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Abstract. This work considers a many-server queueing system in which cus-
tomers with i.i.d., generally distributed service times enter service in the order

of arrival. The dynamics of the system are represented in terms of a pro-
cess that describes the total number of customers in the system, as well as a
measure-valued process that keeps track of the ages of customers in service.
Under mild assumptions on the service time distribution, as the number of

servers goes to infinity, a law of large numbers (or fluid) limit is established
for this pair of processes. The limit is characterised as the unique solution to
a coupled pair of integral equations, which admits a fairly explicit representa-
tion. As a corollary, the fluid limits of several other functionals of interest, such
as the waiting time, are also obtained. Furthermore, when the arrival process
is time-homogeneous, the fluid limit is shown to converge to its equilibrium.
Along the way, some results of independent interest are obtained, including

a continuous mapping result and a maximality property of the fluid limit. A
motivation for studying these systems is that they arise as models of computer
data systems and call centers.
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1. Introduction

1.1. Background and Motivation. The main objective of this work is to obtain
functional strong laws of large numbers limits or “fluid” approximations of various
functionals of the G/GI/N queue (that has general arrivals, i.i.d., generally dis-
tributed service times and N servers), in the limit as the number of servers tends
to infinity. In fact, a more general setting is considered that allows for possibly
time-inhomogeneous arrivals. In order to obtain a Markovian description of the
dynamics, the state includes a non-negative integer-valued process that represents
the total number of customers in system, as well as a measure-valued process that
keeps track of the ages of customers in service. The fluid limit obtained is for this
pair of processes and thus contains more information than just the limit of the
scaled number of customers in system. In particular, it also yields a description of
the fluid limits of several other functionals of interest, including the waiting time.
A fairly explicit representation for the fluid limit is obtained, which is then used to
study the convergence, as t→ ∞, of the fluid limit to equilibrium in the case when
the arrival process is time-homogeneous. These results are obtained under mild
assumptions on the service distribution, such as the existence of a density, which
are satisfied by most distributions that arise in applications. While we expect that
these conditions can be relaxed, the representation of the fluid limit is likely to
be more involved in that setting. Thus, for ease of exposition, we have restricted
ourselves to this generality.

Multiserver queueing systems arise in many applications, and have generally
proved to be more difficult to analyse than single server queues. Thus it is natural
to resort to an asymptotic analysis in order to gain insight into the behavior of these
systems. It is of particular interest to consider an asymptotic regime in which the
probability of a positive queue lies strictly between zero and one since this captures
what is observed in many applications. In the seminal paper of Halfin and Whitt
[10], it was shown that for the case of Poisson arrivals and exponentially distributed
service times, this can be achieved by letting both the number of servers N and the
corresponding arrival rate λN go to infinity in such a manner that λN = N −β

√
N

and some β > 0. Specifically, in [10] a central limit theorem for the number
of customers in system was obtained in this setting and then used to derive an
approximation for the probability of a positive queue (equivalently, the probability
of a customer having a positive wait). For networks of multi-server queues with
(possibly time-varying) Poisson arrivals and exponential services, fluid and diffusion
limits for the total number of customers in system were obtained by Mandelbaum,
Massey and Reiman in [17], and these results were later extended to include the
queue length and virtual waiting time processes in [18]. All of these results were
obtained under the assumption of exponential service times.

This work is to a large extent motivated by the fact that G/GI/N queues arise
as models of large-scale telephone call centers, for which the limiting regime con-
sidered here admits the natural interpretation of the scaling up of the number of
servers in response to an analogous scaling up of the arrival rate of customers (see
[2] for a survey of the applications of multi-server models to call centers). Recent
statistical evidence from real call centers presented in Brown et. al. [2] suggests
that, in many cases, it may be more appropriate to model the service times as
being non-exponentially distributed and, in particular, according to the lognor-
mal distribution. This emphasises the need to obtain fluid limits when the service
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times are generally distributed. With this as motivation, a deterministic fluid ap-
proximation for a G/GI/N queue, with abandonments that are possibly generally
distributed, was proposed by Whitt in [25]. However, a general functional strong
law of large numbers justifying the fluid approximation was not obtained in [25]
(instead, convergence was established for a discrete-time version of the model, al-
lowing for time-dependent and state-dependent arrivals). In this paper, we establish
a functional strong law of large numbers limit allowing for time-dependent arrivals,
but in the absence of abandonments, and provide an intuitive and fairly explicit
characterization of the limit. We consider an asymptotic regime in which the num-
ber of servers N goes to infinity, and the arrival rate λN scales roughly as Nλ(·),
for some possibly time-varying function λ. This asymptotic regime is essentially
the same as the one considered in [25], and is a slight generalization of the one
introduced originally by Halfin and Whitt in [10], adapted to the situation in which
only a “fluid” approximation (as opposed to a central limit theorem) is sought.
Concurrently with this work, fluid and central limit theorems for just the number
in system were established in the work of Reed [22] using a clever comparison with a
G/GI/∞ system. Here, we take a different approach that involves a measure-valued
representation. This leads to a semimartingale representation of the fluid limit of
the number in system and also yields the fluid limits of several other functionals of
interest.

One of the challenges in going from exponential to non-exponential service dis-
tributions is that a Markovian description of the dynamics leads, in the limit as
N → ∞, to an infinite-dimensional state. The measure-valued representation and
martingale methods adopted in this paper provide a convenient framework for the
asymptotic analysis of multi-server queues (see [20] for a recent survey on the use of
martingale methods for establishing heavy-traffic limits of multi-server queues with
exponentially distributed service times). Indeed, the framework developed here is
quite flexible and can be extended in many ways. For example, the results of this
paper have been generalized in [14] to include abandonments and this framework
has also been used in [15] to establish ergodicity of many-server queues with aban-
donment. In addition, the characterization of the pre-limit obtained here is used
to establish central limit theorems in [16]. In the context of single-server queueing
networks, recent works that have used measure-valued processes to study fluid lim-
its include [4], [7], [8] and [9]. In these papers, the measure-valued processes keep
track of the residual service times of customers. In contrast, in the present paper
we introduce a different measure-valued representation that keeps track of the ages
of customers in service. The latter representation offers several advantages such as
yielding semimartingale representations that are more amenable to computation,
and can therefore be more convenient in many contexts.

The outline of the paper is as follows. A precise mathematical description of the
model, including the basic assumptions, is provided in Section 2. Section 3 intro-
duces the fluid equations and contains a summary of the main results. Uniqueness
of solutions to the fluid equations is established in Section 4 and the functional
strong law of large numbers limit is proved in Section 5. Finally, the large-time or
equilibrium behavior of the fluid limit is described in Section 6. In the remainder
of this section, we introduce some common notation used in the paper.

1.2. Notation and Terminology. The following notation will be used throughout
the paper. N is the set of positive integers, Z+ is the set of non-negative integers,
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R is set of real numbers and R+ the set of non-negative real numbers. For a, b ∈ R,
a ∨ b denotes the maximum of a and b, a ∧ b the minimum of a and b and the
short-hand a+ is used for a ∨ 0. Given A ⊂ R and a ∈ R, A − a equals the set
{x ∈ R : x + a ∈ A} and 11B denotes the indicator function of the set B (that is,
11B(x) = 1 if x ∈ B and 11B(x) = 0 otherwise).

1.2.1. Function Spaces. Given any Polish space S, Cb(S) and Cc(S) are, respec-
tively, the space of bounded and continuous real-valued functions and the space of
continuous real-valued functions with compact support defined on S. In this paper,
S will typically be either a subset of R or of R

2
+. When S = [0,M)×R+, the space

Cc([0,M) × R+) refers to the space of continuous functions on R
2
+ with compact

support, restricted to [0,M)×R+, the space C1,1
c ([0,M)×R+) is defined to be the

subset of functions ϕ in Cc([0,M) × R+) for which the directional derivative

ϕx(x, s) + ϕs(x, s)
.
= lim

∆↓0

ϕ(x+ ∆, s+ ∆) − ϕ(x, s)

∆
, (x, s) ∈ [0,M) × R+,

exists and lies in Cc([0,M) × R+), and the space C1,1
b ([0,M) × R+) is the space

of bounded functions on [0,M) × R+ for which the directional derivative ϕx + ϕs
exists, and is also bounded and continuous. Also, C∞

c (R2
+) is the space of infinitely

differentiable functions on R
2
+. For S = [0,M) the space Cc[0,M) is the space of

continuous functions with compact support on [0,M) and C1
c [0,M) is the subset

of once continuously differentiable functions in Cc[0,M). For f ∈ C1
c [0,M), we let

f
′

denote the derivative of f . Also, BV 0[0,∞) is the space of càdlàg functions on
[0,∞) with f(0) = 0 that have finite variation on every bounded interval in R+,
and I0[0,∞) is the subspace of non-decreasing càdlàg functions with f(0) = 0. Let
L1[0,M) and L1

loc[0,M) represent, respectively, the spaces of Lebesgue integrable
and locally Lebesgue integrable functions on [0,M). Recall that for M ≤ ∞, a
function is said to be locally Lebesgue integrable on [0,M) if and only if it satisfies
∫

[0,m]
|f(x)|dx < ∞ for all m < M . The constant functions f ≡ 1 and f ≡ 0 on

[0,M) will be represented by the symbols 1 and 0, respectively. With some abuse
of notation, we will also use 1 and 0 for the constant functions on [0,M) × [0,∞),
respectively, that equal 1 and 0 respectively. The use will be clear from the context.
In addition, we use 1̃ to denote the constant function on R+ that is equal to 1.
Furthermore, we use id to represent the identity function on R+: id(t) = t for
t ∈ R+. Given any f defined on [0,M),M ≤ ∞, we define ‖f‖T

.
= sups∈[0,T ) |f(s)|

for every T ≤ M . For a real-valued function ϕ on S, let ‖ϕ‖∞
.
= supx∈S |ϕ(x)|.

Note that both ‖f‖T and ‖f‖∞ could possibly equal infinity. In addition, the
support of a function ϕ is denoted by supp(ϕ).

Given a non-decreasing, right continuous function f having left limits, with f∗
.
=

sups∈[0,∞) f(s), consider the following inverse functionals that take values in the
extended reals:

(1.1) inv[f ](t)
.
= inf {s ≥ 0 : f(s) ≥ t} , t ∈ [0, f∗],

with the convention that [0, f∗] = [0,∞) if f∗ = ∞, and if f∗ <∞ then inv[f ](t)
.
=

∞ for t > f∗. Likewise, let

(1.2) f−1(t)
.
= sup {s ≥ 0 : f(s) ≤ t} , t ∈ [0, f∗),

and f−1(t) = ∞ for t ≥ f∗.
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1.2.2. Measure Spaces. The space of Radon measures on a Polish space S, en-
dowed with the Borel σ-algebra, is denoted by M(S), while MF (S), M1(S) and
M≤1(S) are, respectively, the subspaces of finite nonnegative, probability and sub-
probability measures in M(S). Also, given B < ∞, M≤B(S) ⊂ MF (S) denotes
the space of measures µ in MF (S) such that µ(S) ≤ B. Recall that a Radon
measure is one that assigns finite measure to every relatively compact subset of S.
By identifying a Radon measure µ ∈ M(S) with the mapping on Cc(S) defined by

ϕ 7→
∫

S

ϕ(x)µ(dx),

one can equivalently define a Radon measure on S as a linear mapping from Cc(S)
into R such that for every compact set K ⊂ S, there exists LK <∞ such that

(1.3)

∣

∣

∣

∣

∫

S

ϕ(x)µ(dx)

∣

∣

∣

∣

≤ LK ‖ϕ‖∞ ∀ϕ ∈ Cc(S) with supp(ϕ) ⊂ K.

The space M(S) is equipped with the vague topology, i.e., a sequence of measures

{µn} in M(S) is said to converge to µ in the vague topology (denoted µn
v→ µ) if

and only if for every ϕ ∈ Cc(S),

(1.4)

∫

S

ϕ(x)µn(dx) →
∫

S

ϕ(x)µ(dx) as n→ ∞.

On MF (S), we will also consider the weak topology, i.e., a sequence {µn} in MF (S)

is said to converge weakly to µ (denoted µn
w→ µ) if and only if (1.4) holds for every

ϕ ∈ Cb(S). As is well-known, M(S) and MF (S), endowed with the vague and weak
topologies, respectively, are Polish spaces. The symbol δx will be used to denote
the measure with unit mass at the point x and, with some abuse of notation, we
will use 0̃ to denote the identically zero Radon measure on S. When S is an
interval, say [0,M), for notational conciseness, we will often write M[0,M) instead
of M([0,M)).

We will mostly be interested in the case when S = [0,M) and S = [0,M)×R+,
for some M ∈ (0,∞]. To distinguish these cases, we will usually use f to denote
generic functions on [0,M) and ϕ to denote generic functions on [0,M)×R+. With
some abuse of notation, given f on [0,M), we will sometimes also treat it as a
function on [0,M) × R+ that is constant in the second variable. For any Borel
measurable function f : [0,M) → R that is integrable with respect to ξ ∈ M[0,M),
we often use the short-hand notation

〈f, ξ〉 .=
∫

[0,M)

f(x) ξ(dx).

Also, for ease of notation, given ξ ∈ M[0,M) and an interval (a, b) ⊂ [0,M), we
will use ξ(a, b) and ξ(a) to denote ξ((a, b)) and ξ({a}), respectively.

1.2.3. Measure-valued Stochastic Processes. Given a Polish space H, we denote
by DH[0, T ] (respectively, DH[0,∞)) the space of H-valued, càdlàg functions on
[0, T ] (respectively, [0,∞)), and we endow this space with the usual Skorokhod J1-
topology [19]. Then DH[0, T ] and DH[0,∞) are also Polish spaces (see [19]). In this
work, we will be interested in H-valued stochastic processes, where H = MF [0,M)
for some M ≤ ∞ . These are random elements that are defined on a probability
space (Ω,F ,P) and take values in DH[0,∞), equipped with the Borel σ-algebra
(generated by open sets under the Skorokhod J1-topology). A sequence {Xn} of
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càdlàg, H-valued processes, with Xn defined on the probability space (Ωn,Fn,Pn),
is said to converge in distribution to a càdlàg H-valued process X defined on
(Ω,F ,P) if, for every bounded, continuous functional F : DH[0,∞) → R, we have

lim
n→∞

En [F (Xn)] = E [F (X)] ,

where En and E are the expectation operators with respect to the probability
measures Pn and P, respectively. Convergence in distribution of Xn to X will be
denoted by Xn ⇒ X.

2. Model Dynamics and Basic Assumptions

In Section 2.1 we describe our basic model and state our main assumptions, and
in Section 2.2 we introduce some auxiliary processes that are useful for the study
of the dynamics of the model.

2.1. Description of the Model. Consider a system with N servers, where arriv-
ing customers are served in a non-idling, First-Come-First-Serve (FCFS) manner,
i.e., a newly arriving customer immediately enters service if there are any idle
servers, or, if all servers are busy, then the customer joins the back of the queue,
and the customer at the head of the queue (if one is present) enters service as soon
as a server becomes free. Our results are not sensitive to the exact mechanism
used to assign an arriving customer to an idle server, as long as the non-idling
condition is satisfied. Let E(N) denote the cumulative arrival process, with E(N)(t)
representing the total number of customers that arrive into the system in the time
interval [0, t], and let the service requirements be drawn from an i.i.d. sequence
{vi, i = −N + 1,−N + 2, . . . , 0, 1, . . .}, with common cumulative distribution func-
tion G. For i ∈ N, vi represents the service requirement of the ith customer to
enter service after time 0. Let X(N)(0) denote the number of customers in the
system at time 0. Then {vi, i = −(X(N)(0) ∧N) + 1, · · · , 0} represents the service
requirements of customers already in service at time zero. When E(N) is a renewal
process, this is simply a GI/GI/N queueing system.

Consider the càdlàg, real-valued process R
(N)
E defined by

(2.1) R
(N)
E (s)

.
= inf

{

t > s : E(N)(t) > E(N)(s)
}

− s,

which denotes the time from s until the next arrival. If E(N) is a renewal process,

then R
(N)
E is simply the forward recurrence time. The following mild assumptions

will be imposed throughout, without explicit mention.

• E(N) is a non-decreasing, pure jump process with E(N)(0) = 0 and for
t ∈ [0,∞), E(N)(t) <∞ and E(N)(t) − E(N)(t−) ∈ {0, 1};

• The cumulative arrival process E(N) is independent of the sequence of ser-
vice requirements {vj , j = −N + 1,−N + 2, . . .};

• The process R
(N)
E is Markovian with respect to its own natural filtration;

this holds, for example, when E(N) is a renewal process (see Proposition
1.5 of Section V of [1]) or an inhomogeneous Poisson process;

• G has density g;
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• Without loss of generality, we can (and will) assume that the mean service
requirement is 1:

(2.2)

∫

[0,∞)

(1 −G(x)) dx =

∫

[0,∞)

xg(x) dx = 1.

The sequence of processes {R(N)
E , E(N),X(N)(0), vi, i = −N + 1, . . . , 0, 1, . . .}N∈N

are all assumed to be defined on a common probability space (Ω,F ,P) that is large
enough for the independence assumptions stated above to hold.

The first three assumptions stated above are very general, allowing for a large
class of arrival processes. Note that the fourth assumption implies, in particular,
that G(0+) = 0. The existence of a density is assumed for convenience, and is
satisfied by a large class of distributions of interest in applications. The relaxation
of this assumption would lead to a more complicated and somewhat less intuitive
representation for the fluid limit and thus, for ease of exposition, we have restricted
ourselves to this generality. Define the hazard rate

(2.3) h(x)
.
=

g(x)

1 −G(x)
x ∈ [0,M),

where

(2.4) M
.
= sup{x ∈ [0,∞) : G(x) < 1}.

Note that in many interesting cases, M = ∞. Also, observe that h is automatically
locally integrable on [0,M) since for every 0 ≤ a ≤ b < M ,

∫ b

a

h(x) dx = ln(1 −G(a)) − ln(1 −G(b)) <∞.

When additional assumptions on h are needed, they will be mentioned explicitly in
the statements of the results.

The N -server model described above can be represented in many ways (see, for
example, representations for GI/G/N queueing systems in [1, Chapter XII]). For
our purposes, we will find it convenient to encode the state of the system in the

processes (R
(N)
E ,X(N), ν(N)), where R

(N)
E is the process defined in (2.1), X(N)(t)

represents the number of customers in the system at time t (including those in

service and those in the queue, waiting to enter service) and ν
(N)
t is the discrete

non-negative Borel measure on [0,M) that has a unit mass at the age of each

of the customers in service at time t. Here, the age a
(N)
j of customer j is (for

every realization) the piecewise linear function on [0,∞) that is defined to be 0 till
the customer enters service, then increases linearly while the customer is in service
(representing the amount of time elapsed since entering service) and is then constant
(equal to the total service requirement) after the customer departs. Hence, the total

number of customers in service at time t is given by 〈1, ν(N)
t 〉 = ν

(N)
t [0,M), which

is bounded above by N and so ν
(N)
t ∈ M≤N [0,M) for every t ∈ [0,∞). Our results

will be independent of the particular rule used to assign customers to servers, but
for technical purposes we will find it convenient to also introduce the additional

“station process” sequence S(N) .
= (S(N)

j , j ∈ {−(X(N)(0) ∧ N) + 1, . . . , 0} ∪ N),

N ∈ N, defined on the same probability space (Ω,F ,P). For each t ∈ [0,∞), if

customer j has already entered service by time t, then S(N)
j (t) is equal to the index

i ∈ {1, . . . , N} of the station at which customer j receives/received service and
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S(N)
j (t)

.
= 0 otherwise. Finally, for t ∈ [0,∞), let F̃ (N)

t be the σ-algebra generated

by {X(N)(0), R
(N)
E (s), a

(N)
j (s),S(N)

j (s), j ∈ {−(X(N)(0) ∧ N) + 1, . . . , 0} ∪ N, s ∈
[0, t]} and let {F (N)

t }t≥0 denote the associated right continuous filtration, which is
completed (with respect to P) so that it satisfies the usual conditions. As elaborated

on in the next section, it is not hard to see that (E(N),X(N), ν(N)) is {F (N)
t }-

adapted. An explicit construction of these processes (in a more general setting
that allows the possibility of abandonments) that uses the framework of piecewise
deterministic Markov processes can be found in [14]. The results in [14] show,

in particular, that {(R(N)
E (t),X(N)(t), ν

(N)
t ),F (N)

t ,P} is a strong Markov process,
though we do not use this property in this paper.

2.2. Some auxiliary processes. We now introduce the following auxiliary pro-
cesses that will be useful for the study of the evolution of the system:

• the cumulative departure process D(N), where D(N)(0) = 0 and for t >
0, D(N)(t) is the cumulative number of customers that have departed the
system in the interval (0, t];

• the process K(N), where K(N)(0) = 0 and for t > 0, K(N)(t) represents the
cumulative number of customers that have entered service in the interval
(0, t].

Simple mass balances show that

(2.5) D(N) .
= X(N)(0) −X(N) + E(N),

and

(2.6) K(N) .
= 〈1, ν(N)〉 − 〈1, ν(N)

0 〉 +D(N).

Due to the FCFS nature of the service, observe that K(N)(t) is also the highest

index of any customer that has entered service by time t, and so K(N) is {F (N)
t }-

adapted.

For N ∈ N and each j, let α
(N)
j

.
= inv[K(N)](j), where inv is defined as in (1.2).

In other words, α
(N)
j is the time at which customer j enters service. The age process

of all customers in service increases linearly and so, given the service requirements
of customers, the evolution of the age process can be described explicitly in terms

of the stopping times α
(N)
j as follows:

(2.7) a
(N)
j (t) =

{ [

t− α
(N)
j

]

∨ 0 if t− α
(N)
j < vj ,

vj otherwise.

For t ≥ 0, the measure ν
(N)
t can be written in the form

(2.8) ν
(N)
t =

K(N)(t)
∑

j=−〈1,ν
(N)
0 〉+1

δ
a
(N)
j (t)

11
{a

(N)
j (t)<vj}

.

Recall that δx represents the Dirac mass at the point x. Now, at any time t, the age
process of any customer has a right-derivative that is positive (and equal to one)
if and only if the customer is in service, and has a left-derivative that is positive
and a right-derivative that is zero if and only if it has just departed. Thus D(N) is
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clearly {F (N)
t }-adapted and, since ν

(N)
t can be written explicitly purely in terms of

the age process as

(2.9) ν
(N)
t =

K(N)(t)
∑

j=−〈1,ν
(N)
0 〉+1

δ
a
(N)
j (t)

11n

d
dt
a
(N)
j (t+)>0

o,

ν(N) is also {F (N)
t }-adapted. Furthermore, since 〈1, ν(N)

t 〉 represents the number
of customers in service at time t, the non-idling condition takes the form

(2.10) N − 〈1, ν(N)〉 = [N −X(N)]+.

This shows that 〈1, ν(N)
t 〉 < N if and only if X(N)(t) < N , which occurs if and

only if the number in system is equal to the number in service, and so there is
no queue. From the above discussion, it follows immediately that the processes

X(N), ν(N),D(N) and K(N) are all {F (N)
t }-adapted. For an explicit construction of

these processes, in a more general context that allows the possibility of customer
abandonment, see [14].

Remark 2.1. If M < ∞, then for every N , we will always assume that ν
(N)
0 has

support in [0,M). From (2.8), this automatically implies that ν
(N)
t also has support

in [0,M) for every t ∈ [0,∞) and, moreover, that ν(N) ∈ DM≤N [0,M)[0,∞).

3. Main Results

We now summarise our main results. First, in Section 3.1, we introduce the
so-called fluid equations, which provide a continuous analog of the discrete model
introduced in Section 2. In Section 3.2 we present our main results, which in
particular show that, under the specified assumptions, the fluid equations uniquely
characterize the strong law of large numbers limit of the multi-server system, as the
number of servers goes to infinity. Lastly, in Section 3.3, we show how our results
can be used to obtain fluid limits of various other functionals of interest. This, in
particular, illustrates the usefulness of adopting a measure-valued representation
for the state.

3.1. Fluid Equations. Consider the following scaled versions of the basic pro-

cesses describing the model. ForN ∈ N, the scaled state descriptor (R
(N)

E ,X
(N)

, ν(N))
is given by

(3.1) R
(N)

E (t)
.
= R

(N)
E (t); X

(N)
(t)

.
=
X(N)(t)

N
; ν

(N)
t (B)

.
=
ν

(N)
t (B)

N

for t ∈ [0,∞) and any Borel subset B of [0,M), and observe that ν
(N)
t is a sub-

probability measure on [0,M) for every t ∈ [0,∞). Analogously, define

(3.2) E
(N) .

=
E(N)

N
; D

(N) .
=
D(N)

N
; K

(N) .
=
K(N)

N
.

Recall that I0[0,∞) is the subset of non-decreasing functions f ∈ DR+
[0,∞)

with f(0) = 0 and M = sup{x ∈ [0,∞) : G(x) < 1}, and define

(3.3) S0
.
=
{

(f, x, µ) ∈ I0[0,∞) × R+ ×M≤1[0,M) : 1 − 〈1, µ〉 = [1 − x]+
}

.
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S0 serves as the space of possible input data for the fluid equations. We make
the following convergence assumptions on the primitives of the scaled sequence of
systems.

Assumption 1. (Initial conditions) There exists an S0-valued random element
(E,X(0), ν0) such that, as N → ∞, the following limits hold:

(1) E
(N) → E in DR+

[0,∞) P-a.s., and E

[

E
(N)

(t)
]

→ E
[

E(t)
]

< ∞ for

every t ∈ [0,∞);

(2) X
(N)

(0) → X(0) in R+ P-a.s., and E

[

X
(N)

(0)
]

→ E[X(0)] <∞;

(3) ν
(N)
0 → ν0 weakly in M≤1[0,M), P-a.s.

Remark 3.1. Note that conditions (1) and (2) of Assumption 1 imply that for

every t ∈ [0,∞), lim supN E[X
(N)

(0) + E
(N)

(t)] <∞.

Remark 3.2. If the limits in Assumption 1 hold only weakly rather than almost
surely, then using the Skorokhod representation theorem in the standard way, it can
be shown that all the stochastic process convergence results in the paper continue
to hold.

Our goal is to identify the limit in distribution of the quantities (X
(N)

, ν(N)),
as N → ∞. In this section, we first introduce the so-called fluid equations and

provide some intuition as to why the limit of any sequence (X
(N)

, ν(N)) should be
expected to be a solution to these equations. In Section 5, we provide a rigorous
proof of this fact. In what follows, h is the hazard rate function defined in (2.3).

Definition 3.3. (Fluid Equations) The càdlàg function (X, ν) defined on [0,∞)
and taking values in R+×M≤1[0,M) is said to solve the fluid equations associated

with (E,X(0), ν0) ∈ S0 if and only if for every t ∈ [0,∞),

(3.4)

∫ t

0

〈h, νs〉 ds <∞,

and the following relations are satisfied: for every ϕ ∈ C1,1
c ([0,M) × R+),

〈ϕ(·, t), νt〉 = 〈ϕ(·, 0), ν0〉 +

∫ t

0

〈ϕx(·, s) + ϕs(·, s), νs〉 ds(3.5)

−
∫ t

0

〈h(·)ϕ(·, s), νs〉 ds+

∫

[0,t]

ϕ(0, s) dK(s);

X(t) = X(0) + E(t) −
∫ t

0

〈h, νs〉 ds;(3.6)

and

(3.7) 1 − 〈1, νt〉 = [1 −X(t)]+,

where

(3.8) K(t) = 〈1, νt〉 − 〈1, ν0〉 +

∫ t

0

〈h, νs〉 ds.

We now provide an intuitive explanation for the form of the fluid equations.
Suppose (X, ν) solves the fluid equations associated with some (E,X(0), ν0) ∈ S0.
Then, roughly speaking, for x ∈ R+, νs(dx) represents the amount of mass (or
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limiting fraction of customers) whose age lies in the range [x, x + dx) at time s.
Since h is the hazard rate, h(x) represents the fraction of mass with age x that
would depart from the system at any time. Thus 〈h, νs〉, which is finite for almost
every s by (3.4), represents the departure rate of mass from the fluid system at
time s, and the process D given by

(3.9) D(t)
.
=

∫ t

0

〈h, νs〉 ds t ∈ [0,∞),

represents the cumulative amount of departures from the fluid system. Since E is
the limiting cumulative arrival rate of mass into the fluid system in the interval
[0, t], a simple mass balance yields the relation (3.6) (in analogy with the pre-limit
equation (2.5)). Likewise, (3.7) and (3.8) are the fluid versions of the non-idling
condition (2.10) and the mass balance relation (2.6), respectively. It is clear from
(3.6) that X is continuous (respectively, absolutely continuous) if E is continuous
(absolutely continuous).

Next, note that the fluid equation (3.5) implies, in particular, that for f ∈
C1
c [0,M),

(3.10) 〈f, νt〉 = 〈f, ν0〉 +

∫ t

0

〈f ′, νs〉 ds−
∫ t

0

〈fh, νs〉 ds+ f(0)K(t).

The difference 〈f, νt〉 − 〈f, ν0〉 is caused by three different phenomena – evolution
of the mass in the system, departures and arrivals – which are represented by
the second, third and fourth terms on the right-hand side of (3.10), respectively.
Specifically, the second term on the right-hand side represents the change in ν
due to the fact that the ages of all customers in service increase at a constant
rate 1, the third term represents the change due to departures of customers that
have completed service, and the last term on the right-hand side of (3.10) accounts
for new customers entering service. Here K(t) represents the cumulative amount of
mass that has entered service in the fluid system, and is multiplied by f(0) because,
by definition, any customer entering service has age 0 at the time of entry.

To close the section, we state a simple property, which we will sometimes refer
to as the “non-anticipative” property, of solutions to the fluid limit that will be
used in Section 6. For this, we require the following notation: for any t ∈ [0,∞),

E
[t] .

= E(t+ ·)−E(t) K
[t] .

= K(t+ ·)−K(t) X
[t] .

= X(t+ ·) ν[t] .= νt+·.

Lemma 3.4. Suppose (X, ν) is a solution to the fluid equations for a given initial
condition (E,X(0), ν0) ∈ S0, and K is the associated process that satisfies (3.8).

Then for any t ∈ [0,∞), (X
[t]
, ν[t]) is a solution to the fluid equations associated

with the initial condition (E
[t]
,X(t), νt) ∈ S0, and K

[t]
is the corresponding process

that satisfies (3.8), with ν replaced by ν[t].

The proof of the lemma involves straightforward algebraic manipulations of the
fluid equations, and is thus omitted.

3.2. Summary of Main Results. Our first result concerns uniqueness of solu-
tions to the fluid equations, which is established at the end of Section 4.1.

Theorem 3.5. Given any (E,X(0), ν0) ∈ S0, there exists at most one solution
(X, ν) to the associated fluid equations (3.4)–(3.7). Also, if ν satisfies (3.4) then
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(X, ν) is a solution to the fluid equations (3.5)–(3.8) if and only if (X, ν) satisfies
(3.6) and, for every f ∈ Cb(R+),
(3.11)
∫

[0,M)

f(x) νt(dx) =

∫

[0,M)

f(x+t)
1 −G(x+ t)

1 −G(x)
ν0(dx)+

∫

[0,t]

f(t−s)(1−G(t−s)) dK(s),

where K is given by (3.8). Moreover, if E is absolutely continuous with derivative
a.e. equal to λ, then K is also absolutely continuous and its derivative κ satisfies
for a.e. t ∈ [0,∞),

(3.12) κ(t)
.
=







λ(t) if X(t) < 1

λ(t) ∧ 〈h, νt〉 if X(t) = 1
〈h, νt〉 if X(t) > 1.

Furthermore, if both ν0 and E are absolutely continuous, then νt is absolutely con-
tinuous for every t ∈ [0,∞).

Remark 3.6. Note that if E is absolutely continuous with respect to the Lebesgue
measure on R+, then so is 〈f, ν〉, and the solutions to the fluid equation are con-
tinuous (in the time parameter), as the word fluid suggests.

It is also possible to consider the case when the residual service times of the
customers already in the system is distributed according to another distribution G̃.
Indeed, our proofs show that in this case the relations (3.11) and (3.12) continue

to hold, with G in the first integral on the right-hand side of (3.11) replaced by G̃.
Our next main result shows that, under a mild additional condition on the hazard

rate function h stated as Assumption 2 below, a solution to the fluid equations exists
and is the functional law of large numbers limit of the N -server system, as N → ∞.

Assumption 2. There exists m0 < M such that h is either bounded or lowersemi-
continuous on (m0,M).

Theorem 3.7. Suppose the initial conditions (E,X(0), ν0) ∈ S0 satisfy Assump-

tion 1. Then the sequence {(X(N)
, ν(N))} is relatively compact. If, in addition,

Assumption 2 holds, then a unique solution (X, ν) to the fluid equations associated

with (E,X(0), ν0) exists and (X
(N)

, ν(N)) converges weakly as N → ∞, to (X, ν).

The proof of Theorem 3.7 is given at the end of Section 5.4. The key steps in the

proof involve showing tightness of the sequence {(X(N)
, ν(N))}, which is carried

out in Section 5.3, characterizing the limit points of the sequence as solutions to
the fluid equations, which is done in Section 5.4, and invoking the uniqueness of
solutions to the fluid equations stated above in Theorem 3.5.

Remark 3.8. Define ν∗ to be the measure on [0,M) that is absolutely continuous
with respect to Lebesgue measure, and has density 1 − G(x): for any Borel set
A ⊂ [0,M),

(3.13) ν∗(A)
.
=

∫

A

(1 −G(x)) dx.

It is easy to verify that, when E is absolutely continuous with derivative λ(·) almost
everywhere bounded below by 1, X(0) = c ≥ 1 and ν0 = ν∗, the pair (X, ν) defined
by

X(t) = c+ E(t) − t, νt = ν∗, t ∈ [0,∞),
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satisfy equations (3.6), (3.11) and (3.12) with (Here, recall that id denotes the iden-
tity function id(t) = t, t ∈ R+.) In particular, when E = id, (c1̃, ν∗) constitutes
an invariant solution for the fluid equations; that is, if X(0) = c and ν0 = ν∗ then
X(t) = c and νt = ν∗ for all t ≥ 0.

In the time homogeneous setting (i.e., with constant fluid arrival rate) it is
therefore natural to ask whether the component ν of the unique solution to the
fluid equations (when it exists) converges to ν∗ in the large-time limit. This is
the subject of our last result. Also, recall that a family of finite, non-negative
measures {µt}t∈R+

is said to converge weakly, as t → ∞, monotonically up to
a finite, non-negative measure µ if and only if for every non-negative, bounded,
continuous function f , the sequence of real numbers 〈f, µt〉 increases, as t→ ∞, to
〈f, µ〉.
Theorem 3.9. Suppose Assumption 2 is satisfied. Given (λid,X(0), ν0) ∈ S0 with
λ ∈ [0, 1], let (X, ν) be the unique solution to the associated fluid equations. Then
the following two properties are satisfied.

(1) If X(0) = 0 then, as t → ∞, X(t) = 〈1, νt〉 converges monotonically up to
λ and νt converges weakly monotonically up to λν∗.

(2) If the service distribution has a second moment, then given any initial con-
dition (id,X(0), ν0) ∈ S0, as t → ∞, νt converges weakly to ν∗, i.e., for
every f ∈ Cb[0,∞),

(3.14) lim
t→∞

〈f, νt〉 = 〈f, ν∗〉 =

∫

[0,∞)

f(x) (1 −G(x)) dx.

The proof of Theorem 3.9 is presented in Section 6. For the case λ < 1, property
1 of Theorem 3.9 was stated as Theorem 7.3 of [25] without proof.

Remark 3.10. Our main theorems hold for the majority of distributions that arise
in practice, including the exponential, lognormal, phase type, uniform, Weibull and
Pareto distributions. It does not, however, cover the deterministic distribution.

3.3. Fluid Limits of Other Functionals. In the last section, we identified the
fluid limit of the scaled number of customers in system. In fact, the fluid limit
contains a lot more information. For instance, as a direct consequence of the con-
tinuous mapping theorem, Theorem 3.7 also identifies the limit, as N → ∞, of the

scaled queue length process Q(N)
= Q(N)/N , which is the normalised number of

customers waiting in queue (and not in service) at any time: we have

Q(N) .
= Q(N)(0) + E

(N) −K
(N) ⇒ Q .

= Q(0) +E −K.

Below, we identify the fluid limits of other functionals of interest.

3.3.1. Waiting Time. The waiting time functional is of particular interest in the
context of call centers, where service targets are often specified in terms of the
proportion of calls that experience a wait of less than some given level (see, for
example, [2]).

Recall the definitions of inv[f ] and f−1 given in (1.1) and (1.2), respectively.
Assuming the system starts empty, the waiting time w(N)(j) of the jth customer
in the Nth system is the time elapsed between arrival into the system and entry
into service. This functional can be written explicitly as

(3.15) w(N)(j)
.
= inv[K(N)](j) − inv[E(N)](j), j ∈ N.
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Also, consider the related process defined on [0,∞) by w(N)(t)
.
= w(N)(E(N)(t))

and note that for t ∈ [0,∞),

w(N)(t) = inv[K
(N)

](E
(N)

(t)) − inv[E
(N)

](E
(N)

(t)).

Lastly, let w be the process given by

(3.16) w(t)
.
= K

−1
(E(t)) − t, t ∈ [0,∞).

We will say a function f ∈ D[0,∞) is uniformly strictly increasing if it is absolutely
continuous and there exists θ > 0 such that f ′(t) ≥ θ for all t ∈ [0,∞). Note that
for any such function f−1(f(t)) = t and f−1 is continuous on [0,∞). We have the
following fluid limit result for the waiting times in the system.

Theorem 3.11. Suppose the conditions of Theorem 3.7 hold and E is uniformly
strictly increasing. If, in addition, K is continuous and uniformly strictly increasing
then w(N) ⇒ w as N → ∞.

Proof. By Assumption 1 and Theorem 3.7, it follows that E
(N) ⇒ E and K

(N) ⇒
K. Using the Skorokhod Representation Theorem, we can assume that the conver-
gence in both cases is almost sure. When combined with the fact that E and K
are uniformly strictly increasing, Lemma 4.10 of [21] shows that inv[f (N)] → f−1

(almost surely, uniformly on compact sets) for f = E and K. Now, fix T < ∞
and ω ∈ Ω such that these limits hold and also fix some ε > 0. Moreover, let
N0 = N0(ω) <∞ be such that for all N ≥ N0,

sup
s∈[0,E

(N)
(T )]

[

inv[f (N)](s) − f−1(s)
]

≤ ε

for f = E,K. Then we have

sup
t∈[0,T ]

|inv[K
(N)

](E
(N)

(t)) −K
−1

(E(t))|

≤ sup
t∈[0,T ]

|inv[K
(N)

](E
(N)

(t)) −K
−1

(E
(N)

(t))|

+ sup
t∈[0,T ]

|K−1
(E

(N)
(t)) −K

−1
(E(t))|

≤ ε+ sup
t∈[0,T ]

|K−1
(E

(N)
(t)) −K

−1
(E(t))|.

The continuity of K
−1

and the fact that a.s., E
(N) → E u.o.c. as N → ∞, together,

ensure that a.s. |K−1
(E

(N)
) −K

−1
(E)| → 0 u.o.c. as N → ∞. So we have

lim
N→∞

sup
t∈[0,T ]

|inv[K
(N)

](E
(N)

(t)) −K
−1

(E(t))| ≤ ε.

Sending ε→ 0, we infer that inv[K
(N)

] ◦ E(N) → K
−1 ◦ E uniformly on [0, T ]. An

analogous argument shows that inv[E
(N)

] ◦E(N) → id, where recall that id : t 7→ t
is the identity mapping on [0,∞). When combined with the definition of w, the
theorem follows. �
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3.3.2. Workload Process. The workload (or unfinished work) process V (N) is de-
fined to be the amount of work in the Nth system (including the work of customers
waiting in queue and the residual service of customers in service):

V (N)(t) =

K(N)(t)
∑

j=−〈1,ν
(N)
0 〉+1

(

vj − a
(N)
j (t)

)

11
{a

(N)
j (t)<vj}

+

X(N)(0)−〈1,ν
(N)
0 〉+E(N)(t)
∑

j=K(N)(t)+1

vj .

Let the scaled workload process V
(N)

be defined in the usual fashion. We briefly
outline below how the results and techniques of this paper may be used to charac-

terize the limit V of the sequence of scaled workload processes {V (N)}. A rigorous
proof is beyond the scope of this paper.

Let η(N) be the measure-valued process (analogous to ν(N)) that represents the
residual service times (rather than the ages) of customers in service in the Nth
system: for t ∈ [0,∞),

η
(N)
t

.
=

K(N)(t)
∑

j=−〈1,ν
(N)
0 〉+1

δ
vj−a

(N)
j (t)

11
{a

(N)
j (t)<vj}

and let η(N) denote the corresponding scaled quantity. Fluid equations can be
derived for the limit η of the sequence {η(N)} in a manner similar to those derived
for ν in this paper and, under mild assumptions, we believe it can be shown that,
as N → ∞, η(N) ⇒ η, where for every f ∈ Cc[0,M) and t ∈ [0,∞),

(3.17) 〈f, ηt〉
.
=

∫

[0,M)

(∫ ∞

0

g(x+ r)

1 −G(x)
f(r) dr

)

νt(dx).

A completely rigorous proof of this result is beyond the scope of this paper. How-
ever, below we provide a plausible argument to justify the above claim. Given the
age x of any customer that was already in service at time 0, the probability that
the residual service time of the customer at time t is greater than u is given by
(1−G(x+ t+ u))/(1−G(x)). Thus the density of the residual service time distri-
bution at time t for a customer that had age x at time 0 is g(x+ t+ ·)/(1−G(x)).
Likewise, the density of the residual service distribution at time t for a customer
that entered the system at time 0 < s < t is g(t− s+ ·). Moreover, given the ages
of all customers in service, the residual service times of customers in service are
independent. Therefore, by a strong law of large numbers reasoning, one expects
that the limiting residual service measure η can be written in terms of the limit-
ing initial age measure ν0 and limiting cumulative entry-into-service process K as
follows: for f ∈ Cc[0,M),

〈f, ηt〉 =

∫

[0,M)

(∫ ∞

0

g(x+ t+ r)

1 −G(x)
f(r) dr

)

ν0(dx)

+

∫

[0,t]

(∫ ∞

0

g(t− s+ r)f(r) dr

)

dK(s).

The desired result is then obtained by using the representation (4.3) to rewrite the
right-hand side above as an integral with respect to νt.



16 HAYA KASPI AND KAVITA RAMANAN

From the definition of η
(N)
t , the workload process admits the alternative repre-

sentation

V (N)(t) =

∫

[0,M)

x η
(N)
t (dx) +

E(N)(t)+X(N)(0)−〈1,ν
(N)
0 〉

∑

j=K(N)(t)+1

vj .

Due to (2.5), (2.6) and (2.10), it follows that the number of terms in the second sum
equals [X(N)(t) −N ]+. When combined with the fact that the service times {vj}
are i.i.d. with mean 1 and the convergence of η(N) to η it is natural to conjecture
(under suitable assumptions that justify the substitution of linear test functions f)

the convergence V
(N) ⇒ V as N → ∞, where

(3.18) V (t)
.
=

∫

[0,M)

(∫ ∞

0

rg(x+ r)

1 −G(x)
dr

)

νt(dx) + (X(t) − 1)+.

It is worthwhile to note that, when ν0 equals the invariant measure ν∗ defined in
(3.13), then νt = ν∗ for all t ∈ [0,∞) and V (t) < ∞ if and only if G has a finite
second moment.

4. Uniqueness of Solutions to the Fluid Equation

In this section we show that there is at most one solution to the fluid equation
for any given initial condition. In fact, we will establish two stronger properties
of the fluid equation, both of which imply uniqueness. The first is continuity of
the mapping that takes (E,X(0), ν0) ∈ S0 to a corresponding solution (X, ν) of
the fluid equation, which is established in Section 4.1. The second is a maximality
property that is established in Section 4.2. The proofs of both continuity and
maximality rely on identifying the solution to a certain integral equation, which is
carried out in Section 4.3. Existence of solutions to the fluid equation will follow
from results established in Section 5 (see, in particular, Theorem 5.15).

4.1. Continuity of the Fluid Equation Map. We begin by analyzing the inte-
gral equation (4.2) below, which is the fluid equation (3.5), but with K replaced
by an arbitrary, bounded variation càdlàg function Z ∈ BV 0[0,∞) and with ν0 re-
placed by an arbitrary Radon measure ν0 ∈ M[0,M). Specifically, in Theorem 4.1
we provide an explicit formula for the solution ν to the integral equation in terms
of ν0 and Z. Roughly speaking, when ν0 = ν0 and Z is any càdlàg, non-decreasing
process this formula characterizes the evolution of the fluid age process ν that would
result when the cumulative fluid arrivals into service is Z. On substituting Z = K,
this yields a relation that must be satisfied by any pair of processes ν and K that
satisfy the fluid equations for the initial condition ν0. This relation, along with the
non-idling condition, is then used to establish continuity of the fluid solution map
in Theorem 4.6.

Recall that M ∈ (0,∞] is the right-end of the support of the hazard rate function
h, and that h is always locally Lebsegue integrable on [0,M).

Theorem 4.1. Suppose {νs}s≥0 ∈ DM[0,M)[0,∞) has the property that for every
m ∈ [0,M) and T ∈ [0,∞), there exists C(m,T ) <∞ such that

(4.1)

∣

∣

∣

∣

∫ ∞

0

〈ϕ(·, s)h(·), νs〉 ds
∣

∣

∣

∣

≤ C(m,T ) ‖ϕ‖∞
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for every ϕ ∈ Cc([0,M) × R+) with supp(ϕ) ⊆ [0,m] × [0, T ]. Then, given any
ν0 ∈ M[0,M) and Z ∈ BV 0[0,∞), {νs}s≥0 satisfies the integral equation

(4.2)
〈ϕ(·, t), νt〉 = 〈ϕ(·, 0), ν0〉 +

∫ t

0

〈ϕx(·, s) + ϕs(·, s), νs〉 ds

−
∫ t

0

〈h(·)ϕ(·, s), νs〉 ds+

∫

[0,t]

ϕ(0, s) dZ(s)

for every ϕ ∈ C1,1
c ([0,M) × R+) and t ∈ [0,∞), if and only if {νs}s≥0 satisfies

∫

[0,M)

f(x) νt(dx) =

∫

[0,M)

f(x+ t)
1 −G(x+ t)

1 −G(x)
ν0(dx)(4.3)

+

∫

[0,t]

f(t− s)(1 −G(t− s)) dZ(s)

for every f ∈ Cc(R+) and t ∈ [0,∞). Moreover, if ν0 ∈ MF [0,M) then (4.3) holds
for every f ∈ Cb(R+).

Remark 4.2. We shall refer to the integral equation (4.2) as the age equation
(corresponding to ν0 and Z). Note that (4.1) is implied by condition (3.4) of
the fluid equations and, as remarked earlier, the age equation is simply the fluid
equation (3.5), with ν0 and Z in place of ν0 and K, respectively. Furthermore, note
that the equation (4.3) only depends on the values of f in [0,M) since f(u)(1 −
G(u)) = 0 for all u ≥ M , and (4.3) completely characterizes the deterministic
measure-valued process ν.

Remark 4.3. The last integral in (4.3) is, as usual, to be interpreted as a Riemann-
Stieltjes integral. A straightforward integration-by-parts shows that for every
f ∈ C1

b (R+) and t ∈ [0,∞), this integral also admits the alternative representation

(4.4)

∫

[0,t]

f(t− s)(1 −G(t− s)) dZ(s)

= f(0)Z(t) +

∫

[0,t]

f ′(t− s)(1 −G(t− s))Z(s) ds

−
∫

[0,t]

f(t− s)g(t− s)Z(s) ds.

The proof of Theorem 4.1 involves PDE techniques and is relegated to Section
4.3. As a simple corollary of Theorem 4.1, we have the following result.

Corollary 4.4. Let (X, ν) be a solution to the fluid equations associated with
(E,X(0), ν0) ∈ S0. Then the function K defined by (3.8) satisfies the renewal
equation

(4.5)

K(t) = 〈1, νt〉 − 〈1, ν0〉 +

∫

[0,M)

G(x+ t) −G(x)

1 −G(x)
ν0(dx)

+

∫ t

0

g(t− s)K(s) ds

for every t ∈ [0,∞), and admits the representation

(4.6)

K(t) =

∫

[0,t]

(〈1, νt−s〉 − 〈1, ν0〉) dU(s)

+

∫

[0,t]

(

∫

[0,M)

G(x+ t− s) −G(x)

1 −G(x)
ν0(dx)

)

dU(s),
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where dU is the renewal measure associated with the distribution G.

Proof. We first claim that if (X, ν) solve the fluid equations, thenK defined by (3.8)
must necessarily be non-decreasing (as one would expect from the interpretation of
K as the limiting fraction of cumulative entries into service). In order to justify
the claim, fix 0 ≤ s ≤ t. If X(t) > 1 then the non-idling condition (3.7) implies
that 〈1, νt〉 = 1 which, when substituted into (3.8), shows that

K(t) −K(s) = 1 − 〈1, νs〉 +

∫ t

s

〈h, νu〉 du ≥
∫ t

s

〈h, νu〉 du ≥ 0.

On the other hand, if X(t) ≤ 1 then the non-idling condition (3.7) shows that
〈1, νt〉 = X(t) and 〈1, νs〉 ≤ X(s). Hence (3.8), together with (3.6) and the fact
that E is non-decreasing, shows that

K(t) −K(s) = 〈1, νt〉 −X(t) − 〈1, νs〉 +X(s) + E(t) − E(s) ≥ 0,

which proves the claim.
In addition, by assumption, K and ν satisfy (3.4) and (3.5), and so Theorem

4.1 applies, with ν0 = ν0 and Z = K. Substituting f = 1 ∈ C1
b (R+), ν0 = ν0 and

Z = K in (4.3), we obtain the relation
∫

[0,t]

(1 −G(t− s)) dK(s) = 〈1, νt〉 −
∫

[0,M)

1 −G(x+ t)

1 −G(x)
ν0(dx)

= 〈1, νt〉 − 〈1, ν0〉 +

∫

[0,M)

G(x+ t) −G(x)

1 −G(x)
ν0(dx).

On the other hand, equation (4.4) with Z = K and f = 1 shows that

∫

[0,t]

(1 −G(t− s)) dK(s) = K(t) −
∫ t

0

g(t− s)K(s) ds.

Equating the right-hand sides of the last two displays, we obtain (4.5). Finally,
since K is bounded on finite intervals and the sum of the first two terms on the
right-hand side of (4.5) is uniformly bounded by two, the representation (4.6) is
a direct result of the renewal theorem (see, e.g., Theorem 2.4(ii) of Section V in
[1]). �

As an immediate consequence of Theorem 4.1 and Corollary 4.4, we obtain the
following simple bound. Given a Radon measure µ ∈ M[0,M), let |µ|TV represent
the total variation of µ on [0,M).

Lemma 4.5. For i = 1, 2, suppose νi0 ∈ M[0,M) and Zi ∈ BV 0[0,∞) are given,
and suppose (3.4) and (4.2) are satisfied with ν, ν0 and Z replaced by νi, νi0 and
Zi, respectively. Then for every T <∞ and f ∈ C1

b (R+),

(4.7)
∥

∥〈f, ν2
s〉 − 〈f, ν1

s〉
∥

∥

T
≤ ‖f‖M |∆ν0|TV + (2 ‖f‖T + ‖f ′‖T ) ‖∆Z‖T ,

where ∆Z
.
= Z2 − Z1 and ∆ν0

.
= ν

(2)
0 − ν

(1)
0 .

Proof. By Theorem 4.1 and Remark 4.3, for i = 1, 2, relations (4.3) and (4.4) are
satisfied with ν, ν0 and Z replaced by νi, νi0 and Zi, respectively. Together, these



FLUID LIMITS OF MANY-SERVER QUEUES 19

relations imply that for f ∈ C1
b (R+) and t ∈ [0,∞),

〈f, ν2
t 〉 − 〈f, ν1

t 〉 =

∫

[0,M)

f(x+ t)
1 −G(x+ t)

1 −G(x)
∆ν0(dx) + f(0)∆Z(t)

+

∫ t

0

f ′(t− s)(1 −G(t− s))∆Z(s) ds

−
∫ t

0

f(t− s)g(t− s)∆Z(s) ds.

Since 1 − G(u) = 0 for u ≥ M , this implies that for f ∈ C1
b (R+) and for every

t ∈ [0, T ],

∣

∣〈f, ν2
t 〉 − 〈f, ν1

t 〉
∣

∣ ≤
∫

[0,M−t)

|f(x+t)||∆ν0|(dx)+(|f(0)| + ‖f‖t∧M + ‖f ′‖t∧M ) ‖∆Z‖T

from which (4.7) follows. �

We now state the main result of this section. Below, ∆H denotes H(2) −H(1)

for H = K,D,E,X and ν.

Theorem 4.6. (Continuity of Solution Map) For i = 1, 2, let (X
i
, ν(i)) be a

solution to the fluid equations associated with (E
i
,X

i
(0), ν

(i)
0 ) ∈ S0 and let K

i
and

D
i
be defined as in (3.8) and (3.9), respectively, with ν replaced by νi. If ν1

0 = ν2
0

then for every T <∞,

(4.8)

[

sup
t∈[0,T ]

∆K(t)

]

∨
[

sup
t∈[0,T ]

∆D(t)

]

≤
[

|∆X(0)| + sup
t∈[0,T ]

∆E(t)

]

∨ 0

and hence

(4.9)
∥

∥∆K
∥

∥

T
∨
∥

∥∆D
∥

∥

T
≤ |∆X(0)| +

∥

∥∆E
∥

∥

T
.

Moreover, for every T <∞ and f ∈ C1
b (R+),

(4.10)
∥

∥〈f, ν2
s〉 − 〈f, ν1

s〉
∥

∥

T
≤ (2 ‖f‖T + ‖f ′‖T )

(

∆X(0) +
∥

∥∆E
∥

∥

T

)

.

Proof. Fix T <∞ and define ε ≥ 0 by

(4.11) ε
.
=

[

∆X(0) + sup
t∈[0,T ]

∆E(t)

]

∨ 0.

For δ > 0, let

τδ
.
= inf{t ≥ 0 : ∆K(t) ≥ ε+ δ}.

We shall prove by contradiction that τδ > T a.s., from which the continuity property
will follow. If τδ = ∞ for all δ > 0, then supt∈[0,∞) ∆K(t) ≤ ε, and the result
follows. Therefore, we can assume without loss of generality that there exists δ > 0
such that τδ < ∞ and, for simplicity of notation, denote τδ simply by τ . The

right-continuity of K
1

and K
2

imply that

(4.12) ∆K(τ) ≥ ε+ δ.

We now show that τ > T . Indeed, suppose τ ∈ [0, T ] and consider the following
two cases.
Case 1. X

1
(τ) < 1. In this case, the non-idling condition (3.7) implies that

X
1
(τ) − 〈1, ν1

τ 〉 = 0 ≤ X
2
(τ) − 〈1, ν2

τ 〉.
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Together with relations (3.8), (3.6), (4.11) and the fact that ∆ν0 ≡ 0, this implies
that

∆K(τ) = ∆E(τ) + ∆X(0) − 〈1,∆ν0〉 − ∆X(τ) + 〈1,∆ντ 〉 ≤ ε,

which contradicts (4.12).

Case 2. X
1
(τ) ≥ 1. In this case, due to the non-idling condition (3.7), we have

〈1, ν1
τ 〉 = 1 ≥ 〈1, ν2

τ 〉. Along with Corollary 4.4 and the fact that ∆ν0 = 0, this
implies that

∆K(τ) = 〈1,∆ντ 〉 − 〈1,∆ν0〉 +

∫

[0,M)

G(x+ τ) −G(x)

1 −G(x)
∆ν0(dx)

+

∫ τ

0

g(τ − s)∆K(s) ds

= 〈1,∆ντ 〉 +

∫ τ

0

g(τ − s)∆K(s) ds

≤
∫ τ

0

g(τ − s)∆K(s) ds.

We now assert that the right-hand side is strictly less than ε+ δ, which contradicts
(4.12). To see why the assertion holds, note that if g(s) = 0 for a.e. s ∈ [0, τ ], then
the right-hand side of the last inequality equals zero, which is trivially strictly less
than ε + δ. On the other hand, if g(s) > 0 for a set of positive Lebesgue measure
in [0, τ ], then the fact that ∆K(s) < ε+ δ for all s ∈ [0, τ) shows once again that

∆K(τ) ≤
∫ τ

0

g(τ − s)∆K(s) ds < (ε+ δ)G(τ) ≤ (ε+ δ).

Thus, in both cases 1 and 2, we arrive at a contradiction, and hence it must be
that τ > T , which means that ∆K(t) ≤ ε+ δ for every t ∈ [0, T ]. Sending δ ↓ 0, we
conclude that ∆K(t) ≤ ε for t ∈ [0, T ], as desired. In turn, using the relations (3.8),
(3.9) and Corollary 4.4, along with the fact that ∆ν0 ≡ 0 and g is non-negative,
we obtain for every t ∈ [0, T ],

∆D(t) = ∆K(t) − 〈1,∆νt〉 =

∫ t

0

g(t− s)∆K(s) ds ≤ εG(t) ≤ ε.

This completes the proof of (4.8), and relation (4.9) follows by symmetry. Lastly,

since for i = 1, 2, νi and K
i
satisfy the fluid equations (by assumption), inequality

(4.10) is a direct consequence of Lemma 4.5 and inequality (4.9). �

Proof of Theorem 3.5. Let (X
1
, ν1) and (X

2
, ν2) be two solutions to the fluid

equations corresponding to (E,X(0), ν0) ∈ S0. Fix r ∈ [0,M) and choose a se-
quence of functions fn ∈ C1

b (R+), n ∈ N, such that fn ↑ 11[0,r) pointwise as n→ ∞.

Then for every t ∈ [0,∞) and n ∈ N, 〈fn, ν1
t 〉 = 〈fn, ν2

t 〉 due to (4.10) and the fact

that E
1

= E
2

and X
1

= X
2
. Sending n → ∞ and invoking the monotone conver-

gence theorem, we conclude that ν1
t [0, r) = ν2

t [0, r). Since r and t are arbitrary, it

follows that ν1 = ν2 and hence, by (3.6), that X
1

= X
2
. This shows that there is at

most one solution to the fluid equations. The second assertion follows immediately
from Theorem 4.1 and Remark 4.2.

Now, suppose E is absolutely continuous with derivative λ. Then (3.6) imme-
diately shows that X is also absolutely continuous. In turn, using (3.7), (3.8) and
the fact that |[1−a]+ − [1− b]+| ≤ |a− b|, it is easy to see that K is also absolutely
continuous. Fix t such that both λ and the derivative κ of K are well-defined.
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If X(t) < 1, then the non-idling condition (3.7) and the continuity of X show
that 〈1, νs〉 = X(s) for all s in a neighbourhood of t. When combined with (3.6)
and (3.8), this shows that κ(t) = λ(t). On the other hand, if X(t) > 1, then
(3.7) and the continuity of X show that 〈1, νs〉 = 1 for s in a neighbourhood of
t. When substituted into (3.8) this shows that κ(t) = 〈h, νt〉. Lastly, since X and
〈1, ν〉 are absolutely continuous, dX(t)/dt = d〈1, νt〉/dt = 0 for a.e. t on which
X(t) = 〈1, νt〉 = 1 (see, for example, Theorem A.6.3 of [5]). Together with (3.6)
and (3.8), this implies that for a.e. t ∈ [0,∞) such that X(t) = 1 (and λ(t) is
well-defined), we have κ(t) = λ(t) = 〈h, νt〉 = λ(t) ∧ 〈h, νt〉, which proves (3.12).
Finally, since K is absolutely continuous, if ν0 is also absolutely continuous then
the representation (3.11) immediately guarantees that νs is absolutely continuous
for every s ∈ [0,∞). �

4.2. A Maximality Property of the Fluid Solution. In this section we es-
tablish a result of independent interest. This result is not used in the rest of the
paper, and can thus be safely skipped without loss of continuity. Specifically, we
show that the non-idling property (3.7) implies a certain maximality property for
solutions to the fluid equations. In particular, this result provides an alternative
proof of uniqueness of solutions to the fluid limit that is different from the one using
continuity of the solution map given in the last section.

Let (E,X(0), ν0) ∈ S0. Suppose that (X, ν) solve the corresponding fluid equa-
tions (3.4)–(3.7), and let K and D be the associated processes, as defined in

(3.8) and (3.9), respectively. Also, let (X
⋄
, ν⋄) be any process taking values in

R+ ×M≤1[0,M) that satisfy the fluid equations, (3.4)–(3.6), and the relation

(4.13) 〈1, ν⋄t 〉 ≤ X
⋄
(t) for t ∈ [0,∞).

Here, X
⋄

and ν⋄, respectively, represent the total number of (fluid) customers in
system and the distribution of ages of (fluid) customers in service under any given
feasible assignment of customers to servers that does not necessarily satisfy the

non-idling condition (3.7). Let K
⋄

and D
⋄
, respectively, be the corresponding

processes representing the cumulative entry into service and cumulative departures
from the system, as defined by the right-hand sides of (3.8) and (3.9), respectively,
but with ν replaced by ν⋄. Then we have the following intuitive result that shows
that the non-idling condition (3.7) ensures that the cumulative entry into service
and cumulative departures from the system are maximized.

Lemma 4.7. For every t ∈ [0,∞), K(t) ≥ K
⋄
(t) and D(t) ≥ D

⋄
(t).

Proof. We shall argue by contradiction to prove the lemma. Fix ε > 0 and let

T = inf{t : K
⋄
(t) ≥ K(t) + ε}.

Suppose T <∞. Then we consider the following two mutually exhaustive cases.
Case 1. X(T ) < 1. In this case, (3.7) implies that X(T ) = 〈1, νT 〉 which, along
with (3.6) and (3.8), shows that

K(T ) = X(0) − 〈1, ν0〉 + E(T ).

On the other hand, (3.6), (3.8) and (4.13), when combined, show that for every
t ∈ [0,∞),

K
⋄
(t) = 〈1, ν⋄t 〉 −X

⋄
(t) +X(0) − 〈1, ν0〉 + E(t) ≤ X(0) − 〈1, ν0〉 + E(t).
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The last two equations imply that K
⋄
(T ) ≤ K(T ), which contradicts the definition

of T .

Case 2. X(T ) ≥ 1. In this case, (3.7) shows that 〈1, νT 〉 = 1. Since the pairs

(ν,K) and (ν⋄,K
⋄
) both satisfy the fluid equation (3.5), Corollary 4.4 and (3.8)

show that

(4.14) D(T ) =

∫

[0,M)

G(x+ T ) −G(x)

1 −G(x)
ν0(dx) +

∫ T

0

g(T − s)K(s)ds.

If G(T ) > 0, then by the definition of T ,

∫ T

0

g(T − s)K(s) ds >

∫ T

0

g(T − s)(K
⋄
(s) − ε) ds.

Together with (4.14) and the corresponding equation for D
⋄

and the fact that
ν0 = ν⋄0 this shows that

D(T ) > D
⋄
(T ) − εG(T ) ≥ D

⋄
(T ) − ε.

On the other hand, if G(T ) = 0 then (4.14) shows that

D(T ) = D
⋄
(T ) > D

⋄
(T ) − ε.

Combining the last two inequalities with (3.8) and the case assumption, we obtain

K(T ) −K
⋄
(T ) = 〈1, νT 〉 − 〈1, ν⋄T 〉 +D(T ) −D

⋄
(T )

= 1 − 〈1, ν⋄T 〉 +D(T ) −D
⋄
(T )

> −ε,

which again contradicts the definition of T .

Thus we have shown that T = ∞ or, equivalently, that K(t) ≥ K
⋄
(t) − ε for

every t ∈ [0,∞) and ε > 0. Sending ε → 0, we conclude that K(t) ≥ K
⋄
(t) for

t ∈ [0,∞). Together with (3.6), Corollary 4.4 and the fact that ν⋄0 = ν0, this implies
that for every t ∈ [0,∞), we have

D(t) −D
⋄
(t) =

∫ t

0

g(t− s)
(

K(s) −K
⋄
(s)
)

ds ≥ 0,

which concludes the proof of the lemma. �

Remark 4.8. A similar maximality property (in terms of a stochastic, rather than
pathwise, ordering) is satisfied by the “pre-limit” processes describing G/GI/N
queues (see, for example, [1, Theorem 1.2 of Chapter XII]). It is also worthwhile
to note the connection between Lemma 4.7 and a minimality property associated
with the one-dimensional reflection map that is used to characterize single-server
queues. In the latter case, the so-called complementarity condition plays the role of
the non-idling condition here, and ensures minimality of the associated constraining
term (see, for instance, [11]).
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4.3. Analysis of the Age Equation (4.2). The goal of this section is to establish
Theorem 4.1. In fact, we establish the somewhat more general result of identifying
solutions to the so-called abstract age equation (see Definition 4.9 and Corollary
4.17 below). The abstract age equation and a related integral equation, which we
refer to as the simplified age equation, are first introduced in Section 4.3.1. The
simplified age equation is shown to have a unique and explicit solution in Section
4.3.2. Using a simple correspondence between solutions of the abstract age equation
and those of the simplified age equation, an explicit representation for the unique
solution to the abstract age equation is then obtained in Section 4.3.3. These results
are then combined in Section 4.3.4 to establish Theorem 4.1.

Throughout the analysis, the characterization of Radon measures described in
Section 1.2.2 is repeatedly used, often without explicit mention. For conciseness, the
following notations are also used. Let M̃ be the space of finite Radon measures on
R

2 whose support lies in [0,M)×R+ and let C̃ be the space of continuous functions

on R
2 with compact support in [0,M)×R+. Also, let C̃1,1 be the subset of functions

ϕ in C̃ for which the directional derivative ϕx + ϕs exists and is continuous. The
integral with respect to any Radon measure ζ on R

2 is denoted by

ζ(ϕ)
.
=

∫ ∫

R2

ϕ(x, s) ζ(dx, ds), ϕ ∈ Cc(R2).

As in the rest of the paper, given a measure θ on [0,M), and a θ-integrable func-
tion f on [0,∞), the integral of f with respect to θ over [0,M) is denoted by
〈f, θ〉. Lebesgue measure on R

2 is denoted by σ and, for m1,m2 ∈ [0,∞), the
corresponding rectangle is represented by

(4.15) Rm1,m2

.
= [−m1,m1] × [−m2,m2].

Given a Radon measure ζ on R
2 and a function f ∈ C∞

c (R2), recall that the
convolution f ⋆ζ is the absolutely continuous measure whose density lies in C∞

c (R2)
and is given explicitly by

(4.16)
d(f ⋆ ζ)

dσ
(y, u) =

∫ ∫

R2

f(y − x, u− s) ζ(dx, ds).

Definitions and standard properties of convolutions can be found in Section 2.5.9
of [24].

4.3.1. The Abstract and Simplified Age Equations. We first introduce the abstract
age equation.

Definition 4.9. (Abstract Age Equation) Given γ ∈ M̃ and ℓ ∈ L1
loc[0,M),

{ζt}t≥0 ∈ DM[0,M)[0,∞) is said to solve the abstract age equation for γ and ℓ if
and only if the measure ℓζ, defined by

(ℓζ)(ϕ)
.
=

∫ ∞

0

〈ℓ(·)ϕ(·, s), ζs〉 ds, ϕ ∈ C̃,

is a well-defined measure that belongs to M̃, and for every ϕ ∈ C̃1,1,

(4.17) −
∫ ∞

0

〈ϕx(·, s) + ϕs(·, s), ζs〉 ds = −(ℓζ)(ϕ) + γ(ϕ).
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In order to analyze the abstract age equation, we will find it convenient to first
study a related, but somewhat simpler, integral equation, which we refer to as the
simplified age equation.

Definition 4.10. (Simplified Age Equation) Given γ̃ ∈ M̃, {µt}t≥0 ∈ DM[0,M)[0,∞)

is said to solve the simplified age equation for γ̃ if and only if for every ϕ̃ ∈ C̃1,1,

(4.18) −
∫ ∞

0

〈ϕ̃x(·, s) + ϕ̃s(·, s), µs〉 ds = γ̃(ϕ̃).

Remark 4.11. It follows immediately from the definitions that any {ζt}t≥0 ∈
DM[0,M)[0,∞) satisfies the abstract age equation for γ ∈ M̃ and ℓ ∈ L1

loc[0,M) if
and only if {ζt}t≥0 satisfies the simplified age equation for γ̃ = γ − ℓζ.

Recall the hazard rate function h ∈ L1
loc[0,M), the Radon measure ν0 on [0,M)

and the function Z that has finite variation on every bounded interval, which were
introduced in Section 4.1. Given (m1,m2) ∈ [0,M)×[0,∞), let |ν0|TV,m1

denote the
total variation of the Radon measure ν0 on [0,m1] and let Var(Z; [0,m2]) denote
the total variation of the function Z on the interval [0,m2]. We now introduce
some definitions that will help elucidate the connection between the abstract and
simplifed age equations introduced above, and the age equation (4.2) associated
with h, ν0 and Z. Consider the measure ξ = ξ(ν0, Z) on R

2 defined by

(4.19) ξ(ϕ)
.
=

∫

[0,M)

ϕ(x, 0) ν0(dx) +

∫

[0,∞)

ϕ(0, s) dZ(s), ϕ ∈ Cc(R2).

Clearly, for all ϕ ∈ Cc(R2) such that supp(ϕ) ⊆ Rm1,m2
, ξ(ϕ) satisfies

(4.20) |ξ(ϕ)| ≤ ‖ϕ‖∞ (|ν0|TV,m1
+ Var (Z; [0,m2])) .

Moreover, ξ(ϕ) = 0 for all ϕ such that supp(ϕ) ∩ [0,M) × R+ = ∅. Therefore, ξ is

a Radon measure on R
2 that has support in [0,M)× [0,∞) and, hence, lies in M̃.

Now, suppose that {νt}t≥0 ∈ DM[0,M)[0,∞) satisfies the condition (4.1), and let

hν be the measure on R
2 defined by

(4.21) (hν)(ϕ)
.
=

∫ ∞

0

〈h(·)ϕ(·, s), νs〉 ds, ϕ ∈ Cc(R2).

Then (4.1) shows that hν is a Radon measure and it is clear from (4.21) that hν

has support in [0,M) × R+. Therefore, hν ∈ M̃. Also, define ξν = ξν(ν0, Z) by

(4.22) ξν
.
= ξ − hν.

Clearly, ξν also lies in M̃. We now derive some alternative characterizations of
solutions to the age equation associated with ν0, Z and h.

Lemma 4.12. Suppose {νt}t≥0 ∈ DM[0,M)[0,∞) satisfies (4.1). Then, for ν0, Z, ξ

and ξν as above, the following statements are equivalent:

(1) {νt}t≥0 satisfies the age equation (4.2) for ν0 and Z;
(2) {νt}t≥0 satisfies the abstract age equation (4.17) for ξ and h;
(3) {νt}t≥0 satisfies the simplified age equation (4.18) for ξν .

Proof. Fix {νt}t≥0 ∈ DM[0,M)[0,∞) that satisfies (4.1), and let hν ∈ M̃ be the
Radon measure defined above in (4.21). We first show that (1) implies (2). Suppose

{νt}t≥0 satisfies the age equation (4.2) for all ϕ ∈ C̃1,1 and t ∈ [0,∞). Then, because
ϕ has compact support in [0,M)×R+, for all sufficiently large t, the left-hand side
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of (4.2) equals zero . Therefore, on sending t → ∞ in (4.2), a little rearrangement
shows that

−
∫ ∞

0

〈ϕx(·, s) + ϕs(·, s), νs〉 ds = −
∫ ∞

0

〈h(·)ϕ(·, s), νs〉 ds+ 〈ϕ(·, 0), ν0〉

+

∫

[0,∞)

ϕ(0, s) dZ(s)(4.23)

= −hν(ϕ) + ξ(ϕ),

which shows that {νt}t≥0 satisfies the abstract age equation for ξ and h.
The equivalence of properties (2) and (3) is an immediate consequence of the

definitions (also see Remark 4.11). Therefore, to complete the proof, it suffices
to show that (3) implies (1). Suppose that {νt}t≥0 satisfies the simplified age

equation for ξν . Then, in particular, (4.23) holds for every ϕ ∈ C̃1,1. A standard
mollification argument will now be used to show that then {νt}t≥0 satisfies the age
equation for ν0 and Z. Fix t ∈ [0,∞) that is a continuity point of {νt}t≥0, and
let {cn} = {ctn} be a uniformly bounded sequence of functions in C∞(R) such that
the negative of their derivatives, −c′n, are probability density functions on R and,
as n → ∞, cn(s) → 11[0,t](s) and the sequence of probability measures −c′n(s)ds
converge weakly to the Dirac measure concentrated at t. (For instance, consider
cn(s) =

∫∞

s
nρ(n(u−t)) du, s ∈ [0,∞), where ρ(x) = k exp(1/((x−1)2−1))11[0,2](x)

and k is the appropriate normalization constant that makes ρ a probability density.)

Given ϕ ∈ C̃1,1, define ϕ̃n(x, s)
.
= ϕ(x, s)cn(s) for all (x, s) ∈ R

2, and note that

ϕ̃n ∈ C̃1,1 Replacing ϕ by ϕ̃n in (4.23) then yields, for every n ∈ N,
∫ ∞

0

−c′n(s)〈ϕ(·, s), νs〉 ds−
∫ ∞

0

cn(s)〈ϕx(·, s) + ϕs(·, s), νs〉 ds

= −
∫ ∞

0

cn(s)〈h(·)ϕ(·, s), νs〉 ds+ cn(0)〈ϕ(·, 0), ν0〉 +

∫

[0,∞)

cn(s)ϕ(0, s) dZ(s).

Now, take limits as n → ∞ in the above equation. Since supp(ϕ) ⊂ [0,M) ×
[0, T ] for some T < ∞, the right-continuity of {νt}t≥0 implies s 7→ 〈ϕ(·, s), νs〉 is

uniformly bounded. The weak convergence −c′n(s)ds
w→ δt and the fact that t is a

continuity point for s 7→ 〈ϕ(·, s), νs〉 then shows that the first term above converges
to 〈ϕ(·, t), νt〉. The limit of the remaining terms can be obtained using the fact that
cn → 11[0,t] and the dominated convergence theorem (whose application is justified
by the inequality (4.1) and the uniform boundedness of the sequence of functions
cn, n ∈ N) to yield

〈ϕ(·, t), νt〉 −
∫ t

0

〈ϕx(·, s) + ϕs(·, s), νs〉 ds

= −
∫ t

0

〈h(·)ϕ(·, s), νs〉 ds+ 〈ϕ(·, 0), ν0〉 +

∫

[0,t]

ϕ(0, s) dZ(s).

This shows that {νt}t≥0 satisfies the age equation (4.2) associated with ν0 and Z,
and so property (1) follows. �

Since ξν depends on {νt}t≥0, Lemma 4.12 only shows that solutions {νt}t≥0 to
the age equation satisfy the simplified age equation in an implicit sense. Never-
theless, this property is used in the proof of Theorem 4.1 in Section 4.3.4 in order
to justify the application of the estimate obtained in Proposition 4.15 below, and
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therefore of the more explicit correspondence result obtained in Proposition 4.16,
to {νt}t≥0.

4.3.2. Solution to the Simplified Age Equation. In Lemma 4.13 below, it is shown
that the solution to the simplified age equation is unique and can be represented in
terms of the following maps. For t ≥ 0, consider the map Λt that takes f ∈ Cc(R)
to the measurable function Λtf defined by

(4.24) Λtf (x, s)
.
= f(x+ t− s)11[0,t](s), (x, s) ∈ R

2.

Observe that for any t > 0 and f ∈ Cc(R),

(4.25)
∥

∥Λtf
∥

∥

∞
≤ ‖f‖∞

and

(4.26) supp(f) ⊆ [−m̃,m] ⇒ supp(Λtf ) ⊆ [−m̃− t,m] × [0, t].

Also, let the map π : Cc(R2) 7→ C(R2) that maps ϕ to πϕ, be defined by

(4.27) πϕ(x, s)
.
=

∫ ∞

0

ϕ(x+ r, s+ r) dr, (x, s) ∈ R
2.

It is easily verified that for any ϕ ∈ Cc(R2) with supp(ϕ) ⊆ Rm1,m2
,

(4.28) ‖πϕ‖∞ ≤ 2
√

m2
1 +m2

2 ‖ϕ‖∞ and supp(πϕ) ⊆ (−∞,m1] × (−∞,m2].

Lemma 4.13. The simplified age equation associated with γ̃ ∈ M̃ has a unique
solution {µt}t≥0 ∈ DM[0,M)[0,∞) that is given explicitly by

(4.29) 〈f, µt〉 = γ̃(Λtf ), f ∈ Cc[0,M), t ≥ 0.

Moreover, for every ϕ ∈ C̃,

(4.30)

∫ ∞

0

〈ϕ(·, t), µt〉 dt = γ̃(πϕ).

Proof. Let {µt}t≥0 be as defined in (4.29). Then, to show that {µt}t≥0 belongs to
DM[0,M)[0,∞), it clearly suffices to show that for every t ≥ 0 and f ∈ Cc[0,M),

γ̃(Λt+εf ) → γ̃(Λtf ) as ε → 0. However, the latter limit holds due to the pointwise

convergence Λt+εf → Λtf and the dominated convergence theorem, whose application

is justified by the properties in (4.25) and (4.26). Next, to show that {µt}t≥0

satisfies the simplifed age equation (4.18), we first claim that (4.29) implies (4.30).

Given ϕ ∈ C̃, note that
(∫ ∞

0

Λtϕ(·,t) dt

)

(x, s) =

∫ ∞

0

ϕ(x+t−s, t)11[s,∞)(t) dt =

∫ ∞

0

ϕ(x+r, s+r) dr = πϕ(x, s).

Therefore, first replacing f in (4.29) by ϕ(·, t), then integrating both sides of (4.29)
over t ∈ [0,∞), and using Fubini’s theorem, we see that

∫ ∞

0

〈ϕ(·, t), µt〉 dt =

∫ ∞

0

γ̃
(

Λtϕ(·,t)

)

dt = γ̃

(∫ ∞

0

Λtϕ(·,t) dt

)

= γ̃(πϕ),

which proves the claim. Then, for ϕ̃ ∈ C̃1,1, replacing ϕ in (4.30) by ϕ̃x + ϕ̃s and
observing that πϕ̃x+ϕ̃s

= −ϕ̃ (this uses the fact that ϕ̃ has compact support), it
follows that {µt}t≥0 satisfies the simplified age equation.
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It only remains to establish uniqueness. Let {µit}t≥0, i = 1, 2, be two solutions
to the simplifed age equation for γ̃, and define ηt

.
= µ1

t − µ2
t , t ≥ 0. Then η0 is the

zero measure and for every ϕ̃ ∈ C̃1,1,

(4.31)

∫ ∞

0

〈ϕ̃x(·, s) + ϕ̃s(·, s), ηs〉 ds = 0.

Fix ϕ ∈ C̃1,1 and define ϕ̃
.
= πϕ. Then supp(ϕ̃) ∩ ([0,M) × [0,∞)) is compact by

(4.28), ϕ̃ lies in C̃1,1 and ϕ̃x + ϕ̃s = (πϕ)x + (πϕ)s = −ϕ. When substituted into
(4.31) this shows that

∫ ∞

0

〈ϕ(·, s) ηs〉 ds = 0, ϕ ∈ C̃1,1.

Standard approximation arguments can now be used to show that η is identically
zero. Specifically, let {ρn}n∈N be a sequence of mollifiers, i.e., non-negative func-
tions in C∞

c (R), with ρn having support in [0, 1/n] and
∫

R
ρn(x) dx = 1 and such

that, as n → ∞, the family of measures ρndx converge vaguely to the delta distri-
bution δ0. For any t > 0 that is a continuity point of {ηs}s≥0 and f ∈ C1

c [0,M),
first replace ϕ in the last display by ϕn(x, s)

.
= f(x)ρn(t − s) then take limits as

n→ ∞ and use the right continuity of the function s 7→ 〈f, ηs〉 at t and the vague
convergence of ρn to δ0 in order to conclude that 〈f, ηt〉 = 0. Since C1

c [0,M) is a
determining class for Radon measures on [0,M), it follows that each ηt is identi-
cally zero for every t that is a continuity point of {ηt}t≥0. The right continuity of
{ηt}t≥0 then implies that ηt is identically zero for every t ≥ 0, and so uniqueness
follows. �

Replacing γ̃ in Lemma 4.13 by the measure ξ defined in (4.19) yields the following
result.

Corollary 4.14. The unique solution {µt}t≥0 to the simplified age equation asso-
ciated with ξ = ξ(ν0, Z) satisfies

(4.32) 〈f, µt〉 = 〈f(· + t), ν0〉 +

∫

[0,t]

f(t− s) dZ(s).

We now establish a property of solutions to simplified age equations that will
be used in the proof of the correspondence property in Section 4.3.3. Given any
{µt}t≥0 ∈ DM[0,M)[0,∞), consider the measure ℓµ defined by

(4.33) (ℓµ) (ϕ)
.
=

∫ ∞

0

(

∫

[0,M)

ℓ(x)ϕ(x, s)µt(dx)

)

ds, ϕ ∈ C̃.

When ℓ is continuous, ϕ ∈ C̃ implies ℓϕ ∈ C̃, and hence ℓµ is a well-defined Radon
measure that lies in M̃. However, when ℓ ∈ L1

loc[0,M), ℓµ need not always be well-
defined for arbitrary {µt}t≥0 ∈ DM[0,M)[0,∞). In Proposition 4.15 below, we show
that if {µt}t≥0 satisfies the simplified age equation, then ℓµ is a well-defined Radon

measure for any ℓ that is locally integrable on [0,M). A real-valued function L̃ on
[0,M) × [0,∞) is said to be coordinate-wise increasing if for every (x, t) ∈ [0,M),

L̃(·, t) and L̃(x, ·) are increasing functions on [0,M) and [0,∞), respectively.

Proposition 4.15. Suppose {µt}t≥0 solves the simplified age equation for some

γ̃ ∈ M̃. Then there exists a coordinate-wise increasing function L̃ on [0,M)×[0,∞)
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such that given any ℓ ∈ L1
loc[0,∞), for every m1 ∈ [0,M),m2 ∈ (0,∞) and ϕ ∈

Cc([0,M) × R+) with supp(ϕ) ⊆ Rm1,m2
,

(4.34)

∣

∣

∣

∣

∣

∫ ∞

0

(

∫

[0,M)

ℓ(x)ϕ(x, s)µt(dx)

)

ds

∣

∣

∣

∣

∣

≤
(∫ m1

0

|ℓ(x)| dx
)

L̃(m1,m2)||ϕ||∞.

Consequently, the definition in (4.33) yields a well-defined Radon measure ℓµ that

belongs to M̃.

Proof. We first establish (4.34) for continuous ℓ. Fix γ̃ and {µt}t≥0 as in the
statement of the proposition, and let L : [0,M)×R+ 7→ R+ be the component-wise
non-decreasing function such that

(4.35) |γ̃(ϕ)| ≤ L(m1,m2)||ϕ||∞, ∀ϕ ∈ Cc(R2) with supp(ϕ) ⊂ Rm1,m2
.

Such a function L exists since γ̃ is, by assumption, a Radon measure (see Section
1.2.2). Let µ be the measure on R

2 defined by

(4.36) µ(ϕ)
.
=

∫ ∞

0

(

∫

[0,M)

ϕ(x, s)µs(dx)

)

ds, ϕ ∈ C̃.

Since {µt}t≥0 lies in DM[0,M)[0,∞), (4.36) shows that µ belongs to M̃. (Note

that we will always write µ for the Radon measure on R
2 and {µt}t≥0 for the

measure-valued function in order to keep these two quantities distinct.) The basic
idea behind the proof (for continuous ℓ) is to construct a sequence µn, n ∈ N, of
Radon measures on R

2 such that for each n ∈ N, µn is absolutely continuous with
respect to Lebesgue measure and satisfies the following two properties: (i) for every
m1 ∈ [0,M),m2 ∈ (0,∞), for all n sufficiently large such that m1 + 1/n < M , and
all y < m1,

(4.37)

∣

∣

∣

∣

∫ m2

0

dµn

dσ
(y, u) du

∣

∣

∣

∣

≤ L

(

m1 +
1

n
,m2 +

1

n

)

,

and (ii) for continuous ℓ, as n→ ∞,

(4.38) µn(ℓϕ) → µ(ℓϕ) = ℓµ(ϕ), ϕ ∈ C̃.
Given such a sequence, for any ϕ ∈ C̃, with supp(ϕ) ⊆ Rm1,m2

,

µn(ℓϕ) =

∫ m1

0

(∫ m2

0

dµn

dσ
(x, u)ϕ(x, u) du

)

ℓ(x) dx, n ∈ N.

Together with the estimate in (4.37), this shows that for all n ∈ N sufficiently large
such that m1 + 1/n < M ,

|µn(ℓϕ)| ≤
(∫ m1

0

ℓ(x) dx

)

‖ϕ‖∞ L

(

m1 +
1

n
,m2 +

1

n

)

.

Taking limits as n → ∞ and using (4.38), we obtain (4.34) with L̃(m1,m2)
.
=

L(m1+,m2+) for ϕ ∈ C̃ such that supp(ϕ) ⊂ Rm1,m2
. This implies that (4.34)

holds for all ϕ ∈ C̃ when ℓ is continuous.
We now construct an approximating sequence µn, n ∈ N, that satisfies the prop-

erties (4.37) and (4.38) mentioned above. Let {ρn}n∈N be a sequence of mollifiers,
where for each n ∈ N, ρn is a non-negative function in C∞

c (R2) with support in
R1/n,1/n that has integral 1 and, as n → ∞, converges vaguely to the delta distri-
bution δ(0,0), defined by δ(0,0)(ϕ) = ϕ(0, 0). For each n ∈ N, define µn to be the
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convolution ρn ⋆ µ. In other words (see the discussion of convolutions at the begin-
ning of Section 4.3), µn is absolutely continuous with respect to Lebesgue measure
σ on R

2, with density dµn/dσ in C∞
c (R2) that has the explicit form

dµn

dσ
(y, u) =

∫ ∫

R2

ρn(y − x, u− s)µ(dx, ds)(4.39)

=

∫ ∞

0

(

∫

[0,M)

ρn(y − x, u− s)µs(dx)

)

ds.

Then, for any m2 ∈ (0,∞), by Fubini’s theorem we see that

(4.40)

∫ m2

0

dµn

dσ
(y, u) du =

∫ ∞

0

(

∫

[0,M)

θyn(x, s)µs(dx)

)

ds,

where, for y ∈ R, we define

θyn(x, s)
.
=

∫ m2

0

ρn(y − x, u− s) du, (x, s) ∈ [0,M) × [0,∞).

Clearly, θyn is continuous and, for any m1 ∈ [0,M) and y ∈ [0,m1], supp(θyn) ⊆
Rm1+1/n,m2+1/n. Therefore for all sufficiently large n (such that m1 + 1/n < M),

we have θyn ∈ C̃. Since {µt}t≥0 solves the simplifed age equation for γ̃, relation
(4.30) of Lemma 4.13 can be invoked to rewrite the right-hand side of (4.40), thus
yielding

(4.41)

∫ m2

0

dµn

dσ
(y, u) du = γ̃

(

πθy
n

)

.

From the definition of π in (4.27) and the expression for θyn given above, we have

πθy
n
(x, s) =

∫ ∞

0

(∫ m2

0

ρn(y − x− r, u− s− r) du

)

dr.

Since supp(ρn) ⊆ R1/n,1/n and ρn is non-negative with integral over R
2 equal to 1,

it follows that
∥

∥πθy
n

∥

∥

∞
≤ 1 and

supp
(

πθy
n

)

∩ R
2
+ ⊂ Rm1+1/n,m2+1/n.

Due to (4.35) and the fact that supp(γ̃) ⊂ R
2
+, this then implies that

(4.42)
∣

∣γ̃
(

πθy
n

)∣

∣ ≤ L

(

m1 +
1

n
,m2 +

1

n

)

.

When combined with (4.41), this yields (4.37).

Next, we show that (4.38) holds for continuous ℓ. For every ϕ̃ ∈ C̃, multiplying
both sides of (4.39) by ϕ̃(y, u), then integrating over (y, u) ∈ R

2 and using Fubini’s
theorem, we see that

(4.43) µn(ϕ̃) =

∫ ∞

0

(

∫

[0,M)

(ρ̌n ⋆ ϕ̃) (x, s)µs(dx)

)

ds = µ (ρ̌n ⋆ ϕ̃) ,

where ρ̌n(x, s)
.
= ρn(−x,−s) for (x, s) ∈ R

2. Now, fix m1 ∈ [0,M) and m2 <∞. If
supp(ϕ̃) ⊆ Rm1,m2

then, since supp(ρ̌n) ⊆ R1/n,1/n, it follows that supp(ρ̌n ⋆ ϕ̃) ⊆
Rm1+1/n,m2+1/n. Therefore, for all n sufficiently large so that m1 + 1/n < M ,
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ρ̌n ⋆ ϕ̃ ∈ C̃. Since {µt}t≥0 satisfies the simplified age equation, (4.43) along with
the relation (4.30) of Lemma 4.13 show that for all n such that m1 + 1/n < M ,

(4.44) µn(ϕ̃) = γ̃(πρ̌n⋆ϕ̃), ϕ̃ ∈ C̃ with supp(ϕ̃) ⊆ Rm1,m2
.

Now, sending n → ∞ in (4.44), using the fact that, for all sufficiently large n,
πρ̌n⋆ϕ are uniformly bounded and have common compact support in [0,M) × R+,
ρ̌n ⋆ ϕ̃ → ϕ̃ and, hence, πρ̌n⋆ϕ̃ → πϕ̃ pointwise, by the dominated convergence
theorem we conclude that

µn(ϕ̃) = γ̃ (πρ̌n⋆ϕ̃) → γ̃ (πϕ̃) = µ(ϕ̃),

where the last equality holds due to Lemma 4.13 because {µt}t≥0 satisfies the

simplifed age equation for γ̃. In turn, ϕ ∈ C̃ implies ℓϕ ∈ C̃ because ℓ is continuous.
Therefore, we can replace ϕ by ℓϕ in the last display to conclude that (4.38) holds.

Thus, we have constructed a sequence {µn}n∈N of Radon measures on R
2 that

satisfies (4.37) and (4.38). Therefore, by the argument given in the first paragraph
of the proof, it follows that (4.34) holds for continuous ℓ. Let ℓµ be the Radon
measure for which ℓµ(ϕ) equals the left-hand side of (4.34). Then, the estimate
(4.34) implies that the product mapping ℓ 7→ ℓµ from C[0,M) ⊂ L1

loc[0,M) to
M(R2) is continuous. Since L1

loc[0,M) and M(R2) are Fréchet spaces and C[0,M)
is dense in L1

loc[0,M) (with respect to convergence in the topology of L1
loc[0,M))

there exists a unique (uniformly) continuous extension of the mapping ℓ 7→ ℓµ to
L1
loc[0,M) and (4.34) automatically holds for this extension. �

4.3.3. Solution to the Abstract Age Equation. In Proposition 4.16 below, we estab-
lish an explicit one-to-one correspondence between solutions {ζt}t≥0 to the abstract

age equation for some γ ∈ M̃ and solutions {µt}t≥0 to the simplified age equation

for a related γ̃ ∈ M̃. In order to state this correspondence, given ℓ ∈ L1
loc[0,M),

we define

(4.45) ψℓ(x, t)
.
= exp(rℓ(x, t))

for (x, t) ∈ R
2, where

(4.46) rℓ(x, t)
.
=























−
∫ x

x−t

ℓ(u) du if 0 ≤ t ≤ x < M,

−
∫ x

0

ℓ(u) du if 0 ≤ x ≤ t, x < M,

0 otherwise.

Note that ψ−ℓ = ψ−1
ℓ and rℓ and ψℓ are continuous, locally bounded functions on

(−∞,M) × R. Hence, for every t ∈ [0,∞) and measure χ ∈ M̃, the measure ψℓχ

defined by ψℓχ(ϕ)
.
= χ(ψℓϕ) and, likewise, the measure ψ−ℓχ lie in M̃. Also, if ℓ

is continuous, then (ψℓ)x + (ψℓ)s exists and is continuous and satisfies

(4.47) (ψℓ)x + (ψℓ)s = −ℓψℓ.

Proposition 4.16. Fix ℓ ∈ L1
loc[0,M) and {ζt}t≥0 ∈ DM[0,M)[0,∞), and suppose

that the measure ℓζ defined by

(4.48) (ℓζ)(ϕ)
.
=

∫ ∞

0

〈ℓ(·)ϕ(·, s), ζs〉 ds, ϕ ∈ C̃,
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lies in M̃. Then {ζt}t≥0 solves the abstract age equation for ℓ and γ ∈ M̃ if and
only if {µt}t≥0 defined by

(4.49) 〈f, µt〉 .= 〈f(·)ψ−ℓ(·, t), ζt〉
satisfies the simplifed age equation for γ̃

.
= ψ−ℓγ, where (ψ−ℓγ)(ϕ)

.
= γ(ψ−ℓϕ) for

ϕ ∈ C̃.

Proof. Let ℓ ∈ L1
loc[0,M) and {ζt}t≥0 ∈ DM[0,M)[0,∞), be such that ℓζ ∈ M̃.

Moreover, assume that {ζt}t≥0 solves the abstract age equation for ℓ and γ ∈ M̃.
Since ψ−ℓ is continuous, the function {µt}t≥0 defined in (4.49) lies in DM[0,M)[0,∞).
Choose a sequence of continuous functions ℓn, n ∈ N, defined on [0,M) such that,
as n→ ∞, ℓn converges to ℓ in L1

loc[0,M). From (4.47) it follows that

(4.50) (ψ−ℓn)x + (ψ−ℓn)s = ℓnψ−ℓn .

Given ϕ̃ ∈ C̃1,1, let ϕ
.
= ψ−ℓn ϕ̃. Then ϕ clearly lies in C̃ and, since ϕ̃ ∈ C̃1,1, (4.50)

holds and ℓn is continuous, it follows that ϕx + ϕs exists and is continuous, and
hence ϕ ∈ C̃1,1. Therefore, substituting ϕ into the abstract age equation, we obtain

−
∫ ∞

0

〈ℓn(·)ψ−ℓn(·, s)ϕ̃(·, s), ζs〉 ds−
∫ ∞

0

〈ψ−ℓn(·, s) (ϕ̃x(·, s) + ϕ̃s(·, s)) , ζs〉 ds

= −
∫ ∞

0

〈ℓ(·)ψ−ℓn(·, s)ϕ̃(·, s), ζs〉 + γ (ϕ̃ψ−ℓn) .

Rewriting the right-hand side using (4.49), this yields

−
∫ ∞

0

〈ψℓ−ℓn(·, s) (ϕ̃x(·, s) + ϕ̃s(·, s)) , µs〉 ds

=

∫ ∞

0

〈(ℓn(·) − ℓ(·))ψ−ℓn(·, s)ϕ̃(·, s), ζs〉 ds+ γ̃(ϕ̃ψℓ−ℓn).(4.51)

As n→ ∞, ψℓ−ℓn → 1 uniformly on compact sets. This shows that, as n→ ∞, the
left-hand side of the last equation converges to

−
∫ ∞

0

〈(ϕ̃x(·, s) + ϕ̃s(·, s)) , µs〉 ds,

and, due to the dominated convergence theorem,

lim
n→∞

γ̃(ϕ̃ψℓ−ℓn) = γ̃(ϕ̃).

Furthermore, due to the assumption that ℓζ ∈ M̃, Lemma 4.12 shows that {ζt}t≥0

satisfies the simplified age equation for ℓζ + γ ∈ M̃. Proposition 4.15 can then be
applied to conclude that for (m1,m2) ∈ [0,M)× [0,∞), there exist L̃(m1,m2) <∞
such that for every ϕ̃ with supp(ϕ̃) ⊆ Rm1,m2

,
∣

∣

∣

∣

∫ ∞

0

〈(ℓ(·) − ℓn(·))ψ−ℓn(·, s)ϕ̃(·, s), ζs〉 ds
∣

∣

∣

∣

≤ ‖ϕ̃ψ−ℓn‖∞ L̃(m1,m2)

(

∫

[0,M)

|ℓ(x) − ℓn(x)| dx
)

.

Due to the convergence of ℓn to ℓ in L1
loc[0,M) and the fact that ‖ϕ̃ψℓn‖∞ →

‖ϕ̃ψℓ‖∞ < ∞, the right-hand side (and therefore the left-hand side) vanishes as
n → ∞. Taking limits as n → ∞ in (4.51), the last four assertions show that
{µt}t≥0 satisfies the simplified age equation for γ̃.
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The converse is established in an exactly analogous fashion, and so we provide
only a rough sketch of the proof. Suppose {µt}t≥0 satisfies the simplifed age equa-

tion for γ̃. Then, given ϕ ∈ C̃1,1, substitute ϕ̃
.
= ψℓnϕ ∈ C̃1,1 into the simplified age

equation, use the PDE (4.47) and the relation (4.49) along with the estimate from
Proposition 4.15 to conclude that, on sending n → ∞, {ζt}t≥0 solves the abstract
age equation for ℓ and γ. �

Combining Lemma 4.13 with Proposition 4.16, we then obtain the following
characterization of solutions to the abstract age equation.

Corollary 4.17. Given {ζt}t≥0 such that ℓζ defined by (4.48) lies in M̃, {ζt}t≥0

satisfies the abstract age equation for some γ ∈ M̃ if and only if for every t ∈ [0,∞),

(4.52) 〈f, ζt〉 = 〈f(·)ψℓ(·, t), µt〉 = γ
(

ψ−ℓΛ
t
f(·)ψℓ(·,t)

)

.

4.3.4. Proof of Theorem 4.1. To begin with, note that by substituting ℓ = h into
the definition (4.45) of ψℓ, elementary calculations show that

(4.53) ψh(x, t) =















1 −G(x)

1 −G(x− t)
if 0 ≤ t ≤ x < M,

1 −G(x) if 0 ≤ x ≤ t <∞,
0 otherwise.

In particular, this implies

(4.54) ψ−1
h (0, t) = ψ−1

h (x, 0) = 1, x, t ∈ [0,M) × R+.

Now, assume that {νs}s≥0 satisfies the condition (4.1). Then Lemma 4.12 shows
that {νs}s≥0 satisfies the age equation (4.2) for ν0 and Z if and only if {νs}s≥0

satisfies the abstract age equation for ξ defined in (4.19). In turn, by Corollary 4.17
the latter statement holds if and only if

(4.55) 〈f, νt〉 = ξ
(

ψ−hΛ
t
f(·)ψh(·,t)

)

, t ≥ 0, f ∈ Cc[0,M).

However, for x ∈ [0,M),
(

ψ−hΛ
t
f(·)ψh(·,t)

)

(x, 0) = ψ−h(x, 0)f(x+ t)ψh(x+ t) = f(x+ t)
1 −G(x+ t)

1 −G(x)
,

and for all s ∈ [0,∞),
(

ψ−hΛ
t
f(·)ψh(·,t)

)

(0, s) = ψ−h(0, s)f(t− s)ψh(t− s, t)11[0,t](s)

= f(t− s)(1 −G(t− s))11[0,t](s).

Substituting this back into (4.55) and using the definition (4.19) of ξ, it follows
that (4.55) coincides with the representation (4.3) for νt This completes the proof
of Theorem 4.1.

5. Functional Law of Large Numbers Limit

The main objective of this section is to show that, under suitable assumptions,

the sequence {(X(N)
, ν(N))} converges to a process that solves the fluid equations.

In particular, this establishes existence of solutions to the fluid equations. First, in

Section 5.1 we provide a useful description of the evolution of the state (X
(N)

, ν(N))
of the N -server model. Then, in Section 5.2, we introduce a family of martingales
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that are used in Section 5.3 to establish tightness of the sequence {(ν(N),X(N))}.
Finally, in Section 5.4, we provide the proof of Theorem 3.7.

5.1. A Characterization of the Pre-limit Processes. The dynamics of the
N -server model was described in Section 2.1 and certain auxiliary processes were
introduced in Section 2.2. In this section, we provide a more succinct and convenient
description of the state dynamics, which takes a form similar to that of the fluid
equations.

Fix N ∈ N and, throughout the section, suppose R
(N)
E and initial conditions

X(N)(0) ∈ R+ and ν
(N)
0 ∈ M≤N [0,M) are given, and let E(N), X(N) and ν(N)

be the associated state processes, as described in Section 2.1. Recall that by the
definition (2.7) of the age process, a customer j completes service (and therefore
departs the system) at time s if and only if, at time s, the left derivative of the

age process a
(N)
j is positive and the right derivative is zero. For any measurable

function ϕ on [0,M)×R+, consider the sequence of processes {Q(N)
ϕ } taking values

in R, given by

(5.1) Q(N)
ϕ (t)

.
=
∑

s∈[0,t]

K(N)(t)
∑

j=−〈1,ν
(N)
0 〉+1

11n

d
dt
a
(N)
j (s−)>0, d

dt
a
(N)
j (s+)=0

oϕ(a
(N)
j (s), s),

where K(N) and a
(N)
j are defined by the relations (2.6) and (2.7). It follows im-

mediately from (5.1) and the right-continuity of the filtration {F (N)
t } that Q

(N)
ϕ is

{F (N)
t }-adapted. Also, from the relations (2.6)–(2.8), it is easy to see that Q

(N)
1

is

equal to the cumulative departure process D(N) defined in (2.5) and that for every
N ∈ N, bounded, measurable ϕ and t ∈ [0,∞),

(5.2) |Q(N)
ϕ (t)| ≤ ‖ϕ‖∞

(

〈1, ν(N)
0 〉 +K(N)(t)

)

≤ ‖ϕ‖∞
(

X(N)(0) +E(N)(t)
)

.

Dividing (5.2) by N , taking first expectations and then the supremum over N , by
Remark 3.1, we also have

(5.3) sup
N

E

[

|Q(N)

ϕ (t)|
]

≤ ‖ϕ‖∞ sup
N

(

E[X
(N)

(0)] + E[E
(N)

(t)]
)

<∞.

We now state the main result of this section. Recall that for r, s ∈ [0,∞), ν
(N)
s repre-

sents ν(N)(s) and 〈ϕ(· + r, s), ν
(N)
s 〉 is used as a short form for

∫

[0,M)
ϕ(x+ r, s) ν

(N)
s (dx).

Theorem 5.1. The processes (E(N),X(N), ν(N)) satisfy a.s. the following coupled
set of equations: for ϕ ∈ C1,1

c ([0,M) × R+) and t ∈ [0,∞),
〈

ϕ(·, t), ν(N)
t

〉

=
〈

ϕ(·, 0), ν
(N)
0

〉

+

∫ t

0

〈

ϕx(·, s) + ϕs(·, s), ν(N)
s

〉

ds(5.4)

−Q(N)
ϕ (t) +

∫

[0,t]

ϕ(0, u)dK(N)(u),

X(N)(t) = X(N)(0) + E(N)(t) −Q
(N)
1

(t),(5.5)

N −
〈

1, ν
(N)
t

〉

= [N −X(N)(t)]+,(5.6)

where K(N) satisfies (2.6) and Q
(N)
ϕ is the process defined in (5.1).
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The rest of this section is devoted to the proof of this theorem. Fix ω ∈ Ω (we
will later restrict ourselves to ω in a set of probability 1 to which Lemmas 5.2 and
5.3 apply). We start with the simple observation that for any ϕ ∈ C1,1

c ([0,M)×R+),
due to the right-continuity of ν(N) we have for any t ∈ [0,∞),

(5.7)

〈

ϕ(·, t), ν(N)
t

〉

−
〈

ϕ(·, 0), ν
(N)
0

〉

= lim
n→∞

⌊nt⌋
∑

k=0

[〈

ϕ

(

·, k + 1

n

)

, ν
(N)
k+1

n

〉

−
〈

ϕ

(

·, k
n

)

, ν
(N)
k
n

〉]

.

In order to compute the increments on the right-hand side of the last equation, we
observe that for ϕ ∈ C1,1

c ([0,M) × R+), n ∈ N and k = 0, . . . , ⌊nt⌋, we can write

(5.8)

〈

ϕ

(

·, k + 1

n

)

, ν
(N)
k+1

n

〉

−
〈

ϕ

(

·, k
n

)

, ν
(N)
k
n

〉

=

〈

ϕ

(

·, k + 1

n

)

− ϕ

(

·, k
n

)

, ν
(N)
k+1

n

〉

+

〈

ϕ

(

·, k
n

)

, ν
(N)
k+1

n

〉

−
〈

ϕ

(

·, k
n

)

, ν
(N)
k
n

〉

.

Summing the first term on the right-hand side of (5.8) over k = 0, . . . , ⌊nt⌋, we
obtain

(5.9)

⌊nt⌋
∑

k=0

〈

ϕ

(

·, k + 1

n

)

− ϕ

(

·, k
n

)

, ν
(N)
k+1

n

〉

=

⌊nt⌋
∑

k=1

〈

ϕ

(

·, k
n

)

− ϕ

(

·, k − 1

n

)

, ν
(N)
k
n

〉

+

〈

ϕ

(

·, ⌊nt⌋ + 1

n

)

− ϕ

(

·, ⌊nt⌋
n

)

, ν
(N)
⌊nt⌋+1

n

〉

.

In order to simplify the last two terms on the right-hand side of (5.8), we first
observe that for ϕ ∈ C1,1

c ([0,M) × R+), δ ∈ (0,M) and s ∈ [0,∞), we can write

(5.10) 〈ϕ(·, s), ν(N)
s+δ〉 = I1 + I2

where

I1
.
=

∫

[δ,M)

ϕ(x, s) ν
(N)
s+δ(dx) and I2

.
=

∫

[0,δ)

ϕ(x, s) ν
(N)
s+δ(dx).

We begin by rewriting I1 in terms of quantities that are known at time s. For
x ≥ δ, customers in service with age equal to x at time s + δ are precisely those
customers that were already in service at time s with age equal to x − δ ≥ 0 and
that, in addition, did not depart the system in the interval [s, s+ δ]. Since the age
of a customer already in service increases linearly with rate 1 (see (2.7)), using the
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representation for ν(N) given in (2.8), we have

I1 =

K(N)(s+δ)
∑

j=−〈1,ν
(N)
0 〉+1

ϕ(a
(N)
j (s+ δ), s)11

{δ≤a
(N)
j (s+δ)<vj}

=

K(N)(s)
∑

j=−〈1,ν
(N)
0 〉+1

ϕ(a
(N)
j (s) + δ, s)11

{a
(N)
j (s)+δ<vj}

=

K(N)(s)
∑

j=−〈1,ν
(N)
0 〉+1

ϕ(a
(N)
j (s) + δ, s)11

{a
(N)
j (s)<vj}

−
K(N)(s)
∑

j=−〈1,ν
(N)
0 〉+1

ϕ(a
(N)
j (s) + δ, s)11

{a
(N)
j (s)<vj≤a

(N)
j (s)+δ}

.

(Here, and in what follows below, we always assume, without loss of generality, that
δ = δ(ω) is sufficiently small so that the range of the first argument of ϕ falls within
[0,M), ensuring that all quantities are well-defined.) Substituting the definition of

ν
(N)
s into the last expression, this can be rewritten as

(5.11) I1 =
〈

ϕ(· + δ, s), ν(N)
s

〉

− q(N)
ϕ (s, δ),

where for ϕ ∈ C1,1
c ([0,M) × R+), s ∈ [0,∞) and δ > 0, we define

(5.12) q(N)
ϕ (s, δ)

.
=

K(N)(s)
∑

j=−〈1,ν
(N)
0 〉+1

ϕ(a
(N)
j (s) + δ, s)11

{a
(N)
j (s)<vj≤a

(N)
j (s)+δ}

.

We now expand I2 as follows:

I2 =

∫

[0,δ)

ϕ(0, s) ν
(N)
s+δ(dx) +

∫

[0,δ)

(ϕ(x, s) − ϕ(0, s)) ν
(N)
s+δ(dx).

For any 0 ≤ r ≤ s < ∞, let K(N)(r, s] = K(N)(s) − K(N)(r) denote the number

of customers that entered service in the period (r, s] and let D
(N)
∗ (r, s] denote the

number of customers that both entered service and departed the system in the

period (r, s]. Note that D
(N)
∗ (r, s] admits the explicit representation

(5.13) D
(N)
∗ (r, s] =

K(N)(s)
∑

j=K(N)(r)+1

11
{a

(N)
j (s)=vj}

.

Also, note that ν
(N)
s+δ [0, δ) is the number of customers in service that have age less

than δ at time s + δ. These customers must therefore have entered service in the
interval (s, s+ δ] and not yet departed by time s+ δ. Therefore, we can write

ν
(N)
s+δ [0, δ) = K(N)(s, s+ δ] −D

(N)
∗ (s, s+ δ].

Combining the last three expressions, we obtain

(5.14)
I2 = ϕ(0, s)K(N)(s, s+ δ] − ϕ(0, s)D

(N)
∗ (s, s+ δ]

+

∫

[0,δ]

(ϕ(x, s) − ϕ(0, s)) ν
(N)
s+δ(dx).
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Substituting equations (5.11) and (5.14) into (5.10), with s = k/n and δ = 1/n,
we obtain for ϕ ∈ C1,1

c ([0,M) × R+),
〈

ϕ

(

·, k
n

)

, ν
(N)
k+1

n

〉

−
〈

ϕ

(

·, k
n

)

, ν
(N)
k
n

〉

=

〈

ϕ

(

· + 1

n
,
k

n

)

− ϕ

(

·, k
n

)

, ν
(N)
k
n

〉

− qϕ

(

k

n
,
1

n

)

+ϕ

(

0,
k

n

)

K(N)

(

k

n
,
k + 1

n

]

− ϕ

(

0,
k

n

)

D
(N)
∗

(

k

n
,
k + 1

n

]

+

∫

[0, 1n )

(

ϕ(x,
k

n
) − ϕ(0,

k

n
)

)

ν
(N)
k+1

n

(dx).

Summing the last expression over k = 0, . . . , ⌊nt⌋, we obtain

(5.15)

⌊nt⌋
∑

k=0

[〈

ϕ

(

·, k
n

)

, ν
(N)
k+1

n

〉

−
〈

ϕ

(

·, k
n

)

, ν
(N)
k
n

〉]

=

⌊nt⌋
∑

k=0

1

n

〈

ϕ
(

· + 1
n ,

k
n

)

− ϕ
(

·, kn
)

1
n

, ν
(N)
k
n

〉

−Q
(N), 1

n
ϕ (t)

+

⌊nt⌋
∑

k=0

ϕ

(

0,
k

n

)

K(N)

(

k

n
,
k + 1

n

]

−R(N),n
ϕ (t),

where, for conciseness, we set, for ϕ ∈ C1,1
c ([0,M) × R+), N ∈ N and t ∈ [0,∞),

(5.16) Q(N),δ
ϕ (t)

.
=

⌊t/δ⌋
∑

k=0

q(N)
ϕ (kδ, δ) , δ > 0

and, for n ∈ N,

(5.17)

R
(N),n
ϕ (t)

.
=

⌊nt⌋
∑

k=0

ϕ

(

0,
k

n

)

D
(N)
∗

(

k

n
,
k + 1

n

]

−
⌊nt⌋
∑

k=0

∫

[0, 1n )

(

ϕ

(

x,
k

n

)

− ϕ

(

0,
k

n

))

ν
(N)
k+1

n

(dx).

Summing (5.8) over k = 0, 1, . . . , ⌊nt⌋, and substituting (5.9) and (5.15), we obtain

(5.18)

⌊nt⌋
∑

k=0

[〈

ϕ

(

·, k + 1

n

)

, ν
(N)
k+1

n

〉

−
〈

ϕ

(

·, k
n

)

, ν
(N)
k
n

〉]

=

〈

ϕ

(

· + 1

n
, 0

)

− ϕ (·, 0) , ν
(N)
0

〉

+

〈

ϕ

(

·, ⌊nt⌋ + 1

n

)

− ϕ

(

·, ⌊nt⌋
n

)

, ν
(N)
⌊nt⌋+1

n

〉

+

⌊nt⌋
∑

k=1

〈

ϕ

(

· + 1

n
,
k

n

)

− ϕ

(

·, k − 1

n

)

, ν
(N)
k
n

〉

+

⌊nt⌋
∑

k=0

ϕ

(

0,
k

n

)

K(N)

(

k

n
,
k + 1

n

]

−Q
(N), 1

n
ϕ (t) −R(N),n

ϕ (t).
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Since ϕ ∈ C1,1
c ([0,M) × R+) and ν(N)[0,M) ≤ N , by the bounded convergence

theorem, it follows that (for the fixed ω)

(5.19)

lim
n→∞

〈

ϕ

(

· + 1

n
, 0

)

− ϕ(·, 0), ν
(N)
0

〉

= 0,

lim
n→∞

〈

ϕ

(

·, ⌊nt⌋ + 1

n

)

− ϕ

(

·, ⌊nt⌋
n

)

, ν
(N)
⌊nt⌋+1

n

〉

= 0,

and thus the first two terms on the right-hand side of (5.18) vanish as n→ ∞. Next,
multiplying and dividing the third and fourth terms on the right-hand side of (5.18)
by 1/n, and taking limits as n→ ∞, we obtain the corresponding Riemann-Stieltjes
integrals:
(5.20)

lim
n→∞

⌊nt⌋
∑

k=1

1

n

〈

ϕ
(

· + 1
n ,

k
n

)

− ϕ
(

·, k−1
n

)

1
n

, ν
(N)
k
n

〉

=

∫ t

0

〈

ϕx(·, s) + ϕs(·, s), ν(N)
s

〉

ds,

and

(5.21) lim
n→∞

⌊nt⌋
∑

k=0

ϕ

(

0,
k

n

)

K(N)

(

k

n
,
k + 1

n

]

=

∫

[0,t]

ϕ(0, s) dK(N)(s),

where we have used the fact that the process K(N) has right-continuous paths in the
latter limit. The next two results identify the limits, as n → ∞, of the remaining

terms Q
(N),1/n
ϕ and R(N),n, on the right-hand side of (5.18).

Lemma 5.2. Almost surely, for every N ∈ N, t ∈ [0,∞) and ϕ ∈ C1,1
c ([0,M)×R+),

Q
(N),δ
ϕ (t) converges to Q

(N)
ϕ (t) as δ → 0.

Proof. Fix N ∈ N, t ∈ [0,∞) and ϕ ∈ C1,1
c ([0,M) × R+), and let L < ∞ be

such that sups∈[0,t],y∈[0,M) |ϕx(y, s) + ϕt(y, s)| ≤ L. For any δ > 0, and j =

−〈1, ν(N)
0 〉 + 1, . . . , 0, define τ δ(j) = 0 and for j = 1, 2, . . . , define

τ δ(j)
.
= inf{k ∈ N : a

(N)
j (kδ + ε) > 0 ∀ε > 0}.

Observe that τ δ(j)δ represents the smallest point on the δ-lattice {kδ, k = 0, 1, . . . , ⌊t/δ⌋}
that is greater than or equal to the time at which the jth customer enters service.
(The introduction of ε in the definition was necessary to ensure that τ δ(j) = k if
the jth customer enters service precisely at kδ, and thus has age 0 at that time.)
Then for any δ > 0, a simple interchange of summation shows that

Q
(N),δ
ϕ (t) =

⌊t/δ⌋
∑

k=0

K(N)(kδ)
∑

j=−〈1,ν
(N)
0 〉+1

ϕ(a
(N)
j (kδ) + δ, kδ)11

{a
(N)
j (kδ)<vj≤a

(N)
j (kδ)+δ}

=
K(N)(⌊t/δ⌋δ)

∑

j=−〈1,ν
(N)
0 〉+1

⌊t/δ⌋
∑

k=τδ(j)

ϕ(a
(N)
j (kδ) + δ, kδ)11

{a
(N)
j (kδ)<vj≤a

(N)
j (kδ)+δ}

.

However, when a
(N)
j (kδ) < vj ≤ a

(N)
j (kδ) + δ, we have

sup
s∈[kδ,(k+1)δ]

∣

∣

∣ϕ(a
(N)
j (kδ) + δ, kδ) − ϕ(vj , s)

∣

∣

∣ ≤ Lδ

and we also know that there exists a (unique) s ∈ (kδ, (k+1)δ] such that d
dta

(N)
j (s−) >

0 and a
(N)
j (s) = vj (i.e., s is the unique time at which the customer departs the
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system). Hence, we can write

Q(N),δ
ϕ (t) =

K(N)(⌊t/δ⌋δ)
∑

j=−〈1,ν
(N)
0 〉+1

∑

s∈[0,(⌊t/δ⌋+1)δ]

ϕ(vj , s)11n

d
dt
a
(N)
j (s−)>0,a

(N)
j (s)=vj

o +O(δ).

Sending δ → 0, since K(N) is càdlàg, we see that Q
(N),δ
ϕ (t) converges to the quantity

K(N)(t−)
∑

j=−〈1,ν
(N)
0 〉+1

∑

s∈[0,t]

ϕ(a
(N)
j (s), s)11n

d
dt
a
(N)
j (s−)>0,a

(N)
j (s)=vj

o = Q(N)
ϕ (t).

The last equality follows by replacing K(N)(t−) by K(N)(t), which is justified (even
though we need not have K(N)(t−) = K(N)(t)) because every vj is a.s. strictly
positive (since G(0+) = 0), and so if customer j enters service precisely at time t,
then 11

{a
(N)
j (s)=vj}

= 0 for every s ∈ [0, t]. �

Lemma 5.3. Almost surely, for every T ∈ [0,∞) and every ϕ ∈ C1,1
c ([0,M)×R+),

(5.22) lim
n→∞

sup
t∈[0,T ]

R(N),n
ϕ (t) = 0.

Proof. We will establish the lemma by showing that a.s. for any ϕ ∈ C1,1
c ([0,M) ×

R+), as n → ∞, both terms on the right-hand side of (5.17) converge uniformly
to zero. Fix T < ∞ and t ∈ [0, T ]. Then for any n ∈ N, from the representation

(5.13) for D
(N)
∗ it immediately follows that

⌊nt⌋
∑

k=0

D
(N)
∗

(

k

n
,
k + 1

n

]

≤
⌊nt⌋
∑

k=0

K(N)( k+1
n )

∑

j=K(N)( k
n )+1

11{vj≤
1
n} =

K(N)( ⌊nt⌋+1
n )

∑

j=1

11{vj≤
1
n}.

Taking first the supremum over t ∈ [0, T ] and then the expectation of both sides,
and using the fact that K(N) ≤ X(N)(0) + E(N) (which can be deduced from
the relations (2.5), (2.6) and the fact that (2.10) implies 〈1, ν(N)〉 ≤ X(N)) and the
independence of the the inter-arrival and service distributions, we obtain the bound

E



 sup
t∈[0,T ]

⌊nt⌋
∑

k=0

D
(N)
∗

(

k

n
,
k + 1

n

]



 ≤ G

(

1

n

)

E[X(N)(0) + E(N)(T + 1)].

Next, taking the limit, as n → ∞, observe that the right-hand side tends to zero
because E[X(N)(0) + E(N)(T + 1)] < ∞, G is right-continuous and G(0+) = 0,
while on the left-hand side, the expectation can be interchanged with the limit by

an application of the dominated convergence theorem because D
(N)
∗ (k/n, (k+1)/n]

is non-negative for all k ∈ N, and is bounded above by K(N)(T ) + 1, which has
finite expectation. Thus

0 = lim
n→∞

E



 sup
s∈[0,T ]

⌊nt⌋
∑

k=0

D
(N)
∗

(

k

n
,
k + 1

n

]



 = E



 lim
n→∞

sup
s∈[0,T ]

⌊nt⌋
∑

k=0

D
(N)
∗

(

k

n
,
k + 1

n

]



 .

Since each term of the form D
(N)
∗

(

k
n ,

k+1
n

]

is non-negative, this implies that the
limit within the expectation on the right-hand side is almost surely zero. Therefore,
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almost surely,

lim
n→∞

sup
s∈[0,T ]

⌊nt⌋
∑

k=0

ϕ

(

0,
k

n

)

D
(N)
∗

(

k

n
,
k + 1

n

]

≤ ‖ϕ‖∞ lim
n→∞

sup
s∈[0,T ]

⌊ns⌋
∑

k=0

D
(N)
∗

(

k

n
,
k + 1

n

]

= 0.

The monotonicity in T of the left-hand side allows us to conclude that there exists
a set Ω1 of full P-measure on which this convergence holds simultaneously for all
T .

We now turn to the second term on the right-hand side of (5.17). Let m(δ)
.
=

sup(x,t),(y,s)∈[0,M)×R+:|(x,t)−(y,s)|≤δ |ϕ(x, t)−ϕ(y, s)| be the modulus of continuity of

ϕ. Since ϕ ∈ C1,1
c ([0,M)×R+), ϕ is uniformly continuous and so limδ→0m(δ) = 0.

Now, for any t ∈ [0, T ] and n ∈ N,

⌊nt⌋
∑

k=0

∫

[0, 1n )

∣

∣

∣

∣

ϕ

(

x,
k

n

)

− ϕ

(

0,
k

n

)∣

∣

∣

∣

ν
(N)
k+1

n

(dx) ≤ m

(

1

n

) ⌊nt⌋
∑

k=0

ν
(N)
k+1

n

[

0,
1

n

)

.

Now, any customer that has age in [0, 1/n) at time (k+1)/n entered service strictly
after k/n and would have age greater than or equal to 1/n at any time k′/n,
k + 1 < k′ ∈ N, if it were still in service at that time. Hence for any fixed n ∈ N,
the unit mass corresponding to any given customer is counted in at most one term

of the form ν
(N)
(k+1)/n[0, 1/n), k ∈ N. This implies the elementary bound

sup
t∈[0,T ]

⌊nt⌋
∑

k=0

ν
(N)
k+1

n

[

0,
1

n

)

≤ X(N)(0) + E(N)(T + 1).

Now let Ω2 be the set of full P-measure on which the property X(N)(0)+E(N)(t) <
∞ for every t ∈ [0,∞) is satisfied. Then on Ω2, the right-hand side of the last
expression, which is independent of n, is a.s. finite. Therefore, a.s.,

lim
n→∞

sup
t∈[0,T ]

∣

∣

∣

∣

∣

∣

⌊nt⌋
∑

k=0

∫

[0, 1n )

∣

∣

∣

∣

ϕ

(

x,
k

n

)

− ϕ

(

0,
k

n

)∣

∣

∣

∣

ν
(N)
k+1

n

(dx)

∣

∣

∣

∣

∣

∣

≤
(

X(N)(0) + E(N)(T + 1)
)

lim
n→∞

m

(

1

n

)

= 0.

Thus we have shown that on the set Ω1 ∩ Ω2 of full P-measure, (5.22) holds for
every T <∞ and ϕ ∈ C1,1

c ([0,M) × R+). �

We are now in a position to complete the proof of Theorem 5.1.

Proof of Theorem 5.1. Fix N ∈ N and t ∈ [0,∞), choose a set Ω̃ of P-measure 1
such that the assertions of Lemmas 5.2 and 5.3 hold for every ϕ ∈ C1,1

c ([0,M)×R+),

and fix ω ∈ Ω̃. Combining (5.18) with (5.19), (5.20), (5.21) and Lemmas 5.2 and
5.3, it follows that the right-hand side of (5.7) equals

∫ t

0

〈ϕx(·, s) + ϕs(·, s), ν(N)
s 〉 ds−Q(N)

ϕ (t) +

∫

[0,t]

ϕ(0, s) dK(N)(s).
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Equating this with the left-hand side of (5.7), we obtain (5.4). The remaining
relations (5.5) and (5.6) follow immediately from (2.5), (2.10) and the observation

that Q
(N)
1

= D(N) (see the comment below (5.1)). �

5.2. A Useful Family of Martingales. An inspection of the integral equation

(5.4) suggests that identification of the limit of the sequence {(X(N)
, ν(N))} of scaled

state processes is likely to require a characterization of the limit of a scaled version

Q
(N)

ϕ of Q
(N)
ϕ . In order to achieve this task, we first identify the compensator of

Q
(N)
ϕ (in Corollary 5.5) and then identify the limit of the quadratic variation of the

associated scaled martingale M
(N)

ϕ , obtained as a compensated sum of jumps (see
Lemma 5.9).

We begin by introducing some notation. Recall that h is the hazard rate function
defined in (2.3). For any ϕ ∈ Cb([0,M) × R+), consider the sequences of processes

{A(N)
ϕ , N ∈ N} defined by

(5.23) A(N)
ϕ (t)

.
=

∫ t

0

(

∫

[0,M)

ϕ(x, s)h(x) ν(N)
s (dx)

)

ds

for every t ∈ [0,∞). We now derive an alternative representation for the process

A
(N)
ϕ which shows, in particular, that A

(N)
ϕ is well defined and takes values in R

for every t ∈ [0,∞). For j ∈ N, recall that α
(N)
j

.
= inv[K(N)](j) is the time that

the jth customer entered service. Then, interchanging the order of integration
and summation and using the linear increase of the age process, we can write for
t ∈ [0,∞),
(5.24)

A
(N)
ϕ (t) =

∫ t

0







K(N)(s)
∑

j=−〈1,ν
(N)
0 〉+1

h
(

a
(N)
j (s)

)

ϕ
(

a
(N)
j (s), s

)

11
{a

(N)
j (s)<vj}






ds

=
0
∑

j=−〈1,ν
(N)
0 〉+1

∫ t

0

h
(

a
(N)
j (0) + s

)

ϕ
(

a
(N)
j (0) + s, s

)

11n

a
(N)
j (0)+s<vj

o ds

+

K(N)(t)
∑

j=1

∫ t

α
(N)
j

h
(

s− α
(N)
j

)

ϕ
(

s− α
(N)
j , s

)

11n

s<α
(N)
j +vj

o ds.

Since vj < M a.s. and h is locally integrable on [0,M), this shows that A
(N)
ϕ is well-

defined. Moreover, using the inequality 〈1, ν(N)
0 〉 +K(N)(t) ≤ X(N)(0) + E(N)(t),

we have for every N ∈ N and ϕ ∈ Cc([0,M) × R+) with supp(ϕ) ⊂ [0,m] × R+ for
m ∈ [0,M),

(5.25) |A(N)
ϕ (t)| ≤ ‖ϕ‖∞

(

X(N)(0) + E(N)(t)
)

(∫ m

0

h(x) dx

)

, t ∈ [0,∞),

which is finite due to the local integrability of h.

Now, let J
(N)
t be the (random) set of jump points of the departure process D(N)

up to time t:

J
(N)
t

.
=
{

s ∈ [0, t] : D(N)(s) 6= D(N)(s−)
}
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and set J (N) = J
(N)
∞

.
= ∪t>0J

(N)
t . Recall thatQ

(N)
1

= D(N). We start by identifying

the (predictable) compensator of D(N) (see Section 3b of [12] for the definition).

Lemma 5.4. For every N ∈ N, the process A
(N)
1

is the {F (N)
t }-compensator of

the departure process D(N). In other words, A
(N)
1

is an increasing, {F (N)
t }-adapted

process, with E[A
(N)
1

(t)] <∞ for every t ∈ [0,∞), such that for every non-negative

{F (N)
t }-predictable process H,

(5.26)

E





∑

s∈J(N)

Hs



 = E

[∫ ∞

0

HsdA
(N)
1

(s)

]

= E

[

∫ ∞

0

Hs

(

∫

[0,M)

h(x) ν(N)
s (dx)

)

ds

]

.

Proof. Fix N ∈ N, label the servers from 1, . . . , N and assume without loss of

generality that, for j = −〈1, ν(N)
0 〉+ 1, . . . , 0, the jth customer in service at time 0

is being served at the kjth station, where kj
.
= j + 〈1, ν(N)

0 〉.
In order to prove the lemma, we shall find it convenient to introduce the following

notation. For k = 1, . . . , N and n ∈ N, let θ
(N),k
n (respectively, ζ

(N),k
n ) be the time

at which the nth customer to be served at station k starts (respectively, completes)

service, where for j = −〈1, ν(N)
0 〉 + 1, . . . , 0, we set θ

(N),kj

1 equal to −a(N)
j (0). We

also let D(N),k(t) represent the total number of customers that have departed from
the kth station in the interval [0, t]. Then clearly D(N),k(0) = 0 and

D(N) =

N
∑

k=1

D(N),k.

For conciseness, for the rest of this proof we shall omit the explicit dependence of
all quantities on N .

For k = 1, . . . , N , the process Dk = D(N),k admits the decomposition

Dk(t) =

∞
∑

n=1

[

Dk
(

t ∧ ζkn
)

−Dk
(

t ∧ θkn
)]

, t ∈ [0,∞).

Define
Dk
n(t)

.
= Dk

(

t ∧ ζkn
)

−Dk
(

t ∧ θkn
)

, t ∈ [0,∞).

Observe that Dk
n is a point process with just one point representing the n-th de-

parture from station k. We claim (and justify below) that the Ft-compensator of
Dk
n is given by the process Akn that is defined, for t ∈ [0,∞), by

Akn(t)
.
=







































0 if t ∈ [0, θkn ∨ 0]
∫ t

θk
n∨0

h
(

u− θkn
)

du if t ∈ (θkn ∨ 0, ζkn]

∫ ζk
n

θk
n∨0

h
(

u− θkn
)

du if t ∈ (ζkn,∞),

It is straightforward to verify that θkn and ζkn are both {Ft}-stopping times (this
can be done by rewriting the events {θkn ≤ t} and {ζkn ≤ t} as events involving

{a(N)
j (s),S(N)

j (s), s ∈ [0, t], j ∈ {−N + 1, . . . , 0} ∪ N} — the details are left to the
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reader). As a result, it follows that Akn is {Ft}-adapted. Moreover, by definition
Akn is continuous, and hence {Ft}-predictable. Thus in order to establish the claim
that it is the {Ft}-compensator for Dk

n, by Theorem 3.17 on page 32 of [12], it
suffices to show that for every {Ft}-stopping time T ,

E

[∫ ∞

0

11[0,T ](s) dD
k
n(s)

]

= E

[∫ ∞

0

11[0,T ](s) dA
k
n(s)

]

.

We will prove the result for the case when θkn > 0 (i.e., when n ≥ 2 or n = 1

and k 6= kj for j = −〈1, ν(N)
0 〉 + 1, . . . , 0). The result in the remaining cases also

follows from the same argument, but withG replaced by the conditional distribution

[G(·)−G(a
(N)
j (0))]/[1−G(a

(N)
j (0))]11

[a
(N)
j (0),∞)

, which has hazard rate h11
[a

(N)
j (0),∞)

.

Fix n, k such that θkn > 0. Due to the monotone convergence theorem, it is clear
that it in fact suffices to show that the above equality holds for any bounded {Ft}-
stopping time T . Now, note that, because neither Dk

n nor Akn increase outside
(θkn, ζ

k
n], the last equation is equivalent to the relation

E

[∫ ∞

0

11[0,T ]∩(θk
n,∞)(s) dD

k
n(s)

]

= E

[∫ ∞

0

11[0,T ]∩(θk
n,ζ

k
n](s) dA

k
n(s)

]

.

However, the term on the left-hand side can be rewritten as

E

[∫ ∞

0

11[0,T ]∩(θk
n,∞)(s) dD

k
n(s)

]

= lim
m→∞

E





∞
∑

j=0

11{θk
n≤ j

2m<T, j
2m<ζk

n≤ j+1
2m }



 .

Since T , θkn and ζkn are all {Ft}-stopping times, conditioning on Fj/2m , it follows
that for any m ∈ N and j = 1, . . . , 2m,

E

[

11{θk
n≤ j

2m<T}11{ j
2m<ζk

n≤ j+1
2m }

]

= E

[

E

[

11{θk
n≤ j

2m<T,ζk
n>

j
2m }11{ζk

n≤ j+1
2m }|F j

2m

]]

= E

[

11{θk
n≤ j

2m<T,ζk
n>

j
2m }

∫ (j+1)/2m

j/2m

g(u− θkn)

1 −G( j
2m − θkn)

du

]

= E

[

11{θk
n≤ j

2m<T,ζk
n>

j
2m }

G
(

j+1
2m − θkn

)

−G
(

j
2m − θkn

)

1 −G
(

j
2m − θkn

)

]

.

Note that the second equality above uses the independence of the service require-
ment of a given customer from the cumulative arrival process and the service re-
quirements of all other customers. Combining the last two displays and invoking
the monotone convergence theorem to justify the interchange of expectation and
summation over j, we conclude that

E

[∫ ∞

0

11[0,T ]∩(θk
n,∞)(s) dD

k
n(s)

]

= lim
m→∞

E





∞
∑

j=0

11{θk
n≤ j

2m<T,ζk
n>

j
2m }

G
(

j+1
2m − θkn

)

−G
(

j
2m − θkn

)

1 −G
(

j
2m − θkn

)



 .

To complete the proof, it only remains to show that the right-hand side of the
last equation is equal to E[

∫∞

0
11[0,T )(s)A

k
n(ds)]. For this, first note that the term
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within the expectation on the right-hand side of the last equation can be rewritten
in the form E[

∫∞

0
11[0,T )(s)A

k
m,n(ds)] where, for m ∈ N, Akm,n(·) = Akm,n(ω; ·) is the

random measure defined for each ω ∈ Ω by

Akm,n(ω; ds) =

∞
∑

j=0

δ j
2m

(ds)11{θk
n(ω)≤ j

2m<ζk
n(ω)}

G
(

j+1
2m − θkn(ω)

)

−G
(

j
2m − θkn(ω)

)

1 −G
(

j
2m − θkn(ω)

)

where δx is, as usual, the Dirac mass at x. Next, observe that if θkn + 2−m ≤ u ≤
j2−m then G(u−θkn) ≤ G(j2−m−θkn) and therefore 1−G(u−θkn) ≥ 1−G(j2−m−θkn)
and similarly, if θkn ≤ j2−m ≤ u then 1−G(u− θkn) ≤ 1−G(j2−m − θkn). It follows
that

∫ ζk
n

θk
n+ 1

2m

g(u− θkn)

1 −G(u− θkn)
du ≤ Akm,n[0,∞)

≤
∫ ζk

n+ 1
2m

θk
n

g(u− θkn)

1 −G(u− θkn)
du

= − ln

(

1 −G

(

ζkn +
1

2m
− θkn

))

.

Since ζkn − θkn represents a service time, it is distributed according to G. Hence
G(ζkn − θkn) is uniformly distributed in (0, 1). Since G is continuous, for every ω,
there exists a sufficiently large m0 = m0(ω) such that for m ≥ m0, G(ζkn(ω) −
θkn(ω) + 1/2m) < 1, so that − ln

(

1 −G
(

ζkn(ω) + 1
2m − θkn(ω)

))

< ∞. Combining

the last four statements, we conclude that for each ω, Akm,n(ω; [0,∞)) is finite for

all m ≥ m0 and, moreover, that as m → ∞, the measure Akm,n(ω; ·) converges
vaguely to the measure that has density

g(u− θkn(ω))

1 −G(u− θkn(ω))
11{θk

n(ω)<u≤ζk
n(ω)} = h(u− θkn(ω))11{θk

n(ω)<u≤ζk
n(ω)},

which is precisely the measure Akn(ω; ·). The latter measure does not charge points,
and in particular does not charge u = T (ω). So we conclude that for every ω,

lim
m→∞

∫ ∞

0

11[0,T (ω))(s)A
k
m,n(ω; ds) =

∫ ∞

0

11[0,T (ω))(s)A
k
n(ω; ds) ≤

∫ B−θk
n(ω)

0

h(u) du,

where B is an upper bound on the stopping time T (note that if M < ∞ we
may restrict our attention to bounded stopping times whose bound B satisfies
B < θkn + M). Therefore, the last term is finite due to the local integrability
of the hazard rate function on [0,M). The limit above, along with the bounded
convergence theorem, then implies the desired convergence:

lim
m→∞

E





∞
∑

j=0

11{θk
n≤ j

2m<T,ζk
n>

j
2m }

G
(

j+1
2m − θkn

)

−G
(

j
2m − θkn

)

1 −G
(

j
2m − θkn

)





= E

[

lim
m→∞

∫ ∞

0

11[0,T )(u) dA
k
m,n(u)

]

= E

[∫ ∞

0

11[0,T )(u) dA
k
n(u)

]

.
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This establishes (5.26). In particular, this shows that for every t ∈ [0,∞), E[A
(N)
1

(t)] =

E[D(N)(t)] ≤ E[E(N)(t)+X(N)(0)] and so the lemma follows from Remark 3.1. �

Since D(N) = Q
(N)
1

and the ages of customers are continuous and hence pre-
dictable processes, the following (seemingly stronger) result can be immediately
deduced from the proof of the last lemma.

Corollary 5.5. For every N ∈ N and ϕ ∈ Cb([0,M)×R+), the process A
(N)
ϕ is the

F (N)
t -compensator of the process Q

(N)
ϕ . In particular, the process M

(N)
ϕ defined by

(5.27) M (N)
ϕ

.
= Q(N)

ϕ −A(N)
ϕ

is a local F (N)
t -martingale.

As usual, let Q
(N)

ϕ , A
(N)

ϕ and M
(N)

ϕ , respectively, denote the scaled processes

Q
(N)
ϕ /N , A

(N)
ϕ /N and M

(N)
ϕ /N . The following lemma will be used in Section 5.3

to establish tightness of these processes.

Lemma 5.6. For every T <∞ and ϕ ∈ Cb([0,M)×R+), lim supN E

[

|Q(N)

ϕ (T )|
]

<

∞ and lim supN E

[

A
(N)

ϕ (T )
]

<∞. Also, for t ∈ [0,∞) and N ∈ N,

(5.28) lim
δ→0

E

[

D
(N)

(t+ δ) −D
(N)

(t)
]

= 0.

Moreover, for every δ > 0 and interval Z = [m+ δ,M) with m ∈ [0,M − δ),

(5.29) E

[

Q
(N)

11Z
(t+ δ) −Q

(N)

11Z
(t)|F (N)

t

]

≤ U(δ)ν
(N)
t [m,M)

where U(·) is the renewal function associated with the service distribution G.

Proof. For every T < ∞ and ϕ ∈ Cb([0,M) × R+), E[|A(N)

ϕ (T )|] ≤ E[A
(N)

|ϕ| (T )] =

E[Q
(N)

|ϕ| (T )], where the last equality is justified by Corollary 5.5. Therefore the first

assertion of the lemma follows from (5.3). For notational conciseness, throughout
the rest of this proof we will use f(t, t+ δ] to denote f(t+ δ)−f(t) for any function
f , t ∈ [0,∞) and δ > 0. Since 11Z is only a function of x, we can write

Q
(N)
11Z

(t, t+ δ] =

K(N)(t+δ)
∑

j=−〈1,ν
(N)
0 〉+1

∑

s∈(t,t+δ]

11
{ d

dt
a
(N)
j (s−)>0,a

(N)
j (s)=vj}

11Z

(

a
(N)
j (s)

)

,

which is simply the number of departures from the Nth system during the time
interval (t, t + δ] by customers whose ages at the time of departure (which equals
their service times) lie in the set Z.

We shall bound the departures during the time interval (t, t+δ] in theNth system
by the departures in another system that is easier to analyze. Consider a modified
system in which at time t, there are an infinite number of arrivals (or, equivalently,
customers in queue) so that after t, at each station, every time a customer finishes

service, a new customer joins. Let D̃1(δ|x) denote the number of departures from a
single station in this modified system during the period (t, t+δ], given that at time t
there exists a customer with age x in that station (note that, as the notation reflects,
this quantity is independent of t and the choice of station). In fact, the quantity

D̃1(δ|x) is simply the number of renewals in the interval [0, δ] of a delayed renewal
process with initial distribution that has density g0(y) = g(y + x)/(1 −G(x)), and
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inter-renewal distribution G. Thus, as is well-known (see, for example, Theorem

2.4(iii) of [1]), E[D̃1(δ|x)] is bounded above by U(δ), where U(·) is the renewal
function of a pure (zero-delayed) renewal process that has inter-renewal distribution
G (and a renewal at 0).

Let D̃(t, t + s] be the departure process from the modified system during the
interval (t, t + s]. At time t, each customer present in the original system is also
present in the modified system and has the same age in both systems. On the other

hand, if there are idle servers in the original system at time t, i.e., if N−〈1, ν(N)
t 〉 >

0, then the modified system has N −〈1, ν(N)
t 〉 servers that have customers with age

zero at time t. Thus µ
(N)
t

.
= ν

(N)
t +(N−〈1, ν(N)

t 〉)δ0 represents the age distribution

of customers in the modified system at time t. Thus µ
(N)
t [0,M) = N and a simple

monotonicity argument shows that

(5.30)

E

[

D
(N)

(t+ δ) −D
(N)

(t)|F (N)
t

]

≤ 1

N
E

[

D̃(t, t+ δ]|F (N)
t

]

=
1

N

∫

[0,M)

E

[

D̃1(δ|x)
]

µ
(N)
t (dx)

≤ U(δ).

Now, U(δ) is finite for any finite δ and non-decreasing (see, e.g., Theorem 2.4(i) of

[1]). Since E[D̃1(δ|x)] converges monotonically down to zero as δ → 0, the bounded
convergence theorem shows that for every N ∈ N,

lim
δ→0

∫

[0,M)

E

[

D̃1(δ|x)
] 1

N
µ

(N)
t (dx) = 0.

Taking expectations of both sides of (5.30) and then sending δ → 0, the last display
and another application of the bounded convergence theorem then shows that for
every N ∈ N, (5.28) holds.

To establish (5.29), fix δ > 0 and m ∈ (0,M − δ). Then any customer whose
service time is greater than or equal to m+ δ and who departed the system during
the time interval (t, t+ δ] must have been in the system at time t with age greater
than or equal to m > 0. Thus the total number of such departures is bounded
above by the number of departures in the modified system from stations that had
a customer present at time t with age greater than or equal to m. By the same
reasoning provided above, this implies that

E

[

Q
(N)

11[m+δ,M)
(t, t+ δ)|F (N)

t

]

≤
∫

[m,M)

E

[

D̃1(δ|x)
]

ν
(N)
t (dx) ≤ U(δ)ν

(N)
t [m,M),

which completes the proof of the lemma. �

We now derive another estimate, which can be viewed as a “pre-limit” ana-
logue of the estimate (4.34) that was obtained for solutions of the age equation in
Proposition 4.15.

Proposition 5.7. Given ℓ ∈ L1
loc[0,M) and ϕ ∈ Cb([0,M)×R+),

∫ ·

0
〈ℓ(·)ϕ(·, s), ν(N)

s 〉 ds
is well-defined for every N ∈ N. Moreover, if either supp(ℓ) ⊂ [0,m] or supp(ϕ) ⊂
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[0,m] × R+ for some m < M , then for every 0 ≤ r ≤ t <∞,

(5.31)

∣

∣

∣

∣

∫ t

r

〈ϕ(·, s)ℓ(·), ν(N)
s 〉 ds

∣

∣

∣

∣

≤ ‖ϕ‖∞
(

X
(N)

(0) + E
(N)

(t)
)

sup
u∈[0,m]

∫ (u+t−r)∧m

u

|ℓ(x)| dx.

Proof. The fact that
∫ t

0
〈ℓ(·)ϕ(·, s), ν(N)

s 〉 ds equals the right-hand side of (5.24),
but with h replaced by ℓ, shows that is well-defined. To obtain the estimate (5.31),
manipulating (5.24) with h replaced by ℓ, we obtain for every N ∈ N and 0 < r <
t <∞,

(5.32)

∣

∣

∣

∣

∫ t

r

〈ϕ(·, s)ℓ(·), ν(N)
s 〉 ds

∣

∣

∣

∣

≤ ‖ϕ‖∞
N

0
∑

j=−〈1,ν
(N)
0 〉+1

∫ t

r

∣

∣

∣ℓ
(

a
(N)
j (0) + s

)∣

∣

∣ 11n

a
(N)
j (0)+s<vj∧m

o ds

+
‖ϕ‖∞
N

K(N)(r)
∑

j=1

∫ t

r

∣

∣

∣ℓ
(

s− α
(N)
j

)∣

∣

∣ 11n

s−α
(N)
j ≤m

o ds

+
‖ϕ‖∞
N

K(N)(t)
∑

j=K(N)(r)+1

∫ t

α
(N)
j

|ℓ(s− α
(N)
j )|11n

s−α
(N)
j ≤m

o

≤ ‖ϕ‖∞
(

〈1, ν(N)
0 〉 +K

(N)
(t)
)

sup
u∈[0,m]

∫ (u+t−r)∧m

u

|ℓ(x)| dx,

where the last inequality uses the fact that α
(N)
j ∈ [r, t] for j = K(N)(r) +

1, · · · ,K(N)(t). The estimate (5.31) then follows from the above display, (2.5),

(2.6), the non-negativity of X
(N)

and the fact that ν
(N)
s is a sub-probability mea-

sure for every s. �

In the next lemma, these estimates are used to obtain some convergence results,
which will in turn be used to prove tightness of the pre-limit sequence in Section
5.3. The assumptions (5.33) and (5.34) of the lemma below are shown to follow
from Assumption 1(3) in Lemma 5.12.

Lemma 5.8. Suppose that the limit

(5.33) lim
m↑M

sup
N∈N

E

[

ν
(N)
0 (m,M)

]

= 0

holds and, if M <∞, then

(5.34) lim
m↑M

sup
N∈N

E

[

∫

[0,m)

1 −G(m)

1 −G(x)
ν

(N)
0 (dx)

]

= 0

is also satisfied. Then the following three properties hold.

(1) For t ∈ [0,∞),

lim
m↑M

sup
N

E

[

∫ t

0

(

∫

[m,M)

h(x) ν(N)
s (dx)

)

ds

]

= 0.
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(2) For every ϕ ∈ Cb([0,M) × R+) and T ∈ [0,∞),

lim
δ→0

lim sup
N

E

[

sup
t∈[0,T ]

(

A
(N)

ϕ (t+ δ) −A
(N)

ϕ (t)
)

]

= 0

and for t ∈ [0,∞),

lim
δ→0

lim sup
N

E

[

Q
(N)

ϕ (t+ δ) −Q
(N)

ϕ (t)
]

= 0.

(3) Given m < M and any sequence of subsets Hn ⊂ [0,m] such that the
Lebesgue measure of the set Hn goes to zero as n → ∞, we have for every
T ∈ [0,∞),

(5.35) lim
n→∞

lim sup
N

E

[

sup
t∈[0,T ]

A
(N)

11Hn
(t)

]

= 0.

Proof. As in the last two proofs, in this proof too we will use f(t, t + δ] to denote
f(t+ δ) − f(t) for any function f , t ∈ [0,∞) and δ > 0. We shall divide the proof
of the first property into two cases.
Case 1. M = ∞. We start by proving a preliminary result, (5.36) below. For
m,∆, s ∈ [0,∞), let fm,∆,s ∈ Cb(R+) be such that

11[2m+∆+s,∞) ≤ fm,∆,s ≤ 11[m+∆+s,∞).

Then by Corollary 5.5 and (5.29), we have for every N ∈ N,

E

[

A
(N)

fm,∆,s
(s, s+ ∆]|F (N)

s

]

= E

[

Q
(N)

fm,∆,s
(s, s+ ∆]|F (N)

s

]

≤ E

[

Q
(N)

11[m+∆+s,∞)
(s, s+ ∆]|F (N)

s

]

≤ U(∆)ν(N)
s [m+ s,∞)

Taking expectations of both sides, we see that

(5.36) E

[

A
(N)

fm,∆,s
(s, s+ ∆]

]

≤ U(∆)E
[

ν(N)
s [m+ s,∞)

]

.

We now show how the first property (in the case M = ∞) follows from the above
estimate. Fix t ∈ [0,∞), choose m > t and let m̃

.
= (m− t)/2. Then we have

E

[

∫ t

0

(

∫

[m,∞)

h(x) ν(N)
s (dx)

)

ds

]

= E

[

∫ t

0

(

∫

[2m̃+t,∞)

h(x) ν(N)
s (dx)

)

ds

]

≤ E

[

A
(N)

fm̃,t,0
(t)
]

≤ U(t)E
[

ν
(N)
0 [m̃,∞)

]

,

where the last inequality is justified by the estimate (5.36), withm,∆ and s replaced
by m̃, t and 0, respectively. Taking the supremum of both sides over N , and then
sending m→ ∞ (in which case m̃→ ∞), the relation (5.33) ensures that property
(1) holds for the case M = ∞.
Case 2. M < ∞. In this case, for m < M , by Corollary 5.5 and the fact that
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11(m,M)(a
(N)
j (·)) is left-continuous and hence predictable, we have

E

[

∫ t

0

(

∫

(m,M)

h(x) ν(N)
s (dx)

)

ds

]

= E

[

A
(N)

11(m,M)
(t)
]

= E

[

Q
(N)

11(m,M)
(t)
]

=
1

N
E







∑

s∈[0,t]

K(N)(t)
∑

j=−〈1,ν
(N)
0 〉+1

11n

d
dt
a
(N)
j (s−)>0,a

(N)
j (s)=vj

o11(m,M)

(

a
(N)
j (s)

)







≤ E

[

ν
(N)
0 (m,M)

]

+
1

N
E





0
∑

j=−〈1,ν
(N)
0 〉+1

11
{a

(N)
j (0)≤m}

11{vj∈(m,M)}





+
1

N
E

[

E(N)(t)
∑

j=1

11{vj∈(m,M)}

]

.

Conditioning on F (N)
0 and using the fact that a

(N)
j (0), j = −〈ν(N)

0 ,1〉, . . . , 0, and

hence ν
(N)
0 , are measurable with respect to F (N)

0 , we see that the second term on
the right-hand side can be rewritten as

1

N
E







0
∑

j=−〈1,ν
(N)
0 〉+1

11
{a

(N)
j (0)≤m}

11{vj∈(m,M)}







=
1

N
E







0
∑

j=−〈1,ν
(N)
0 〉+1

11
{a

(N)
j (0)≤m}

E

[

11{vj∈(m,M)}|a(N)
j (0)

]







=
1

N
E







0
∑

j=−〈1,ν
(N)
0 〉+1

11
{a

(N)
j (0)≤m}

1 −G(m)

1 −G(a
(N)
j (0))







= E

[

∫

[0,m]

1 −G(m)

1 −G(x)
ν

(N)
0 (dx)

]

,

while the independence of the arrival process and the service requirements of the
customers implies that the third term can be simplified to

1

N
E





E(N)(t)
∑

j=1

11{vj∈[m,M)}



 = (1 −G(m))E[E
(N)

(t)].

Combining the last three displays, we conclude that

E

[

∫ t

0

(

∫

(m,M)

h(x) ν(N)
s (dx)

)]

ds

≤ E

[

ν
(N)
0 (m,M)

]

+ E

[

∫

[0,m]

1 −G(m)

1 −G(x)
ν

(N)
0 (dx)

]

+ (1 −G(m))E[E
(N)

(t)].

Taking the supremum of both sides over N and then sending m→M , (5.33), (5.34)
and Assumption 1(1) ensures that property 1 is satisfied.
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We now turn to the proof of property 2. Fix ϕ ∈ Cb([0,M)×R+) and T ∈ [0,∞).
For any m < M and t ∈ [0, T ], we have

(5.37)

E

[

sup
t∈[0,T ]

A
(N)

ϕ (t, t+ δ]

]

≤ E

[

sup
t∈[0,T ]

A
(N)

ϕ11[0,m]
(t, t+ δ]

]

+E

[

sup
t∈[0,T ]

A
(N)

ϕ11(m,M)
(t, t+ δ]

]

.

However, applying (5.31) with ℓ = h11[0,m], and r and t replaced by t and t + δ,
respectively, next taking the supremum over t ∈ [0, T ], then the expectation and
lastly the limsup over N , we obtain

lim sup
N→∞

E

[

sup
t∈[0,T ]

A
(N)

ϕ11[0,m]
(t, t+ δ]

]

≤ ‖ϕ‖∞ C(T + δ) sup
u∈[0,m]

∫ (u+δ)∧m

u

h(x) dx,

where C(T + δ) = E[X(0) + E(T + δ)] < ∞ by properties 1 and 2 of Assumption
1. Since h is locally integrable, the right-hand side goes to zero as δ → 0 and so we
have

lim
δ→0

lim sup
N→∞

E

[

sup
t∈[0,T ]

A
(N)

ϕ11[0,m]
(t, t+ δ]

]

= 0.

Hence, taking first the limsup, as N → ∞, of (5.37), then sending δ → 0, and
finally the limit as m ↑ M , the first term on the right-hand side vanishes due to
the last display, while the second term goes to zero by property 1. This proves the
first relation of property 2. The second relation of property 2 follows trivially from
the first on account of Corollary 5.5.

Once again considering (5.31), this time with ϕ = 1, ℓn = h11Hn
and r = 0,

taking the supremum over t ∈ [0, T ], then expectations and then limsup as N → ∞,
we obtain for every n ∈ N,

lim sup
N→∞

E

[

sup
t∈[0,T ]

A
(N)

11Hn
(t)

]

≤ C(T )

∫

Hn∩[0,m]

h(x) dx,

with C(T ) = lim supN E[X
(N)

(0) + E(T )] < ∞, where the finiteness is a conse-
quence of properties 1 and 2 of Assumption 1. Sending n → ∞, the local inte-
grability of h and the fact that the Lebesgue measure of Hn converges to zero as
n → ∞ show that the right-hand side above tends to zero, which proves the last
property of the lemma. �

The local martingale M
(N)

ϕ has a well-defined predictable quadratic variation

process 〈M (N)

ϕ 〉 because M
(N)

ϕ (0) = 0 and M
(N)
ϕ has bounded jumps (see, e.g.,

statement (4.1) of Section I of [12]). We now show that the sequence of predictable

quadratic variation processes 〈M (N)

ϕ 〉, N ∈ N, (of the scaled sequence of martingales

M
(N)

ϕ ) converges to zero as N → ∞.

Lemma 5.9. For every ϕ ∈ Cb([0,M) × R+) and t ∈ [0,∞),

(5.38) lim
N→∞

E

[

〈M (N)

ϕ 〉(t)
]

= 0.

Consequently, M
(N)

ϕ ⇒ 0 as N → ∞.
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Proof. Since M
(N)
ϕ is a compensated sum of jumps with a continuous compensator

A
(N)
ϕ , M

(N)
ϕ does not have any predictable jump times, i.e., ∆M

(N)
ϕ (T ) = 0 for

every predictable time T (see, e.g., Corollary 1.19 of Section II and Definition
2.25 of Section I in [12]). Therefore, by Proposition 2.29 of Section II in [12], the
predictable quadratic variation of the martingale is given by

〈M (N)
ϕ 〉(t) =

∫ t

0

(

∫

[0,M)

ϕ2(x, s)h(x) ν(N)
s (dx)

)

ds.

This means that the scaled process M
(N)

ϕ has predictable quadratic variation

〈M (N)

ϕ 〉(t) =
1

N2
〈M (N)

ϕ 〉(t) =
1

N

[

∫ t

0

(

∫

[0,M)

ϕ2(x, s)h(x) ν(N)
s (dx)

)

ds

]

,

which implies that for any t ∈ [0,∞),

〈M (N)

ϕ 〉(t) ≤ ‖ϕ‖2
∞

N
A

(N)

1
(t).

Since E[A
(N)

1
(t)] = E[D

(N)
(t)] by Lemma 5.4, the first assertion of Lemma 5.6 shows

that supN∈N E[A
(N)

1
(t)] < ∞. Thus, taking first expectations and then limits as

N → ∞ in the last display, we obtain the first assertion of the lemma. In order to

show that M
(N)

ϕ ⇒ 0 as N → ∞, we note that by Doob’s Lemma, for any λ > 0

P

(

sup
s∈[0,T ]

M
(N)

ϕ (s) > λ

)

≤
E[〈M (N)

ϕ 〉(T )]

λ2
,

which converges to 0 as N → ∞ by the first assertion. Since this is true for all
λ > 0, this completes the proof of the lemma. �

5.3. Proof of Relative Compactness. We now establish the relative compact-

ness of the sequence of scaled state processes {(X(N)
, ν(N)), N ∈ N}, as well as

of several of the auxiliary processes. For this, it will be convenient to use Kurtz’
criteria for relative compactness of processes {Y (N)} with sample paths in DR[0,∞).
Kurtz’ criteria.

K1. For every rational t ≥ 0,

(5.39) lim
R→∞

sup
N

P(|Y (N)(t)| > R) = 0;

K2. For each t > 0, there exists β > 0 such that

(5.40) lim
δ→0

sup
N

E

[

∣

∣

∣Y (N)(t+ δ) − Y (N)(t)
∣

∣

∣

β
]

= 0.

The sufficiency of these conditions for relative compactness follows from Theorem
3.8.6 of [6] (condition K1 corresponds to condition (a) of Theorem 3.7.2 in [6] and
condition K2 follows from condition (b) of Theorem 3.8.6 and Remark 3.8.7 in [6]).

Lemma 5.10. Suppose Assumption 1 holds. Then the sequences {Q(N)

ϕ }, {A(N)

ϕ }
and M

(N)

ϕ , for ϕ ∈ Cb([0,M)×R+), the sequences {X(N)} and {〈1, ν(N)〉}, and the

sequences {〈f, ν(N)
· 〉}, for f ∈ C1

b [0,M), are all relatively compact in DR[0,∞).
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Proof. Since we are working on Polish spaces, by Prohorov’s Theorem the notions
of relative compactness and of tightness are equivalent. Fix T < ∞ and ϕ ∈
Cb([0,M) × R+). The fact that {A(N)

ϕ } and {Q(N)

ϕ } satisfy condition K1 is easily

deduced from the bounds supN E[|Q(N)

ϕ (T )|] <∞ and supN E[|A(N)

ϕ (T )|] <∞ that
were proved in Lemma 5.6. In addition, from Lemma 5.8(2) it follows that for every

ϕ ∈ Cb([0,M) × R), the sequences {A(N)

ϕ } and {Q(N)

ϕ } satisfy criterion K2 (with

β = 1), and thus are relatively compact. Finally, K1 and K2 for {M (N)

ϕ } follow

from K1 and K2 for {A(N)

ϕ } and {Q(N)

ϕ }.
By Assumption 1 and the result just proved above the sequences {E(N)} and

{X(N)
(0)} and {D(N)} are tight and therefore relatively compact. Therefore, by

Theorem 3.7.2 of [6], they satisfy (5.39). The elementary bound

〈1, ν(N)
t 〉 ≤ X

(N)
(t) ≤ X

(N)
(0) + E

(N)
(t), t ∈ [0,∞),

then shows that the sequences {X(N)} and {〈1, ν(N)〉} also satisfy condition K1.
To prove the relative compactness of these sequences, we will use a slightly different
set of criteria, namely K1 above and condition (b) of Theorem 3.7.2 of [6], which
is expressed in terms of the modulus of continuity w′(f, δ, T ) of a function f (see
(3.6.2) of [6] for a precise definition of w′). For every 0 ≤ s ≤ t <∞, from (5.5) it
is clear that

∣

∣

∣X
(N)

(t) −X
(N)

(s)
∣

∣

∣ ≤
∣

∣

∣E
(N)

(t) − E
(N)

(s)
∣

∣

∣ ∨
∣

∣

∣D
(N)

(t) −D
(N)

(s)
∣

∣

∣

and the complementarity condition (5.6) shows that
∣

∣

∣〈1, ν(N)
t 〉 − 〈1, ν(N)

s 〉
∣

∣

∣ ≤
∣

∣

∣

∣

[

1 −X
(N)

(t)
]+

−
[

1 −X
(N)

(s)
]+
∣

∣

∣

∣

≤
∣

∣

∣X
(N)

(t) −X
(N)

(s)
∣

∣

∣ .

From this it is easy to see that for every N ∈ N, δ > 0 and T <∞,

w′(〈1, ν(N)〉, δ, T ) ∨ w′(X
(N)

, δ, T ) ≤ w′(E
(N)

, δ, T ) ∨ w′(D
(N)

, δ, T ).

The relative compactness of {X(N)} and {〈1, ν(N)〉} is then a direct consequence of

the above estimate, the relative compactness of {E(N)} and {D(N)} and Theorem
3.7.2 of [6].

Now, let f ∈ C1
b [0,M). We shall prove the relative compactness of the se-

quence {〈f, ν(N)
· 〉}. First substituting ϕ = f (as usual, interpreting f as a func-

tion on [0,M) × R+ that depends only on the first variable and noting that then
the continuous differentiability of f in the first variable trivially guarantees that
f ∈ C1,1

c ([0,M) × R+)) in the equation (5.4) satisfied by the prelimit, and then
dividing the equation by N , we obtain for any t ∈ [0,∞),

〈

f, ν
(N)
t

〉

−
〈

f, ν
(N)
0

〉

=

∫ t

0

〈f ′, ν(N)
s 〉 ds−Q

(N)

f (t) + f(0)K
(N)

(t)

=

∫ t

0

〈f ′, ν(N)
s 〉 ds−Q

(N)

f (t)

+f(0)
[

Q
(N)

1
(t) + 〈1, ν(N)

t 〉 − 〈1, ν(N)
0 〉

]

,

where the last equality uses the relation (2.6). Thus to show that {〈f, ν(N)〉} is

relatively compact, it suffices to show that {〈f, ν(N)
0 〉} and the sequences associated
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with each of the three terms on the right-hand side of the last display are relatively
compact. The relative compactness of the last two terms is a direct result of the

relative compactness of {Q(N)

f }, {Q(N)

1
} and {〈1, ν(N)〉} proved above, and the

relative compactness of the sequence {〈1, ν(N)
0 〉} which holds due to Assumption

1(3). In addition, since ν(N) is a sub-probability measure for every N ∈ N, the first
term is uniformly bounded by ‖f ′‖∞ t and, moreover,

∫ t+u

t

∣

∣

∣
〈f ′, ν(N)

s 〉
∣

∣

∣
ds ≤ ‖f ′‖∞ u.

This verifies Kurtz’ criteria K1 and K2 (with β = 1), for the sequence associated
with the first term and thus establishes its relative compactness. �

We now show that several sequences of measure-valued processes associated with
the many-server model are relatively compact. Given a complete separable metric
space S, the space MF (S), equipped with the topology of weak convergence, is
also a complete separable metric space. Thus we can apply Jakubowski’s criteria
(see, e.g., Theorem 4.6 of [13]) for tightness, summarised below, to establish relative
compactness on DMF (S)[0,∞), with S = [0,M) and S = [0,M) × R+.

Jakubowski’s Criteria. A sequence {π(N)} of DMF (S)[0,∞)-valued random elements
defined on (Ω,F ,P) is tight if and only if the following two conditions are satisfied.

J1. For each T > 0 and η > 0 there exists a compact set KT,η ⊂ MF (S) such
that

lim inf
N→∞

P

(

π
(N)
t ∈ KT,η for all t ∈ [0, T ]

)

> 1 − η.

This is referred to as the compact containment condition.
J2. There exists a family F of real continuous functions F on MF (S) that

separates points in MF (S) and is closed under addition such that {ν̃(N)}
is F-weakly tight, i.e., for every F ∈ F, the sequence {F (π

(N)
s ), s ∈ [0,∞)},

N ∈ N, is tight in DR[0,∞).

Remark 5.11. Consider the family of real-valued functions F on M1(S) given by

F
.
= {F : ∃f ∈ C1

b [0,M) such that F (µ) = 〈f, µ〉 ∀µ ∈ M1(S)}.
Every function in F is clearly continuous with respect to the weak topology on
M1(S) and the class F is trivially closed with respect to addition. Moreover, F

clearly separates points in M1(S).

We start by establishing the relative compactness of the sequence of measure-
valued processes {ν(N)}.
Lemma 5.12. Suppose Assumption 1 holds. Then the sequence {ν(N)} is relatively
compact. Moreover, the limits (5.33) and (5.34) hold.

Proof. By Lemma 5.10 and Remark 5.11, {ν(N)} satisfies Jakubowski’s criterion J2.

Therefore, it suffices to show that {ν(N)} satisfies Jakubowski’s criterion J1. Define

ν̃(N) .
= (1− 〈1, ν(N)〉)δ0 + ν(N), where δ0 is the Dirac mass at zero. Then ν̃

(N)
s is a

probability measure on [0,M) for every s ∈ [0,∞) and, since 1−〈1, ν(N)
s 〉 ∈ [0, 1], to

prove the lemma it clearly suffices to show that ν̃(N) satisfies Jakubowski’s criterion
J1. We split the proof of the latter into two cases, depending on the value of M .
Case 1. M = ∞. By Assumption 1(3) and the complementarity condition (5.6),
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there exists a set Ω̃ of measure 1 such that for all ω ∈ Ω̃, ν
(N)
0 (ω) converges weakly,

as N → ∞, to a sub-probability measure ν0(ω), which in turn implies that 1 −
ν

(N)
0 (ω) converges to 1 − 〈1, ν0(ω)〉. Fix ω ∈ Ω̃. Then by Prohorov’s theorem (see

Section 3.2 of [6]), the sequence {ν̃(N)
0 (ω), N ∈ N} must be tight. Hence, for every

ε > 0, the positive random variable r(ω, ε) defined by

r(ω, ε)
.
= sup

N
inf{a : ν̃

(N)
0 (ω) [a,∞) < ε}

is finite. Note that we then have

ν̃
(N)
0 (ω) (r(ω, ε),∞) < ε for all N ∈ N.

Since r(ω, 1/n) < ∞ for every ω ∈ Ω̃ and n ∈ N, there exists a sequence r(n) that
converges to infinity as n→ ∞, and is such that P(ω : r(ω, 1/n) > r(n)) ≤ 2−n. If
we define An

.
= {ω : r(ω, 1/n) > r(n)}, then by the Borel-Cantelli lemma, almost

surely An occurs only finitely often. Furthermore, P (∪n≥N0
An) ≤ 2−N0+1 for every

N0 ∈ N. Now fix T < ∞, and note that since the age process of each customer in
service increases linearly, for every n ∈ N and t ∈ [0, T ],

{

ω : ν̃
(N)
0 (ω)(r(n),∞) ≤ 1

n

}

⊆
{

ω : ν̃
(N)
0 (ω)(r(n) − t+ T,∞) ≤ 1

n

}

⊆
{

ω : ν̃
(N)
t (ω)(r(n) + T,∞) ≤ 1

n

}

.

Thus, given η > 0, now define

Kη,T .
=

{

µ ∈ M1(R+) : µ (r(n) + T,∞) ≤ 1

n
for all n > N0(η)

}

,

where we choose N0(η)
.
= −⌈ln η/ ln 2⌉ so that 2−N0+1 < η. Then observe that

inf
C⊂R+:C compact

sup
µ∈Kη,T

µ(Cc) ≤ inf
n>N0(η)

sup
µ∈Kη,T

µ(r(n) + T,∞) = 0.

Therefore, another application of Prohorov’s theorem shows that Kη,T is a relatively

compact subset of M1(R+) (equipped with the Prohorov metric). Let Kη,T be its
closure in the Prohorov metric. Then for every N ∈ N,

P

(

ν̃
(N)
t ∈ Kη,T for every t ∈ [0, T ]

)

≥ P

(

ν̃
(N)
0 (r(n),∞) ≤ 1

n
for every n > N0(η)

)

≥ 1 − 2−N0+1 ≥ 1 − η,

which proves the compact containment condition when M = ∞.
In addition, this also shows that (5.33) holds. Indeed, if η > 0 and N1(η) ∈ N

satisfies N1(η) ≥ N0(η) ∨ [1/η], then the last display implies that for every m ≥
r(N1(η)),

inf
N∈N

P

(

ν̃
(N)
0 [m,∞) ≤ 1

N1(η)

)

≥ 1 − η,

which in turn shows that for every for every m ≥ r(N1(η)),

sup
N∈N

E

[

ν
(N)
0 [m,∞)

]

≤ 1

N1(η)
+ η.

The result then follows by letting first m→ ∞ and then η → 0.
Case 2. M < ∞. We start by establishing (5.33) and (5.34) using an argument
similar to that used in Case 1 to prove (5.33). The almost sure weak convergence
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of ν
(N)
0 to ν0 in M≤1[0,M) implies that the sequence {r(n)} considered in Case 1

can be taken strictly smaller than M and converging to M . Defining N1(δ) as in
Case 1, we see that for m ≥ r(N1(δ)),

sup
N∈N

E

[

ν
(N)
0 [m,M)

]

≤ 1

N1(η)
+ η,

and the result follows as above by sending first m → M and then η → 0. The

limit (5.34) follows from the weak convergence of ν
(N)
0 to ν0 and the fact that

(1 −G(L))/(1 −G(x)) is bounded (by 1) and continuous on [0, L).
It only remains to show that the compact containment condition is satisfied

when M < ∞. For this, we need to show that for every ε > 0, η > 0 we can find
m(ε) < M so that

inf
N

P

(

ν̃
(N)
t [0,m(ε)] > 1 − ε for every t ∈ [0, T ]

)

> 1 − η.

However, for any m < M , we have

P

(

ν̃
(N)
t (m,M) > ε for some t ∈ [0, T ]

)

≤ P

(

Q
(N)

11(m,M)
(T +M) > ε

)

≤
E[Q

(N)

11(m,M)
(T +M)]

ε

=
E[A

(N)

11(m,M)
(T +M)]

ε

where the last equality follows from Corollary 5.5. Using now Lemma 5.8(1) (which
is justified since we have already established (5.33) and (5.34)), one can find m(ε)
close enough to M to make the supremum over N of the right-hand side above
smaller than η, thus yielding the desired result. �

For all N ∈ N and t ∈ [0,∞), from (5.2), (5.25) and the fact that Q
(N)

1
(t)

and A
(N)

1
(t) are a.s. finite, it immediately follows that a.s., the linear functionals

Q(N)
(t) : ϕ 7→ Q

(N)

ϕ (t) and A(N)
(t) : ϕ 7→ A

(N)

ϕ (t) on Cc([0,M)×R+) are finite non-
negative Radon measures on [0,M)×R+ (see Section 1.2.2 for a characterization of
Radon measures as linear functionals). In other words, for every ϕ ∈ Cc([0,M)×R+)

the integral of ϕ with respect to the Radon measure Q(N)
(t) (respectively, A(N)

(t))

equals Q
(N)
ϕ (t) (respectively, A

(N)

ϕ (t)). Thus {Q(N)
(t), t ∈ [0,∞)} and {A(N)

(t), t ∈
[0,∞)} can be viewed as MF ([0,M)×R+)-valued càdlàg processes. We now show

that the sequences of measure-valued processes {Q(N)}N∈N and {A(N)}N∈N are
relatively compact.

Lemma 5.13. Suppose Assumption 1 is satisfied. Then the sequences {Q(N)}N∈N

and {A(N)}N∈N are relatively compact in DMF ([0,M)×R+)[0,∞).

Proof. Due to Remark 5.11 and the fact that for t ≥ 0, the integrals of ϕ with

respect to Q(N)
(t) and A(N)

(t), respectively, are given by Q
(N)

ϕ (t) and A
(N)

ϕ (t),

Lemma 5.10 simplies that {Q(N)} and {A(N)} satisfy Jakubowski’s criterion J2.
Thus it suffices to verify Jakubowski’s J1 criterion for these sequences. Fix T <∞.
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For η > 0, define

(5.41) B(η)
.
=

2

η
sup
N

E

[

A
(N)

1
(T )
]

,

which is finite by the first assertion of Lemma 5.6, and let {m(n, η)}n∈N ⊂ [0,M)
be a sequence such that m(n, η) →M as n→ ∞ and

(5.42) sup
N

E

[

A
(N)

11(m(n,η),M)
(T )
]

≤ η

n2n+1
, n ∈ N.

Such a sequence exists by Lemma 5.8(1). Also, define

Kη .
=

{

µ ∈ M([0,M) × R+) : 〈1, µ〉 ≤ B(η) and µ((m(n, η),M) × R+) ≤ 1

n
∀n ∈ N

}

.

Since supµ∈Kη
µ([0,M) × R+) ≤ B(η) and

inf
C⊂[0,M)×R+:

Ccompact

sup
µ∈Kη

µ(Cc) ≤ inf
n

sup
µ∈Kη

µ((m(n, η),M) × R+) = 0,

Kη is a compact subset of MF ([0,M) × R+). Moreover, for η > 0 and N ∈ N, the

monotonicity of A
(N)

ϕ (t) in t for non-negative ϕ, Markov’s inequality, (5.41) and
(5.42) we have

P

(

A(N)
(t) 6∈ Kη for some t ∈ [0, T ]

)

≤ P

(

A
(N)

1
(T ) ≥ B(η)

)

+
∑

n∈N

P

(

A
(N)

11[m(n,η),M)
(T ) ≥ 1

n

)

≤ sup
N

E

[

A
(N)

1
(T )
]

B(η)
+
∑

n∈N

n sup
n∈N

E

[

A
(N)

11[m(n,η),M)

]

≤ η.

which proves the compact containment condition for {A(N)}. Due to Corollary 5.5,

an exactly analogous argument shows that {Q(N)} also satisfies this condition, thus
completing the proof of the lemma. �

We are now ready to state the main relative compactness result. Let

Y .
= R+ × (DR[0,∞))2 ×MF [0,M) ×DMF [0,M) × (DMF ([0,M)×R+))

2

equipped with the product metric and let

(5.43) Y
(N) .

= (X
(N)

(0), E
(N)

,X
(N)

, ν
(N)
0 , ν(N),Q(N)

,A(N)
), N ∈ N.

Then Y is clearly a Polish space and so, combining Assumption 1 with Lemmas
5.10, 5.12 and 5.13, we arrive at the main result of this section.

Theorem 5.14. Suppose Assumption 1 is satisfied . Then the sequence {Y (N)} is
relatively compact in the Polish space Y.
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5.4. Characterization of Subsequential Limits. The main result of this section
is the following theorem.

Theorem 5.15. Suppose Assumptions 1 and 2 are satisfied. Then the limit (X, ν)

of any subsequence of {(X(N)
, ν(N))}N∈N solves the fluid equations.

The rest of the section is devoted to the proof of this theorem. Let (E,X(0), ν0)

be the S0-valued random variable that satisfies Assumption 1, and let Y
(N)

, N ∈ N,
be the sequence of processes defined in (5.43). Then, by Assumption 1, Theorem

5.14 and the fact that M
(N)

= Q
(N) − A

(N) ⇒ 0 by Lemma 5.9, there exist
X ∈ DR+

[0,∞), ν ∈ DMF [0,M)[0,∞) and Ā ∈ DMF ([0,M)×R+)[0,∞) such that

Y
(N)

converges weakly (along a suitable subsequence) to

Y
.
= (X(0), E,X, ν, Ā, Ā) ∈ Y.

Denoting this subsequence again by {Y (N)} and invoking the Skorokhod Represen-

tation Theorem, with a slight abuse of notation, we can assume that Y
(N) → Y P

a.s.
We now identify some properties of the limit that will be used to prove Theorem

5.15. First, note that we immediately have 〈1, ν(N)〉 → 〈1, ν〉 almost surely and

D
(N)

= Q
(N)

1
→ A1, where Q

(N)

1
and A1 are defined in (5.1) and (5.23) with ϕ = 1.

When combined with (2.5) and (2.6), this implies that

(5.44) X = X(0) + E −Q
1

= X(0) + E −A1,

and that K
(N)

converges a.s. to K, where

(5.45) K(t)
.
= 〈1, νt〉 − 〈1, ν0〉 +A1, t ∈ [0,∞).

Moreover, from (2.10) it follows that the non-idling condition (3.7) holds. Com-
paring (5.44) and (5.45) with (3.6) and (3.8), it is clear that in order to prove that
(X, ν) satisfies the fluid equations, it is necessary to show that Q

1
= A1 = D, where

D is defined in terms of ν via (3.9). If h is continuous and uniformly bounded on
[0,M) (as is the case, for example, when G is a lognormal distribution), then this

is a simple consequence of the (almost sure) weak convergence of ν(N) to ν and

the definition of A
(N)
1

given in (5.23). However, as we show below, some additional
work is required to justify this convergence for general h (that satisfies Assumption
2). We start, in Lemma 5.16, with a bound (see (5.46)) on certain integrals with
respect to ν. This bound is then used in Proposition 5.17 to show that, under mild
additional conditions on h, A1 equals D. Next, Lemma 5.18 establishes sufficient
conditions under which νs is absolutely continuous with respect to Lebesgue mea-
sure on [0,M), for every s. All these results are then combined to complete the
proof of Theorem 5.15 at the end of the section.

Lemma 5.16. For m ∈ [0,M) and every ℓ ∈ L1
loc[0,M) with support in [0,m],

there exists L̃(m,T ) <∞ such that

(5.46)

∣

∣

∣

∣

∫ ∞

0

〈ℓ, νs〉 ds
∣

∣

∣

∣

≤ L̃(m,T )

∫

[0,M)

|ℓ(x)| dx.
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Proof. In order to establish the lemma, it suffices to show that for every m ∈ [0,M),
T ∈ (0,∞) and ϕ ∈ C1,1

c ([0,M) × R+) with supp(ϕ) ⊂ [0,m] × [0, T ], there exists
C(m,T ) <∞ such that

(5.47)

∣

∣

∣

∣

∣

∫ T

0

〈ϕx(·, s) + ϕs(·, s), νs〉 ds
∣

∣

∣

∣

∣

≤ ‖ϕ‖∞ C(m,T ).

Then the measure γ̃ on R
2, defined by

∫ ∫

R2

ϕ(x, s) γ̃(dx, ds)
.
= −

∫ ∞

0

〈ϕx(·, s) + ϕs(·, s), νs〉, ϕ ∈ C1,1
c ([0,M) × R+),

is a Radon measure on R
2 with support in [0,M) × R+ and, moreover, {νs}s≥0

satisfies the simplified age equation for γ̃. Therefore, (5.46) follows from Proposition
4.15. To show (5.47), fix m,T and ϕ as above. Then, for any ε > 0, substituting

t = T + ε in (5.4), the term 〈ϕ(·, T + ε), ν
(N)
T+ε〉 equals zero and so, rearranging the

remaining terms we obtain, for every N ∈ N,

∫ T+ε

0

〈ϕx(·, s) + ϕs(·, s), ν(N)
s 〉 ds = 〈ϕ(·, 0), ν

(N)
0 〉 +

∫

[0,T+ε]

ϕ(0, u)dK
(N)

u

+M
(N)

ϕ (T + ε) +A
(N)

ϕ (T + ε).

Sending ε → 0 and using the right-continuity of the processes, the fact that K
(N)

is non-decreasing and the bound (5.25) on |A(N)

ϕ (T )|, this implies that

(5.48)

∣

∣

∣

∣

∣

∫ T

0

〈ϕx(·, s) + ϕs(·, s), ν(N)
s 〉 ds

∣

∣

∣

∣

∣

≤ ‖ϕ‖∞ C(N)(m,T ) +M
(N)

ϕ (T ),

where

C(N)(m,T )
.
= 〈1, ν(N)

0 〉 +K
(N)

(T ) +
(

X
(N)

(0) + E
(N)

(T )
)

∫ m

0

h(x) dx.

Due to (2.5), (2.6) and the limits E
(N) → E and X

(N)
(0) → X(0) as N → ∞, it

follows that

lim sup
N→∞

C(N)(m,T ) ≤ C(m,T )
.
= 2(1 +X(0) + E(T ))

[

1 ∨
(∫ m

0

h(x) dx

)]

.

Therefore, taking limits asN → ∞ on both sides of (5.48), recalling thatM
(N)

ϕ (T ) →
0 (see Lemma 5.9) and observing that the left-hand side converges to |

∫ T

0
〈ϕx(·, s)+

ϕs(·, s), νs〉 ds| due to the bounded convergence theorem, the fact that ϕx(·, s) +

ϕs(·, s) ∈ Cc([0,M) × R+) and ν
(N)
s

w→ νs for a.e. s ∈ [0, T ], we obtain (5.47). �

Proposition 5.17. If h satisfies Assumption 2, then for every ϕ ∈ Cb([0,M)×R+),

(5.49) Aϕ(t) =

∫ t

0

〈ϕ(·, s)h(·), νs〉 ds, t ∈ [0,∞).

In particular, Aϕ is absolutely continuous and A1 = D.
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Proof. We will show (5.49) only for the case when ϕ = 1 since the proof for ϕ ∈
Cb([0,M) × R+) is exactly analogous. Note that for any m ∈ [0,M), we have the
elementary bound

(5.50) sup
t∈[0,T ]

∣

∣

∣
A

(N)

1
(t) −D(t)

∣

∣

∣
≤ R

(N)
1 (m) +R

(N)
2 (m) +R3(m),

where, setting hm
.
= h11[0,m], we define

R
(N)
1 (m)

.
=

∫ T

0

(

∫

(m,M)

h(x)ν(N)
s (dx)

)

ds;

R
(N)
2 (m)

.
=

∫ T

0

∣

∣

∣

∣

∣

(

∫

[0,M)

hm(x)ν(N)
s (dx)

)

−
(

∫

[0,M)

hm(x)νs(dx)

)∣

∣

∣

∣

∣

ds;

R3(m)
.
=

∫ T

0

(

∫

(m,M)

h(x)νs(dx)

)

ds.

We now analyze each of the above terms. First, by Lemma 5.8(1), it follows that

(5.51) lim
m→M

sup
N

E

[

R
(N)
1 (m)

]

= 0.

Next, note that hm is with compact support and integrable on [0,M), and hence
there exists a sequence {hm,k}k∈N ⊂ Cc[0,M) that, as k → ∞, converges in L1[0,M)
to hm. For every k,m ∈ N, we have the bound

R
(N)
2 (m) ≤

∫ T

0

(

∫

[0,M)

|hm(x) − hm,k(x)| ν(N)
s (dx)

)

ds

+

∫ T

0

∣

∣

∣

∣

∣

(

∫

[0,M)

hm,k(x)ν
(N)
s (dx)

)

−
(

∫

[0,M)

hm,k(x)νs(dx)

)∣

∣

∣

∣

∣

ds(5.52)

+

∫ T

0

(

∫

[0,M)

|hm(x) − hm,k(x)| νs(dx)
)

ds.

Applying Proposition 5.7, with ℓ = |hm − hm,k|, ϕ = 1, r = 0 and t = T , and
taking first expectations and then the supremum over N , we see that

sup
N

E

[

∫ T

0

(

∫

[0,M)

|hm,k(x) − hm(x)| ν(N)(dx)

)

ds

]

≤ C(T )

∫ M

0

|hm,k(x) − hm(x)| dx

where C(T )
.
= 1 + supN E[X

(N)
(0) +E

(N)
(T )] is finite due to properties 1 and 2 of

Assumption 1. Taking limits as k → ∞ and using the L1-convergence of hm,k to
hm, we then obtain

(5.53) lim
k→∞

sup
N

E

[

∫ T

0

(

∫

[0,M)

|hm(x) − hm,k(x)| ν(N)
s (dx)

)

ds

]

= 0.

Likewise, an application of Lemma 5.16 with ℓ = |hm,k − hm| yields

(5.54)

lim
k→∞

E

[

∫ T

0

(

∫

[0,M)

|hm(x) − hm,k(x)| νs(dx)
)

ds

]

≤ lim
k→∞

L̃(m,T )

(

∫ M

0

|hm(x) − hm,k(x)| dx
)

= 0
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Moreover, by the weak convergence ν
(N)
s

w→ νs as N → ∞ for a.e. s ∈ [0, T ], the
fact that hm,k is bounded and continuous and the Bounded Convergence Theorem,
we see that
(5.55)

lim sup
N→∞

E

[

∫ T

0

∣

∣

∣

∣

∣

(

∫

[0,M)

hm,k(x)ν
(N)
s (dx)

)

−
(

∫

[0,M)

hm,k(x)νs(dx)

)∣

∣

∣

∣

∣

ds

]

= 0.

Taking first the expectation on both sides of (5.52), next the limsup over N , then
limits as k → ∞ of the right-hand side, and using (5.53)–(5.55), we obtain

(5.56) lim sup
N→∞

E[R
(N)
2 (m)] = 0.

We now consider the third term, using Assumption 2. If h is bounded (say by
B) on (m0,M), then by the Bounded Convergence Theorem,

lim
m→M

E [R3(m)] ≤ lim
m→M

B

∫ T

0

νs(m,M) ds = B

∫ T

0

lim
m→M

νs(m,M) ds = 0.

On the other hand, suppose h is lower semicontinuous on (m0,M). Then for any
m ≥ m0, h11(m,M) is lower semicontinuous on [0,M) since the non-negativity of h
implies h(m) = 0 ≤ limx→m h(x). Together with Theorem A.3.12 of [5] and the

fact that P a.s., ν
(N)
s

w→ νs as N → ∞ for a.e. s ∈ [0, T ], this implies that for any
such s and m ≥ m0,

∫

[0,M)

11(m,M)(x)h(x) νs(dx) ≤ lim inf
N→∞

∫

[0,M)

11(m,M)(x)h(x) ν
(N)
s (dx).

Integrating both sides over s ∈ [0, T ] and taking expectations, an application of
Fatou’s lemma yields

E [R3(m)] ≤ lim inf
N→∞

E[R
(N)
1 (m)].

Taking limits as m ↑ M and invoking (5.51) we conclude that in this case as well,
we have

(5.57) lim sup
m→M

E [R3(m)] = 0.

Finally, taking expectations and then the the limsup, as N → ∞, of both sides

of (5.50), and applying Fatou’s lemma and the fact that A
(N)

1
→ A1 as N → ∞,

we obtain for every m ∈ [0,M),

E

[

sup
t∈[0,T ]

|A1(t) −D(t)|
]

≤ lim sup
N→∞

E

[

sup
t∈[0,T ]

|A(N)

1
(t) −D(t)|

]

≤ lim sup
N→∞

E

[

R
(N)
1 (m) +R

(N)
2 (m)

]

+ E[R3(m)].

Sending m→M on the right-hand side and invoking (5.51), (5.56) and (5.57), we
see that the right-hand side converges to zero. Thus we have supt∈[0,T ] |A1(t) −
D(t)| = 0 a.s. Since T is arbitrary, this proves the first assertion of the proposition.
The second assertion is an immediate consequence of the first. �

Lemma 5.18. If ν0 and E are absolutely continuous, then νs is also absolutely
continuous for every s ∈ [0,∞).
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Proof. For simplicity, we will assume that M = ∞ for the rest of the proof. The
case M <∞ is analogous and is left to the reader. Since E is absolutely continuous
by assumption and A1 is absolutely continuous by Proposition 5.17, (5.44) allows us
to deduce that X is absolutely continuous. The non-idling condition (3.7) and (3.8)
then show that 〈1, ν〉 and K are also absolutely continuous. Fix T <∞, and let Cε
denote the set of collections of finite disjoint intervals (ai, bi) ⊂ [0, T ], i = 1, . . . , n,
such that

∑n
i=1(bi − ai) ≤ ε. Given δ > 0, choose ε > 0 small enough so that

sup
{(ai,bi)}∈Cε

[ν0 (∪ni=1[ai, bi])] ∨
[

sup
s∈[0,T ]

n
∑

i=1

K(s− bi, s− ai)]

]

<
δ

2
.

where we recall that K(s, t] = K(t) −K(s), and when t < 0, K(s, t] is defined to
be zero. Now, consider a particular collection {(ai, bi)} ∈ Cε. Fix s ∈ [0, T ]. Define
J1 = {i ∈ {1, . . . , n} : ai − s ≥ 0} and let J2 = {1, . . . , n} \ J1. Then we have

n
∑

i=1

ν(N)
s (ai, bi) =

∑

i∈J1

ν(N)
s (ai, bi) +

∑

i∈J2

ν(N)
s (ai, bi)

≤
∑

i∈J1

ν
(N)
0 (ai − s, bi − s) +

∑

i∈J2

ν
(N)
s−ai

(0, bi − ai)

≤
∑

i∈J1

ν
(N)
0 (ai − s, bi − s) +

∑

i∈J2

K
(N)

(s− bi, s− ai).

Taking limits as N → ∞ and using the fact that K
(N) → K, Assumption 1(3) and

the Portmanteau theorem, we see that

νs(∪ni=1(ai, bi)) ≤ lim inf
N

ν(N)
s (∪ni=1(ai, bi))

= lim inf
N

n
∑

i=1

ν(N)
s (ai, bi)

≤ lim sup
N

∑

i∈J1

ν
(N)
0 (ai − s, bi − s) +

∑

i∈J2

lim
N
K

(N)
(s− bi, s− ai)

≤ ν0 (∪i∈J1
[ai − s, bi − s]) +

∑

i∈J2

K(s− bi, s− ai).

Taking the supremum over all collections of intervals in Cε, we conclude that for
every δ > 0, there exists ε > 0 such that

sup
{(ai,bi)}∈Cε

n
∑

i=1

νs(ai, bi) ≤ δ,

which shows that νs is absolutely continuous. �

Combining the above results, we now have a proof of the main result of this
section.

Proof of Theorem 5.15. Let Ω̃ be the set of full P-measure on which the properties

stated in Assumptions 1 and 2 hold, and Y
(N)

(ω) → Y (ω) for all ω ∈ Ω̃. Fix

ω ∈ Ω̃ (and suppress it from the notation), and then choose t ∈ [0,∞) such that

at that ω, ν
(N)
t

w→ νt, A
(N)

(t)
w→ A(t), Q

(N)
(t)

w→ A(t), E
(N)

(t) → E(t) and

X
(N)

(t) → X(t) as N → ∞. Note that this occurs for t outside a countable set
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(that possibly depends on ω). Moreover, since K
(N)

(t) can be written in terms

of E
(N)

(t),X
(N)

(t), 〈1, ν(N)
t 〉 and the initial conditions due to (2.5), (2.6) and,

likewise, K(t) can be expressed in terms of the E(t),X(t), 〈1, νt〉 and limits of the
initial conditions using equations (3.6) and (3.8), it follows from the limits at t

assumed above and Assumption 1 that K
(N)

(t) → K(t).
Now, fix ϕ ∈ C1,1

c ([0,M) × R+). By Proposition 5.17, as N → ∞, we have

(5.58) Q
(N)

ϕ (t) → Aϕ(t) =

∫ t

0

〈ϕ(·, s)h(·, s), νs〉 ds.

In particular, this implies D
(N)

(t) = Q
(N)

1
(t) → D(t) and D(t) < ∞ for every

t ∈ [0,∞), which shows that condition (3.4) of the fluid equations is satisfied. Also,
when combined with (5.44), (5.45) and the fact that the non-idling condition is
satisfied (see the discussion immediately after the statement of Theorem 5.15), this
implies that the fluid equations (3.6)–(3.8) are also satisfied.

It only remains to show that ν and K satisfy (3.5) for ϕ. First, dividing (5.4)
by N , we obtain

〈ϕ(·, t), ν(N)
t 〉 = 〈ϕ(·, 0), ν

(N)
0 〉 +

∫ t

0

〈ϕx(·, s) + ϕs(·, s), ν(N)
s 〉 ds

−Q(N)

ϕ (t) +

∫

[0,t]

ϕ(0, u)dK
(N)

(u).

Since, by the choice of ω and t, ν
(N)
0

w→ ν0, ν
(N)
s

w→ νs for a.e. s ∈ [0, t], ν
(N)
t

w→ νt
and ϕ(·, t) and ϕx(·, s)+ϕs(·, s), s ∈ [0, t], are bounded and continuous, as N → ∞,
the Bounded Convergence Theorem implies

〈ϕ(·, 0), ν
(N)
0 〉 → 〈ϕ(·, 0), ν0〉, 〈ϕ(·, t), ν(N)

t 〉 → 〈ϕ(·, t), νt〉
and

∫ t

0

〈ϕx(·, s) + ϕs(·, s), ν(N)
s 〉 ds→

∫ t

0

〈ϕx(·, s) + ϕs(·, s), νs〉 ds.

On the other hand, since K
(N)

(s) → K(s) for all continuity points s of K, the asso-

ciated sequence of Stieltjes measures dK
(N)

converges vaguely to the corresponding

Stieltjes measure dK, as N → ∞. Since K
(N)

(t) → K(t) and ϕ(0, ·) ∈ Cc(R+), this
implies that, as N → ∞,

lim
n→∞

∫

[0,t]

ϕ(0, u)dK
(N)

(u) =

∫

[0,t]

ϕ(0, u)dK(u).

Combining the last four displays with (5.58), it follows that the fluid equation (3.5)
is satisfied for all but countably many t. By right-continuity (with respect to t)
of each of the terms in (3.5), we conclude that (3.5) is satisfied for all t ∈ [0,∞).
This completes the proof of the desired result that a.s., (X, ν) satisfies the fluid
equations. �

We now obtain Theorem 3.7 as an immediate corollary.

Proof of Theorem 3.7. The first statement of Theorem 3.7 is a direct consequence
of Theorem 5.14. The remainder of the theorem follows from Theorem 5.15, the
uniqueness of solutions to the fluid equations established in Theorem 3.5 and the
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usual standard argument by contradiction that shows that the original sequence
converges to the solution of the fluid limit whenever the latter is unique. �

6. Convergence of the Fluid Limit to Equilibrium

Throughout this section we assume that h satisfies Assumption 2 and that the
initial condition (E,X(0), ν0) ∈ S0 is such that E is absolutely continuous with
derivative denoted by λ(·), i.e.,

E(t) =

∫ t

0

λ(s) ds, t ∈ [0,∞).

By Theorems 3.5 and 3.7, there exists a unique solution (X, ν) to the associated fluid
equations, which is characterized by the equations (3.6), (3.11) and (3.12). The goal
of this section is to prove Theorem 3.9, which describes the large-time behaviour of
(X, ν). First, in Proposition 6.1, the case when the system starts empty is analyzed
and, in addition, a certain comparison result is established between such systems
and systems with more general initial conditions that have the same (fluid) arrival
rate λ(·). The proof of Theorem 3.9 is provided at the end of the section, building
on two preliminary results obtained in Lemmas 6.2 and 6.3.

Recall from (3.13) that ν∗ is the probability measure with density 1 − G, and
also recall the definition of monotonic weak convergence stated before Theorem 3.9.

Proposition 6.1. Let (X, ν) be the unique solution to the fluid equations associated
with the initial condition (E, 0, 0̃) ∈ S0. If

(6.1) τ1
.
= inf

{

t > 0 :

∫ t

0

(1 −G(t− s))λ(s) ds = 1

}

then we have the following properties.

(1) For t ∈ [0, τ1),

〈1, νt〉 = X(t) =

∫ t

0

(1 −G(t− s))λ(s) ds

and, as t→ τ1, for every function f ∈ Cb(R+),

〈f, νt〉 →
∫ τ1

0

f(t− s)(1 −G(t− s))λ(s) ds.

(2) Suppose λ(·) is a constant equal to λ ∈ [0, 1]. Then, as t → ∞, X(t) =
〈1, νt〉 → λ monotonically and νt converges weakly monotonically up to
λν∗.

(3) Suppose (X
⋄
, ν⋄) is the unique solution to the fluid equations associated with

any other initial condition (E,X
⋄
(0), ν⋄0) that has the same fluid cumulative

arrival process. Then

(6.2) 〈1, ν⋄t 〉 ≥ 〈1, νt〉 for all t ∈ [0, τ1).

Moreover, if λ(·) is a constant equal to λ ∈ [0, 1], then

(6.3) 〈1, ν⋄t 〉 ≥ λ

∫ t

0

(1 −G(r)) dr for all t ∈ [0, τ1).
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Proof. Let (X, ν) be the unique solution to the fluid equations associated with the
initial conditions (E, 0, 0̃), and define

τ
.
= inf{t > 0 : 〈1, νt〉 = 1},

with the usual convention that inf ∅ = ∞. Then τ > 0 by the right-continuity
of t 7→ 〈1, νt〉 and for t ∈ (0, τ), 〈1, νt〉 < 1. The non-idling property (3.7) then
implies that X(t) = 〈1, νt〉 < 1 for t ∈ [0, τ). Combining relations (3.6) and (3.8),
this in turn implies that K(t) = E(t) for t ∈ [0, τ). Since, by (3.11), ν satisfies
the age equation associated with ν0 ≡ 0̃ and K, we have for any f ∈ Cb(R+) and
t ∈ [0, τ),

〈f, νt〉 =

∫

[0,t]

f(t− s)(1 −G(t− s)) dE(s) =

∫ t

0

f(t− s)(1 −G(t− s))λ(s) ds.

Substituting f = 1, the left-hand side above is equal to X(t) = 〈1, νt〉, from which
it is easy to see that τ = τ1 since the integrand on the right-hand side is continuous
in t. This proves property 1.

Next, consider the time-homogeneous setting where λ(·) equals a constant λ ∈
[0, 1]. The case λ = 0 is trivial and when λ ∈ (0, 1], we can rewrite

τ1 = inf

{

t > 0 :

∫ t

0

(1 −G(x)) dx = 1/λ

}

.

This shows that τ1 = ∞ when either λ < 1, or λ = 1 and M = ∞, and so, by

property 1, it follows that νt
w→ λν∗ monotonically as t → ∞. Thus property 2 is

proved in this case. Now, suppose λ = 1 and M < ∞. Then analogous reasoning
shows that τ1 = M < ∞, X(τ1) = 1 and ντ1 = ν∗. When combined with the non-
anticipative property stated in Lemma 3.4 and the fact that (1, ν∗) is an invariant
solution for the fluid equations with initial conditions (id,1, ν∗) (see Remark 3.8),
this shows that (X(t), νt) = (1, ν∗) for all t ≥ τ1 and once again property 2 follows.

We now turn to the last property. We first show that for every t ∈ (0, τ1),

X
⋄
(t) ≥ X(t). To this end we combine (3.6), (3.8) and the fact that 〈1, ν⋄t 〉 ≤ X

⋄
(t)

due to (3.7) to obtain

K
⋄
(t) = 〈1, ν⋄t 〉 − 〈1, ν⋄0〉 +X

⋄
(0) + E(t) −X

⋄
(t) ≤ X

⋄
(0) − 〈1, ν⋄0〉 + E(t).

When combined with (3.6), (3.8) and (4.5), this implies

X
⋄
(t) = X

⋄
(0) + E(t) −

∫

[0,M)

G(x+ t) −G(x)

1 −G(x)
ν⋄0(dx) −

∫ t

0

g(t− s)K
⋄
(s)ds

≥ X
⋄
(0) + E(t) −

∫

[0,M)

G(x+ t) −G(x)

1 −G(x)
ν⋄0(dx)

−
∫ t

0

g(t− s)(X
⋄
(0) − 〈1, ν⋄0〉 + E(s))ds

≥ X
⋄
(0) + E(t) − 〈1, ν⋄0〉 −

∫ t

0

E(s)g(t− s)ds−
(

X
⋄
(0) − 〈1, ν⋄0〉

)

G(t).

Since G(t) ≤ 1 and X
⋄
(0) ≥ 〈1, ν⋄0〉, we have in fact

(6.4) X
⋄
(t) ≥ E(t) −

∫ t

0

E(s)g(t− s)ds.
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However, due to (3.12) and the fact that property 1 implies X(s) < 1 for s ∈ [0, τ1),
we know that E(s) = K(s) for all s ∈ [0, τ1). Together with the relations (3.6), (3.8),
(4.5) and the fact that X(0) = 0 and ν0 = 0̃, this shows that the right-hand side of

(6.4) equals X(t). This shows the inequality (6.2) holds because if X
⋄
(t) ≥ 1 then

〈1, ν⋄t 〉 = 1 ≥ 〈1, νt〉, whereas if X
⋄
(t) < 1 then 〈1, ν⋄t 〉 = X

⋄
(t) ≥ X(t) = 〈1, νt〉.

Finally, note that when λ(·) ≡ λ ∈ [0, 1], by property 1 we see that for t ∈ [0, τ1),
〈1, νt〉 equals the right-hand side of (6.3). Thus (6.3) follows immediately from
(6.2). �

The result of Theorem 3.9(1) now follows from Proposition 6.1(2). We now turn
to the proof of Theorem 3.9(2), which involves a comparison of the measure-valued
function {νs}, which is the solution of the age equation corresponding to ν0 and K,
with another “reference” measure-valued function {πs} that solves the age equation
associated with an initial condition of the form π0 = νT for some T < ∞, and the
function Z defined in (6.5) below. Although we do not explicitly use this below,
the reference function {πs} has the property that its total mass remains constant
for all times or, equivalently, viewing Z as the cumulative entry into service in
a reference fluid server system, that the cumulative entry equals the cumulative
departures in that system at all times. This makes the long-time behavior of the
reference function {πs} easier to analyze. First, in Lemma 6.2, it is shown that
when 〈1, νT 〉 = 1, πs converges weakly to ν∗ as s → ∞. Then, in Lemma 6.3,
an estimate is obtained which is used in the proof of Theorem 3.9(2) to show that
the difference between the original function {νs} and the reference function {πs}
vanishes as s→ ∞.

Recall that U is the renewal function associated with the service distribution
that has cumulative distribution function G, and let u denote its density, which
exists since G has a density (see Proposition 2.7 of Section V in [1]).

Lemma 6.2. Given π0 ∈ M≤1[0,M), suppose Z ∈ I0[0,∞) and {πt} ∈ DMF
[0,∞)

are defined as follows:

(6.5) Z(t)
.
=

∫

[0,t]

(

∫

[0,M)

G(x+ t− s) −G(x)

1 −G(x)
π0(dx)

)

dU(s), t ∈ [0,∞),

and, for f ∈ Cb[0,M) and t ∈ [0,∞),

(6.6) 〈f, πt〉 =

∫

[0,M)

f(x+t)
1 −G(x+ t)

1 −G(x)
π0(dx) +

∫

[0,t]

f(t−s)(1−G(t−s)) dZ(s).

Then for every f ∈ Cb[0,M),

(6.7) lim
t→∞

〈f, πt〉 = 〈1, π0〉〈f, ν∗〉.

Proof. It is easy to see that Z is absolutely continuous with density

(6.8)
dZ

dt
(t) =

∫ t

0

(

∫

[0,M)

g(x+ t− s)

1 −G(x)
π0(dx)

)

u(s) ds, a.e. t ∈ [0,∞).

Indeed, define

Y (t)
.
=

∫

[0,M)

G(x+ t) −G(x)

1 −G(x)
π0(dx), t ∈ [0,∞).
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and observe that the Lebesgue-Stieltjes measure dZ on [0,∞) is the convolution
of the renewal measure U with the Lebesgue-Stieltjes measure dY . Moreover, by
Fubini’s theorem, for t ∈ [0,∞),

Y (t) =

∫

[0,M)

(∫ t

0

g(x+ s)

1 −G(x)
ds

)

π0(dx) =

∫ t

0

(

∫

[0,M)

g(x+ s)

1 −G(x)
π0(dx)

)

ds,

which shows that dY is absolutely continuous with respect to Lebesgue measure
and has density y(·) .

=
∫

[0,M)
g(x+ ·)/(1−G(x))π0(dx). Since dU is also absolutely

continuous with density u, it follows that (see, for example, Problem 5 of Chapter
7 of [23]) dZ is also absolutely continuous with respect to Lebesgue measure, with
density dZ/dt at t equal to the convolution of the functions y with u on [0, t], for
almost every t ∈ [0,∞). This proves (6.8).

Next, let α̃ be the backward recurrence time process associated with a renewal
process that has interrenewal distribution G and, for x ∈ [0,M), let P̃x be the law

of α̃ conditioned on α̃(0) = x, let Ẽx denote the corresponding expectation and for

any µ ∈ M≤1[0,M), let Ẽµ[·] .=
∫

[0,M)
Ẽx[·]µ(dx). We now show that

(6.9) 〈f, πt〉 = Ẽπ0
[f(α̃t)], f ∈ Cb(R+), t ∈ [0,∞).

Indeed, it is well-known (see Proposition 1.5 and Example 2.1 of Chapter V in [1])

that {α̃s} is a strong Markov process and that, for f ∈ Cb(R+), Ẽ0[f(α̃t)] satisfies
the renewal equation

Ẽ0[f(α̃t)] = (1 −G(t))f(t) +

∫ t

0

Ẽ0[f(α̃t−s)]dG(s), t ∈ [0,∞),

and hence (see Theorem 2.4 of Chapter V in [1]) admits the representation

Ẽ0[f(α̃t)] =

∫ t

0

(1 −G(t− s))f(t− s)u(s)ds = (1 −G)f ⋆ u(t), t ∈ [0,∞).

Here, for any two functions f1 and f2, f1⋆f2 denotes the convolution of f1 and f2 on
[0, t]. By standard renewal theory (see (3.1) on page 116 of [1]), if βs is the forward
recurrence time at s ≥ 0, then P(β0 > u|α̃0 = x) = (1 − G(x + u))/(1 − G(x)).
Moreover, α̃t = α̃0 + t on the event {β0 > t} and, conditioned on β0 ∈ (s, s+ ds),

α̃t under P̃x has the same distribution as α̃t−s under P̃0. Therefore, for x ∈ [0,M)
and f ∈ Cb(R+),

Ẽx[f(α̃t)] =
1 −G(x+ t)

1 −G(x)
f(x+ t) +

∫ t

0

Ẽ0[f(α̃t−s)]
g(x+ s)

1 −G(x)
ds,(6.10)

and therefore

Ẽπ0
[f(α̃t)] =

∫

[0,M)

1 −G(x+ t)

1 −G(x)
f(x+ t)π0(dx)

+

∫

[0,M)

(∫ t

0

Ẽ0[f(α̃t−s)]
g(x+ s)

1 −G(x)
ds

)

π0(dx)

=

∫

[0,M)

1 −G(x+ t)

1 −G(x)
f(x+ t)π0(dx)

+

∫ t

0

(

∫

[0,M)

g(x+ s)

1 −G(x)
π0(dx)

)

((1 −G)f ⋆ u) (t− s) ds.
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However, using (6.8), it is clear that the last term above equals

y ⋆ ((1 −G)f ⋆ u)(t) = (1 −G)f ⋆ (y ⋆ u) (t) = (1 −G)f ⋆
dZ

dt
(t),

which is equal to the last term in (6.6), and therefore (6.9) holds.
On the other hand, by the Renewal Theorem (see (4.5) of Theorem 4.3 of Chap-

ter V in [1]), for every x ∈ [0,M), limt→∞ Ẽx[f(α̃t)] = 〈f, ν∗〉 and therefore

limt→∞〈f, πt〉 = limt→∞ Ẽπ0
[f(α̃t)] = 〈1, π0〉〈f, ν∗〉, which is (6.7). �

Lemma 6.3. If the service distribution has a finite second moment, then given any
ε > 0, there exists Tε ∈ (0,∞) such that

(6.11)

∫

[0,t]

(∫ ∞

T+t−s

(1 −G(r)) dr

)

U(ds) ≤ ε for all T ≥ Tε.

Proof. Since the service distribution has a finite second moment, it follows that
∫

[0,M)
r(1−G(r)) <∞ and so there exists T̃ε <∞ (which we can always choose to

be larger than M if M <∞) such that

(6.12)

∫ ∞

T

r(1 −G(r)) dr ≤ ε

2
, T ≥ T̃ε.

Now, for any T <∞, we have
∫

[0,t]

(∫ ∞

T+t−s

(1 −G(r)) dr

)

U(ds)

=

∫ ∞

T

(

∫

[(T+t−r),t]

U(ds)

)

(1 −G(r)) dr

=

∫ T+t

T

(1 −G(r))(U(t) − U((T + t− r)) dr + U(t)

∫ ∞

T+t

(1 −G(r)) dr,

We shall estimate the two terms on the last line above separately. Since G has a
finite second moment, by Lorden’s inequality (see Proposition V.6.2 of [1]) and the
fact that

∫

x dG(x), which is the mean time between renewals, equals 1, it follows
that U(t) − t is non negative and bounded by a constant, that we shall denote by
B. Using this, along with the inequality U(t) − U(t− r) ≤ U(r) for any 0 ≤ r ≤ t,
the first term can be bounded as follows: for T ≥ B,

∫ T+t

T

(1 −G(r))(U(t) − U(T + t− r)) dr

=

∫ t

0

(1 −G(r + T ))(U(t) − U(t− r)) dr

≤
∫ t

0

(1 −G(r + T ))U(r) dr

≤
∫ t

0

(1 −G(r + T ))(r +B) dr

≤
∫ t

0

(1 −G(r + T ))(r + T ) dr

≤
∫ ∞

T

r(1 −G(r)) dr.
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As for the second term, we have for T ≥ B,

U(t)

∫ ∞

T+t

(1 −G(r)) dr ≤ (t+B)

∫ ∞

T+t

(1 −G(r)) dr ≤ (t+ T )

∫ ∞

T+t

(1 −G(r)) dr

≤
∫ ∞

T+t

r(1 −G(r)) dr

≤
∫ ∞

T

r(1 −G(r)) dr.

The last three displays, when combined with (6.12), show that the result holds with

Tε = max(B, T̃ε). �

Proof of Theorem 3.9. The first statement of Theorem 3.9 follows from Proposition
6.1(2). For the second statement of the theorem, consider an arbitrary initial
condition of the form (id,X(0), ν0) ∈ S0, let (X, ν) be the unique solution to the
associated fluid equations (which exists by Theorem 3.7) and let K and D be the
related processes defined in (3.8) and (3.9), respectively. Since E = id is absolutely
continuous, by Theorem 3.5 K is also absolutely continuous, with derivative κ that
satisfies (3.12). Moreover, by Proposition 6.1(3) and the fact that 〈1, νt〉 ≤ 1 for
all t ∈ [0,∞), shows that 〈1, νt〉 → 1 as t→ ∞. We now consider the following two
mutually exhaustive cases.
Case 1. There exists T ′ ∈ (0,∞) such that 〈1, νt〉 < 1 for all t ≥ T ′.
In this case, X(t) < 1 for all t ≥ T ′. Therefore, by (3.12) it follows that κ(t) = λ = 1
for all t ≥ T ′. As a result, by Lemma 3.4 and (3.11), for any r ≥ 0, we have

〈f, νT ′+r〉 =

∫

[0,M)

f(x+ r)
1 −G(x+ r)

1 −G(x)
νT ′(dx) +

∫ r

0

f(r − s)(1 −G(r − s)) ds.

Since f is uniformly bounded on [0,∞) and for every x ∈ (0,∞), (1 − G(x +
r))/(1 − G(x)) → 0 as r → ∞, by the Bounded Convergence Theorem, the first
term converges to zero as r → ∞. On the other hand, the second term trivially
converges to

∫∞

0
f(x)(1 − G(x)) dx = 〈f, ν∗〉 as r → ∞. Since limt→∞〈f, νt〉 =

limr→infty〈f, νT ′+r〉, this completes the proof of the theorem in this case.

Case 2. Given any T ′ <∞, there exists T > T ′ such that 〈1, νT 〉 = 1.
Fix ε > 0. By Lemma 6.3, there exists Tε < ∞ such that the estimate (6.11)
holds for all T ≥ Tε. Choose T ≥ Tε such that 〈1, νT 〉 = 1 (which exists by the
case assumption). Let π0

.
= νT and let Z be defined as in Lemma 6.2. By the

representation (4.6) for K given in Corollary 4.4 and the non-anticipative property
of Lemma 3.4, it then follows that

(6.13)

K
[T ]

(t) =

∫

[0,t]

(〈1, νT+t−s〉 − 〈1, νT 〉) U(ds)

+

∫

[0,t]

(

∫

[0,M)

G(x+ t− s) −G(x)

1 −G(x)
νT (dx)

)

U(ds),

where recall K
[T ]

(·) = K(T + ·). On the other hand, the comparison property (6.2)
in Proposition 6.1(3) shows that for every 0 ≤ s ≤ t,

0 ≤ 〈1, νT 〉 − 〈1, νT+t−s〉 = 1 − 〈1, νT+t−s〉 ≤
∫ ∞

T+t−s

(1 −G(r)) dr.



68 HAYA KASPI AND KAVITA RAMANAN

As a result, comparing the expression for Z given in (6.5) with that for K
[T ]

in
(6.13), and using the last inequality and the estimate (6.11), we obtain for every
t ∈ [0,∞),

0 ≤ K
[T ]

(t) − Z(t) =

∫

[0,t]

(〈1, νT 〉 − 〈1, νT+t−s〉) U(ds)(6.14)

≤
∫

[0,t]

(∫ ∞

T+t−s

(1 −G(r)) dr

)

U(ds) ≤ ε.

Now, Lemma 3.4 and equation (3.11) show that for f ∈ Cb(R+), 〈f, νT+t〉 is equal
to the right-hand side of the solution (4.3) to the age equation, but with ν0 and Z

replaced by νT andK
[T ]

, respectively, while (6.6) shows that 〈f, πt〉 equals the right-
hand side of (4.3), but with ν0 replaced by νT and Z as defined above. Therefore,
by Lemma 4.5 and (6.14), we have for every f ∈ Cb[0,∞),

sup
t∈[0,∞)

|〈f, νT+t〉 − 〈f, πt〉| ≤ Cf sup
t∈[0,∞)

|KT
(t) − Z(t)| ≤ Cfε,

where Cf = 2 ‖f‖∞ + ‖f ′‖∞ <∞. As an immediate consequence, we have

lim sup
t→∞

|〈f, νt〉 − 〈f, πt〉| ≤ Cfε.

When combined with (6.7) of Lemma 6.2, this yields

lim sup
t→∞

|〈f, νt〉 − 〈f, ν∗〉| ≤ lim sup
t→∞

|〈f, νt〉 − 〈f, πt〉|

+ lim sup
t→∞

|〈f, πt〉 − 〈f, ν∗〉| ≤ Cfε.

Since ε > 0 is arbitrary, this proves that νt
w→ ν∗ in Case 2 as well. This completes

the proof of the theorem. �
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