivatives of the
mapping F (see [23, 26] for details). We expect that, in the case of general service distributions,
the corresponding mapping F may be more complicated but that the general approach would
still remain valid.

A Auxiliary Results

Lemma A.1 Given real-valued functions f and g

f ∨ 0 − g ∨ 0 ≤ f − g ∨ 0 .

Moreover, if f, g ∈ BV then
∣

∣

∣f ∨ 0 − g ∨ 0
∣

∣

∣

T

≤ |f − g|
T
,

where | · |T represents the total variation norm.

Proof. This follows trivially from a case-by-case verification, and is thus omitted.

Lemma A.2 Consider a sequence of functions {fn} ⊂ Dlim that converges pointwise to a
bounded function f . If for every T <∞ supn |fn|T <∞, then f ∈ Dlim.

Proof. We argue by contradiction to prove the lemma. Suppose f 6∈ Dlim. Then there exists
t ∈ (0,∞) such that f does not have either a left limit or a right limit at t. We assume without
loss of generality that f does not have a left limit at t (the case when f does not have a right
limit clearly follows by a similar argument). Since f is bounded there must exist δ > 0 and
sequences {si} and {s′i} such that si ↑ t, s′i ↑ t and for all i, i′

|f(si) − f(s′i′)| ≥ 4δ. (1.1)
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By choosing further subsequences if necessary, we can assume without loss of generality that

s1 < s′1 < s2 < s′2 < . . .

Since fn → f pointwise, given any m ∈ IN there exists N <∞ such that for all n ≥ N

|fn(s) − f(s)| < δ for all s ∈ {si, s
′
i, i = 1, . . . ,m}.

Combining (1.1) with the last display we conclude that for every i = 1, . . . ,m and n ≥ N

|fn(si) − fn(s′i)| > δ,

and hence

|fn|t ≥
m

∑

i=1

|fn(si) − fn(s′i)| ≥ mδ.

Taking the supremum over all n in the last display, and then letting m to go to infinity, we
conclude that supn |fn|t = ∞, which leads to a contradiction. Thus it must be that f ∈ Dlim.

Lemma A.3 Suppose f ∈ Dlim and {gε, ε > 0} ⊆ Dlim satisfies

LT
.
= sup

ε>0
‖gε‖T <∞ for every T ∈ [0,∞) . (1.2)

Then the following properties hold for any t ∈ [0,∞).

1. There exists ε0 > 0 such that for all ε ∈ (0, ε0)

f(t) < 0 ⇒ ε−1f + gε(t) < 0 , (1.3)

and likewise
f(t) > 0 ⇒ ε−1f + gε(t) > 0 . (1.4)

2. Given δ ∈ (0, Lt), if
ε−1f + gε(t) ≤ ε−1f(s) + gε(s) + δ (1.5)

for some s ∈ [0, t] and ε ∈ (0, δ/6Lt), then

f(t) ≤ f(s) + δ . (1.6)

Proof. Fix t ∈ [0,∞), let L
.
= Lt and choose ε0 = |f(t)|/2L. If f(t) < 0, then for ε ∈ (0, ε0)

ε−1f + gε ≤ ε−1f(t) + gε(t)

≤ −2L+ L

< 0 ,

which establishes (1.3). A similar argument establishes (1.4).
We now argue by contradiction to establish the second property. Suppose there exists ε <

δ/6Lt and s ∈ [0, t] that satisfies (1.5), but for which

f(s) < f(t) − δ .
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Choose s̃ ∈ [0, t] such that
f(s̃) > f(t) − δ/2.

Then the last two displays together show that f(s̃) > f(s) + δ/2, which along with (1.5) the
fact that δ < Lt and ε < δ/6Lt imply that

ε−1f(s̃) + gε(s̃) − ε−1f + gε(t)

≥ ε−1f(s̃) + gε(s̃) −
(

ε−1f(s) + gε(s)
)

− δ

≥ ε−1 [f(s̃) − f(s)] − 2Lt − δ

>
ε−1δ

2
− 3Lt

> 0 ,

which contradicts the definition of the supremum since s̃ ∈ [0, t].

Lemma A.4 Consider a family of left (respectively right) continuous functions {gε} that con-
verges pointwise monotonically down to a function g ∈ Dlim as ε ↓ 0. If s is a point of left
(respectively right) continuity for g, then given any sequence sε ↑ s (respectively sε ↓ s)

lim
ε↓0

gε(sε) = g(s).

Proof. Given any δ > 0 the pointwise convergence of gκ shows that there exists κ0 > 0 such
that for all κ ∈ (0, κ0)

|gκ(s) − g(s)| < δ/3.

Likewise, given any κ > 0 since either gκ is left continuous and sε ↑ s, or gκ is right continuous
and sε ↓ 0, there exists ε0(κ) ≤ κ such that for all ε < ε0(κ)

|gκ(sε) − gκ(s)| < δ/3,

and
|g(sε) − g(s)| < δ/3.

The last three displays, when combined, show that given any δ > 0 there exists κ0 > 0 such
that for all κ < κ0 and ε < ε0(κ),

|gκ(sε) − g(s)| < δ.

When combined with the fact that ε < ε0(κ) < κ and the pointwise monotonic convergence of
gε down to g, the last display yields

g(sε) ≤ gε(sε) ≤ gκ(sε) ≤ g(s) + δ.

Taking limits, first as ε ↓ 0 and then as κ ↓ 0, and using the left continuity of g and the fact
that sε ↑ s (or the right continuity of g and the fact that sε ↓ s), one concludes that

g(s) ≤ lim inf
ε↓0

gε(sε) ≤ lim sup
ε↓0

gε(sε) ≤ g(s) + δ.

Sending δ ↓ 0 concludes the proof of the lemma.
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B List of Notations for Function Spaces

Given a real-valued function defined on [0,∞), a separated discontinuity is defined to be a point
t ∈ [0,∞) at which

f(t) 6∈ [f(t−) ∧ f(t+), f(t−) ∨ f(t+)].

An IRK-valued function f is said to have a separated discontinuity at t if for some i = 1, . . . ,K
f i has a separated discontinuity at t. The set of discontinuity points of a function f ∈ Dlim will
be denoted Disc(f). Note that Disc(f) = ∪K

i=1Disc(f
i).

Dlim the space of all functions on [0,∞) taking values in IRK that have left and
right limits for every t ∈ [0,∞).

Dr the subspace of right continuous functions in Dlim

Dℓ,r the subspace of functions that are either right continuous or left continuous
at every t ∈ [0,∞)

Dusc the subspace of functions in Dlim such that each coordinate function f i is
uppersemicontinuous (i.e. f(t) ≥ f(t−) ∨ f(t+) for every t ∈ [0,∞).)

Dc the subspace of piecewise constant functions in Dr with a finite number of
jumps.

I+ the space of functions in Dlim taking values in IRK
+ such that each coordinate

function is non-decreasing.
C the subspace of continuous functions in Dlim.
BV the subspace of bounded variation functions in Dlim
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Figure 1: The time-varying arrival rate λ1, and the contents φ1 and φ2 of the first and second
queue in the tandem queueing network of Section 2.1 – note the lags δ1 and δ1 + δ2 between the
time of peak arrival rate and peak congestion at queues 1 and 2 respectively
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2.1 – each queue alternates between periods of underloading, criticality and overloading
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Figure 4: A queueing network with a merge and time-varying arrival and sevice rates giving rise
to a separated discontinuity in the directional derivative at t = 1
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Figure 5: The fluid limit of the non-stationary merge queueing network
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