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1 Introduction

1.1 Background and Motivation

Large deviations is an asymptotic theory that is useful for obtaining both
quantitative and qualitative insight into the probabilities of rare events. The
theory typically expresses the exponential decay rate (or rate function) of the
probability of a rare event in terms of the solution to an associated variational
problem. In such situations, the minimizer of the variational problem pro-
vides insight into the most likely behavior of the system that leads to the rare
event [18]. In the context of queueing networks, this knowledge can be useful
for designing mechanisms that minimize the probabilities of undesirable rare
events such as buffer overflows [32]. Identification of the minimizer is also
useful for importance sampling methods that estimate the actual probabili-
ties of the rare events, and not just their log equivalents, through simulation
(see, for example, [5, 10, 17, 20, 30] and references therein).

Queueing networks pose a significant challenge to large deviations theory
due to the fact that they exhibit discontinuities in the transition rates at the
boundaries of the state space. Despite some recent progress in extending the
classical theory to handle discontinuities [11, 13, 22, 28], there are still many
situations of practical interest where even the existence of a large deviation
principle has not been shown, let alone the explicit form of the rate function
identified or probabilities of specific rare events computed. A majority of
the explicit results are confined to one or two dimensions [1, 14, 29, 31, 33].
Jackson networks are more tractable due to the fact that they have a known
product-form stationary distribution [23, 24]. Despite this simplicity, an
explicit expression for the local large deviation rate function for Jackson
queueing networks was only recently obtained in [22]. The result in [22] yields
expressions for the exponential decay rates of probabilities of a large class of
rare events associated with Jackson networks in terms of variational problems
involving the local rate function. However, the solution of these variational
problems to identify the associated minimizing trajectories appears to be a
rather difficult task in many cases. In particular, explicit identification of the
minimizer of the variational problem that characterizes the tail probabilities
of the queue lengths appears to be rather hard for dimensions greater than
two.

In this work we overcome these difficulties in the special case of Jack-
son single server networks by combining two techniques. The first is to use
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the partial continuity of the relation between network primitives and the
behavior of the underlying functional network model, which exists despite
the non-uniqueness in this relation. In contrast to a direct application of
large deviation principles for the Jackson queue length processes [22, 28],
this allows us to retain the connection to the network primitive processes.
The mentioned partial continuity was identified in [25], but only recently
strengthened to cover fluid limits of Jackson networks in [27]. The model
in [27] unifies discrete customer and fluid models, and therefore turns out to
be particularly well-suited for connecting the Markov chain describing the
Jackson network with the differential equations that capture the asymptoti-
cally most probable behavior, conditioned on large queue lengths at time 0,
as needed in this work.

The second technique is time reversal. For a single station with Poisson
arrivals at rate α and exponential service with rate µ > α, it is well known
that the large deviations minimizing path to overflow is obtained by exchang-
ing arrival and service rates [31]. In other words, the large deviation path
to reach a certain queue level is the time-reversal of the path the fluid limit
uses to drain to zero. In [31] a two-dimensional large deviations problem was
reduced to a one-dimensional problem, and time-reversal ideas were used to
identify minimizing large deviations paths. However, there have been rela-
tively few rigorous results in the multi-dimensional setting [2]. In our work
we define time reversal with respect to time 0 for fluid network primitives
and network behavior on the doubly infinite time interval. This general con-
struction allows us to exploit time reversal for the large deviation analysis in
the general n-dimensional case.

The developed techniques may potentially be applied to more general
multi-dimensional networks, e.g., Kelly or even generalized Jackson networks,
for which there are relatively few results. Indeed, our proof is independent
of dimension and, in contrast to [2], makes no explicit use of either the
specific form of the stationary distribution or the Markov property of the
queue length process in a Jackson network. Instead, we use a representation
of the large deviations optimization problem that is obtained using a kind
of contraction principle formulation, expressed in terms of the local rate
function of the primitive processes [26], much in the spirit of [16], rather
than the representation obtained in [22, 28], which is in terms of the local
rate function of the queue length processes. This enables us to identify the
most likely arrival, service and routing rates that lead to the build up a large
queue, and not just the most likely path of the queue itself.
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The heart of the proof lies in a reformulation of this large deviations op-
timization problem in terms of a “fluid limit” optimal control problem using
deterministic time reversal arguments, which are somewhat subtle due to
the presence of boundaries. The known exponential decay rate of the tails
of the stationary queue length distribution falls out as a consequence of our
analysis. We believe that this general philosophy is likely to have broader
applicability in identifying minimizing trajectories for large deviation prob-
lems with boundaries. Indeed, deterministic time reversal arguments have
also proved useful in the context of reflected diffusions in [16], where they
were used to identify minimizing large deviation paths for skew-symmetric
reflected Brownian motions. However, unlike here, the proof in [16] uses the
explicit form of the stationary distribution in order to identify the minimizing
trajectory, which is undesirable from the point of view of extending the tech-
nique to analyze more general networks for which the stationary distribution
is not known.

The outline of the paper is as follows. In Section 2, we first present a
model of the behavior of Jackson networks on the time interval R, which
includes cumulative arrival, service and routing processes. Section 3 con-
tains a summary of our main results. Roughly speaking, our main result
states that, conditioned on a given queue length at time 0, the sequence
of scaled queueing processes converge “exponentially fast” to an asymptotic
limit. An explicit description of the asymptotic limit is provided in Sec-
tion 3.1 and a rigorous statement of the main result, Theorem 7, is provided
in Section 3.2. An explicit example of the trajectory to overflow in a three
station network is provided in Section 3.3. The proof of the main result re-
lies on certain pathwise time-reversal arguments that may be of independent
interest. Specifically, a functional description of a time-reversed network is
provided in Section 4. Lastly, the large deviations analysis is carried out in
Section 5, culminating in the proof of Theorem 7 in Section 5.5.

1.2 Notation and Terminology

We first introduce some function spaces that will be used throughout the
paper. For c ∈ R, we use Dc to denote the set of right continuous paths F
from R to R that have finite left limits and satisfy lim|t|→∞ F (t)/t = c. We
let Ic denote the subset of non-decreasing paths in Dc. Moreover, for vectors
v ∈ R

n (respectively, matrices M ∈ R
n×n), we let Dv (respectively, DM)

be the space of vectors (respectively, matrices) of paths whose ith (respec-
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tively, (i, j)th) component lies in Dvi
(resp. DMi,j

), and analogously define
Iv (resp. IM). We equip these function spaces with the topology induced by
the quasi-linearly discounted uniform norm defined by

‖D‖ := sup
t∈R

|D(t)|

1 + |t|
. (1)

Product function spaces are equipped with the corresponding product topol-
ogy.

Function spaces will be equipped with the σ-algebra generated by the
family of one-dimensional projections. We will be interested in stochastic
processes defined on some probability space (Ω,F , P), whose paths lie in
function spaces of the type described above. Given some function space S,
by some abuse of notation, we will sometimes use the notation X ∈ S to
mean that the paths of the stochastic process X lie P-a.s. in S.

As a general convention, throughout the paper, we will use upper case
F to denote paths and, when the path is absolutely continuous, the corre-
sponding lower case f = Ḟ to denote a derivative of the path.

We abbreviate the set {1, . . . , n} by J , denote the indicator function of
a set M with 1M , use ⌊c⌋ to specify the largest element of Z smaller or equal
to c ∈ R, and let diag(v) be the diagonal matrix with diagonal entries taken
from the components of the vector v. Lastly, we let e ∈ R

n be the vector
having ones in each component and I := diag(e).

2 Jackson network model

We now introduce equations that describe the behavior of a single-server
Jackson network with n nodes on the time interval R. Let α ∈ R

n
+ denote

the vector of mean exogenous arrival rates, let µ ∈ R
n
+ represent the vector

of mean service rates, and let γ ∈ R
n×n
+ be the substochastic matrix that

specifies the routing rates. For j ∈ J , the value γ0,j ∈ R+ defined by

γ0,j := 1 −
∑

i∈J

γi,j (2)

is the mean rate at which customers that have completed service at queue j
leave the network. This setup is illustrated in Figure 1.
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queue i

service rate µi

queue j

service rate µj
· · · · · · · · ·

?

arrival

rate αi

?
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γ0,i := 1 −
∑n

h=1 γh,i

fraction γi,i

?

fraction γj,i

? ?

arrival
rate αj

?

fraction

γ0,j := 1 −
∑n

h=1 γh,j

fraction γj,j

?

fraction γi,j

?

Figure 1: Jackson network

We assume that γ has spectral radius strictly less than 1. Hence the
matrix I − γ has a non-negative inverse and the equation

λ = α + γλ (3)

has a unique solution given by λ = (I−γ)−1α, which defines the total arrival
rates at the queues (see, for example, [6]). We assume throughout this work
that all queues have non-zero total arrival rates and that the network is
stable, that is, the condition

0 < λ < µ

is satisfied. In particular, every component of µ is strictly positive and the
vector of traffic intensities ̺ ∈ R

n
+ defined by

̺i := λi/µi (4)

satisfies 0 < ̺ < e, where e is the vector that has a one in every component.
We now define the basic primitive processes describing the Jackson net-

work. For i ∈ J we let Ãi = (Ãi(t))t∈R be a Poisson counting process on R

with intensity αi that satisfies Ãi(0) = 0. The jump times of the process Ãi

describe the arrival times of exogenous customers to queue i. Similarly, we
let S̃i = (S̃i(t))t∈R be a Poisson counting process on R with intensity σi that
satisfies S̃i(0) = 0. For i ∈ J and j ∈ Z, the interval between the jth and
(j + 1)th jump times of the process S̃i specifies the service time of the jth
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customer at queue i. Moreover, let (R̂j,h)h∈Z be a sequence of i.i.d. {0, . . . , n}-

valued random variables with P(R̂j,0 = i) = γi,j describing the routing deci-
sions of node j. We let R̃j = (R̃1,j, . . . , R̃n,j)

T be the n-dimensional partial
sums process on R, in which for i ∈ J , the ith component (R̃i,j(t))t∈R is
defined by

R̃i,j(t) :=











∑⌊t⌋
h=1 1{R̂j,h=i}(h) if t ≥ 1,

0 if 0 ≤ t < 1,

−
∑0

h=⌊t⌋+1 1{R̂j,h=i}(h) if t < 0,

where 1M is the indicator function of the set M . The process R̃i,j describes
the cumulative number of customers routed from queue j to queue i. We
assume that the processes Ã1, . . . , Ãn, S̃1, . . . , S̃n, R̃1, . . . , R̃n are indepen-
dent. From the definition it immediately follows that the triple of network
primitives (Ã, S̃, R̃) lies in Iα×Iµ×Iγ (recall the function space terminology
given in Section 1.2).

The queue lengths process Q̃ associated with the network primitives is
best described in terms of certain auxiliary componentwise non-decreasing
network processes, X̃, Z̃, Ỹ and B̃ that represent, respectively, the cumu-
lative number of arrivals to, the cumulative number of departures from, the
cumulative idle time at and the cumulative busy time at the different nodes
of the Jackson network as a function of time. In order to describe these pro-
cesses, we will find it convenient to first introduce the following, more general,
correspondence between network primitives (A, S,R) and the corresponding
network behavior (X,Z,Q, Y,B).

Definition 1 (Network Equations) The quintuple of paths (X,Z,Q, Y,B)
are said to solve the network equations for primitive paths (A, S,R) ∈ Iα ×
Iµ×Iγ if for i ∈ J , Xi, Zi, Yi and Bi are non-decreasing, Qi is non-negative,
limt→−∞ Qi(t)/t = 0 and the following set of coupled equations are satisfied:

Xi = Ai +
∑

j∈J

Ri,j ◦ Zj, (5)

Zi = Si ◦ Bi, (6)

Qi = Xi − Zi, (7)
∫ ∞

−∞

Qi(s)dYi(s) = 0, (8)

Bi = ι − Yi. (9)
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Given (A, S,R) ∈ Iα × Iµ × Iγ, we let Q(A, S,R) be the set of quintuples
(X,Z,Q, Y,B) satisfying equations (5)–(9).

The relations (5)–(9) are intuitive. For example, the first equation states
that the cumulative arrivals into queue i up to time t are the sum of the
customers that arrived into node i exogenously and the number of customers
routed from all other queues to queue i up to time t, while the equation (8)
states that a queue idles if and only if it is empty. Similar relations appear
in many models of the behavior of open, single-class queueing networks [8].

The network equations presented above are more general than required to
model a Jackson network as they allow the cumulative number of customers
to be negative (in order to model the infinite past) and fractional (in order to
permit scaling and to describe fluid limit trajectories). In particular, when
the network primitive S is taken to be continuous, then served customers
are counted partially in both the departures and queue lengths. This more
general formulation, on the entire real line R, was investigated in [27] and
will be used in our subsequent analysis.

We say that a random process Q in Dn is stationary if there exists a
probability measure ν on R

n
+ such that Q(t) ∼ ν for every t ∈ R.

Proposition 2 Given the Jackson network primitives (Ã, S̃, R̃) described
above, there exist stochastic processes X̃ ∈ Iλ, Z̃ ∈ Iλ, Q̃ ∈ D0, Ỹ ∈ Ie−̺,
and B̃ ∈ I̺ having the following three properties:

1. (X̃, Z̃, Q̃, Ỹ , B̃) ∈ Q(Ã, S̃, R̃) a.s.

2.
∫

R
1{Q̃i=0}dB̃i = 0 for every i ∈ J , a.s.

3. Q̃ is stationary.

Proof. The statement of this proposition is a direct consequence of Theo-
rem 5 in [27].

We will refer to the process (Ã, S̃, R̃, X̃, Z̃, Q̃, Ỹ , B̃) with the properties
given in Proposition 2 as the Jackson network process (associated with arrival
rates α, service rates µ and routing rates γ). It is not difficult to check that
Q̃ is a positively recurrent Markov process with countable state space Z

n
+ and

discontinuous transition probabilities at the boundary [23]. It is known [23]
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that the distribution ν of the stationary queue length process Q̃ is unique
and has the form

ν(κ) = P

(

Q̃(0) = κ
)

=
∏

i∈J

µi − λi

µi

(

λi

µi

)κi

.

for κ ∈ Z
n
+.

Definition 1 does not directly imply that condition 2 of Proposition 2
is satisfied because although the condition that an empty queue cannot be
busy is valid for discrete customer models in which the network primitives
increase purely through jumps, it is not satisfied in fluid models, in which
the network primitives are continuous and empty queues can be partially
loaded. This subtle difference is also captured in equations (2.2)–(2.3) and
conditions 2.7.A to 2.7.C in [7].

We close this section with a simple remark on the behavior of solutions to
the network equations associated with continuous and absolutely continuous
primitives, which we will be used in our subsequent analysis. For a proof, see
Theorem 1 and Lemma 16 in [27]. The last statement follows by integration.
We recall the general convention to use lower case f = Ḟ to denote the
(componentwise) derivative of an upper case absolutely continuous path F .

Remark 3 Any (A, S,R) ∈ Iα × Iµ × Iµ satisfies the following properties:

(a) If S is continuous, then ∅ 6= Q(A, S,R) ⊆ Iλ × Iλ ×D0 × Ie−̺ × I̺.

(b) If (A, S,R) is absolutely continuous, then every (X,Z,Q, Y,B) ∈
Q(A, S,R) is absolutely continuous and its derivatives satisfy for a.e.
t ∈ R and i ∈ J ,

xi(t) = ai(t) +
∑

j∈J

ri,j (Zj(t)) zj(t), bi(t) = 1 − yi(t),

zi(t) = si (Bi(t)) bi(t), Qi(t) > 0 ⇒ yi(t) = 0,
qi(t) = xi(t) − zi(t), Qi(t) = 0 ⇒ qi(t) = 0.

(10)

(c) Lastly, suppose that A, S,R,X,Z,B, Y are absolutely continuous and
nondecreasing, and Q is absolutely continuous and non-negative. If
these functions satisfy equations (10) for almost every t ∈ R and i ∈ J ,
and, in addition, for every i ∈ J ,

Xi(0) = Ai(0) +
∑

j∈J Ri,j(Zj(0)), Zi(0) = Si(Bi(0)),

Qi(0) = Xi(0) − Zi(0), Bi(0) = −Yi(0),
(11)

then (X,Z,Q, Y,B) ∈ Q(A, S,R).
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3 Main Result

In Section 3.2 we present the main result of the paper, Theorem 7, which
describes the asymptotically “most likely” way in which large stationary
queues build up. The dynamics of these paths is characterized by a set of
coupled ordinary differential equations, which is introduced in Section 3.1.
An illustrative example of the minimizing large deviations trajectory in a
3-node Jackson network is presented in Section 3.3.

3.1 Description of large deviation trajectories

We now introduce some ordinary differential equations that will be shown
in Theorem 7 to describe the most likely way in which the stationary queue
builds up to a given level Q0 ∈ R

n
+ at time 0 and then drains.

First, for N ⊆ J , we define the vectors ξ(N) and ζ(N) ∈ R
n
+ by

ξ(N) := α + γζ(N), (12)

ζi(N) :=

{

µi if i ∈ N ,
min{µi, ξi(N)} otherwise.

(13)

Here, ξi(N) represents the total arrival rate into queue i when the set of non-
empty queues in the system is N , while ζi(N) represents the total departure
rate from queue i when the set of non-empty queues is N . Next, for i, j ∈ J ,
we define

ᾱi := γ0,iλi, (14)

γ̄i,j := γj,i
λi

λj

, (15)

and let the vectors ξ̄(N) and ζ̄(N) ∈ R
n be defined as in (12) and (13),

respectively, but with α and γ replaced by ᾱ and γ̄, respectively. We note
that the values in (14) and (15), respectively, define arrival and routing rates
in the time-reversed network, which is again a Jackson network, as displayed
in Figure 2 (see, for example, [24]). The matrix γ̄ is substochastic and satisfies
the equation

λ = ᾱ + γ̄λ. (16)

The following properties of these vectors will be needed and are taken from
Lemma 16 of [26].
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queue i

service rate µi

queue j

service rate µj
· · · · · · · · ·

6fraction

γ̄0,i := αi/λi

6

arrival

rate ᾱi := γ0,iλi

6
fraction

γ̄i,i := γi,i

6

fraction

γ̄i,j := γj,iλi/λj

6fraction

γ̄0,j := αj/λj

6

arrival

rate ᾱj := γ0,jλj

6
fraction
γ̄j,j := γj,j

6

fraction γ̄j,i := γi,jλj/λi

Figure 2: Time-reversed network

Lemma 4 For every N ⊆ {1, . . . , n}, there exists a unique solution to the
equations (12) and (13). The solution satisfies ξ(N) ≥ λ and ζ(N) ≥ λ,
with equality holding if and only if N = ∅. For every N 6= ∅, there exists
i ∈ N such that ξi(N) − ζi(N) < 0. If M ⊆ N then ζ(M) ≤ ζ(N) and
ξ(M) ≤ ξ(N). Analogous properties hold for the vectors ξ̄(N) and ζ̄(N).

We define the absolutely continuous queue lengths function Q∗ through
the relations

Q∗(0) = Q0,
q∗(t) = ξ(N∗

t ) − ζ(N∗
t ), for almost all t > 0,

q∗(t) = ζ̄(N∗
t ) − ξ̄(N∗

t ), for almost all t < 0,
N∗

t = {i ∈ J : Q∗
i (t) > 0}, for all t ∈ R.

(17)

These coupled differential equations possess a piecewise linear solution which
can be calculated via the following algorithm:

1. Initialization: set t0 := 0, N0 := J and i = 1; define N∗
0 := {k ∈

J : Q0
k > 0} and Q∗(0) := Q0.

2. Define the vectors ξi := ξ(Ni−1), ζ i := ζ(Ni−1), ξ−i := ξ̄(N−i+1), ζ−i :=
ζ̄(N−i+1) by solving equations (12) and (13).

3. If there exists j ∈ J \ Ni−1 with Qi
j = 0 and ξi

j − ζ i
j ≤ 0, set ti :=

ti−1. Otherwise, define ti to be the solution of the linear minimization
problem

ti := sup
{

t ≥ ti−1 : Q(ti−1) + (ξi − ζ i)(t − ti−1) ≥ 0
}

.
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Similarly, if there exists j ∈ J \N−i+1 with Q−i
j = 0 and ξ−i

j − ζ−i
j ≤ 0,

set t−i := t−i+1. Otherwise, define t−i to be the solution of the linear
minimization problem

t−i := inf
{

t ≤ t−i+1 : Q(t−i+1) + (ξ−i − ζ−i)(t−i+1 − t) ≥ 0
}

.

4. If ti > ti−1, define N∗
t := Ni and Q∗(t) := Q(ti−1) + (ξi − ζ i)(t − ti−1)

for t ∈ [ti−1, ti), t 6= 0.

Likewise, if t−i < t−i+1, define N∗
t := N−i and Q∗(t) := Q(t−i+1) +

(ξ−i − ζ−i)(t−i+1 − t) for t ∈ (t−i, t−i+1], t 6= 0.

5. Set Qi := Qi−1 +(ξi−ζ i)(ti−ti−1) and Q−i := Q−i+1 +(ξ−i−ζ−i)(t−i−
t−i+1).

6. Choose j ∈ Ni−1 such that Qi
j = 0 and ξi

j ≤ ζ i
j, and define Ni :=

Ni−1 \ {j}.

Choose k ∈ N−i+1 such that Q−i
k = 0 and ξ−i

k ≤ ζ−i
k , and define N−i :=

N−i+1 \ {k}.

7. Termination: if i < n, increment i by one and repeat the algorithm,
starting from step 2. Otherwise, define N∗

t := ∅ and Q∗(t) := 0 for
t ∈ (−∞, t−n] ∪ [tn,∞), and terminate the algorithm.

In view of Lemma 4, the minimization problems in step 3 have unique
finite solutions, and step 3 ensures that j and k in step 6 exist. Step 4 ensures
that the middle two equations of display (17) are satisfied. In addition, if
j ∈ J \Ni for i ∈ {−n,−n+1, . . . , n} then Qi

j = 0 and ξi
j = ζ i

j. In particular,
the queue length vectors Q∗(t) and sets N∗

t are well defined for every t ∈ R

and satisfy the conditions of display (17). Furthermore, our next lemma
asserts that this solution is unique.

Lemma 5 The solution Q∗ ∈ D0 to the set of equations (17) is unique.
In addition, Q∗ is piecewise linear, non-negative and satisfies Q∗(t) = 0
whenever |t| is sufficiently large.

Proof. Suppose Q∗ is a solution to the set of equations (17). Along with
the definition of ξ and ζ given in (12) and (13), these conditions imply for
almost every t ∈ R+,

Q∗
i (−t) < 0 ⇒ i ∈ J \ N∗

−t ⇒ ζ̄i(N
∗
−t) ≤ ξ̄i(N

∗
−t) ⇒ q∗i (−t) ≤ 0.
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Hence, the inequality Q∗
i (−t) < 0 contradicts the property that Q∗

i (0) =
Q0

i ≥ 0. We conclude that Q∗(−t) ≥ 0 for every t ∈ R+.
For t ≥ 0, we define X(t) := Q0+ᾱt−(I−γ̄)diag(µ)t, Q(t) := Q∗(−t) and

Y (t) := (I − γ̄)−1(Q(t)−X(t)) in R
n. Clearly, Q(t) = X(t) + (I − γ̄)Y (t) =

Q∗(−t) ≥ 0 for t ≥ 0. Furthermore, Y is absolutely continuous and, by (17),
its derivatives satisfy

y(t) = (I − γ̄)−1
(

ξ̄(Nt) − ζ̄(Nt) − ᾱ + (I − γ̄)µ
)

= µ − ζ̄(Nt)

for almost all t ≥ 0, with Nt := {i ∈ J : Qi(t) > 0}. Since ζi(Nt) = µi if
Qi(t) > 0, this implies for every i ∈ J

∫

R+

Qi(t)dYi(t) =

∫

R+

Qi(t)yi(t) dt = 0.

Hence the pair (Q, Y ) is a solution to the Skorokhod problem for X with
reflection matrix I − γ̄ [21]. Since γ̄ has a spectral radius strictly less than
1, this problem is known to have a unique solution [21] (see also [15]). In
particular, the values Q∗(t), t ≤ 0, attained by any solution Q∗ to the equa-
tions (17), are uniquely determined. In a similar fashion, one can also prove
the uniqueness of Q∗ on R+ and, thus, on all of R.

Given the unique solution Q∗ to the set of equations (17), and the asso-
ciated processes N∗, ξ(N∗) and ζ(N∗), we define the absolutely continuous
functions A∗, S∗, R∗, X∗, Z∗, Y ∗, B∗ by setting their values at 0 to be

A∗(0) = 0, S∗(0) = 0,
R∗(0) = 0, X∗(0) = −γ(I − γ)−1Q0,
Z∗(0) = −(I − γ)−1Q0, Y ∗

i (0) = −diag(µ)−1Z∗(0),
B∗

i (0) = diag(µ)−1Z∗(0);

(18)

specifying the derivatives for a.e. t > 0 and i ∈ J , to be

a∗
i (t) = αi, s∗i (B

∗
i (t)) = µi,

r∗i,j(Z
∗
j (t)) = γi,j, x∗

i (t) = ξi(N
∗
t ),

z∗i (t) = ζi(N
∗
t ), y∗

i (t) = 1 − ζi(N
∗
t )/µi,

b∗i (t) = ζi(N
∗
t )/µi;

(19)

and defining the derivatives, for a.e. t < 0 and i ∈ J , to be

a∗
i (t) = ᾱiζ̄i(N

∗
t )/λi, s∗i (B

∗
i (t)) = µiξ̄i(N

∗
t )/ζ̄i(N

∗
t ),

r∗i,j(Z
∗
j (t)) = γ̄j,iζ̄i(N

∗
t )/ξ̄j(N

∗
t ), x∗

i (t) = ζ̄i(N
∗
t ),

z∗i (t) = ξ̄i(N
∗
t ), b∗i (t) = ζ̄i(N

∗
t )/µi,

y∗
i (t) = 1 − ζ̄i(N

∗
t )/µi.

(20)
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By Lemma 4 and the relation (3), we know that for every i ∈ J and t ∈ R,

ξi(∅) = ζi(∅) = λi ≤ ξi(N
∗
t ) ∧ ζi(N

∗
t ). (21)

Since λ > 0, this implies b∗(t) > 0 and z∗(t) > 0 for every t ∈ R, and so the
equations (18)–(20) have a unique solution. The intuition behind the form
of these differential equations is provided in Section 3.2 and an illustrative
example is presented in Section 3.3. We close this section by showing that
(X∗, Z∗, Q∗, Y ∗, B∗) is the unique solution to the network equations associ-
ated with (A∗, S∗, R∗).

Lemma 6 (A∗, S∗, R∗) ∈ Iα × Iµ × Iγ and Q(A∗, S∗, R∗) =
{(X∗, Z∗, Q∗, Y ∗, B∗)}.

Proof. In view of Lemma 5, N∗
t = ∅ for all |t| sufficiently large. From the

equalities in (21) and the relations for b∗ and z∗ specified in (19) and (20),
if follows that B∗ ∈ I̺, Z∗ ∈ Iλ and, since λ > 0 and ̺ > 0, that the ranges
of B∗ and Z∗ are both equal to R. Together, the last two statements ensure
that S∗ and R∗ are well-defined on all of R and that S∗ ∈ Iµ ∩ Cµ, A∗ ∈ Iα

and R∗ ∈ Iγ. This shows that (A∗, S∗, R∗) ∈ Iα × Iµ × Iγ .
We now show that (X∗, Z∗, Q∗, Y ∗, B∗) ∈ Q(A∗, S∗, R∗). Since

(A∗, S∗, R∗) is absolutely continuous by definition, by Remark 3(c), it suffices
to show that (10) and (11) are satisfied, with all quantities replaced by their
starred versions. By (18), A∗(0) = 0, R∗(0) = 0 and Z∗(0) = −(1−γ)−1Q0 ≤
0, where the latter inequality holds because Q0 = Q∗(0) ≥ 0 by Lemma 5
and (I − γ)−1 is non-negative, and by (19) and the fact that Z∗

j is non-
decreasing, we have r∗i,j(t) = γi,j for a.e. t ∈ [Z∗

j (0), 0]. Together, the last
two statements imply Ri,j(Z

∗
j (0)) = γi,jZ

∗
j (0) for every i, j ∈ J , which when

combined with the definition of X∗(0) in (18), shows that X∗(0) = γZ∗(0)
and Q∗(0) = Q0 = X∗(0) − Z∗(0). This immediately implies the two re-
lations on the left-hand side of (11). In a similar fashion, we also have
B∗(0) = diag(µ)−1Z∗(0) = −Y ∗(0) ≤ 0 and S∗(0) = 0 by (18) and s∗i (t) = µi

for a.e. t ∈ [B∗
i (0), 0] by (19). This implies S∗

i (B
∗
i (0) = µiB

∗
i (0) = Z∗

i (0) for
every i ∈ J , thus completing the proof of (11).

We now turn to establishing (10). The second, third and fifth relations
in (10) are an immediate consequence of equations (17), (19) and (20). The
first relation in (10) holds because, from the definition (12) of ξ(N∗) and the
definitions of a∗

i , r
∗
i,j, Z

∗
j and z∗j given in (19), we have for t ≥ 0

x∗
i (t) = ξi(N

∗
t ) = αi +

∑

i∈J

γi,jζj(N
∗
t ) = a∗

i (t) +
∑

i∈J

r∗i,j(Z
∗
j (t))z∗j (t),
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and, by (2), (14) and the definitions of a∗
i , r

∗
i,j, Z

∗
j and z∗j given in (20), we

have for t ≤ 0,

x∗
i (t) = ζ̄i(N

∗
t ) =

(

γ0,i +
∑

j∈J

γj,i

)

ζ̄i(N
∗
t ) =

ᾱi

λi

ζ̄i(N
∗
t ) +

∑

j∈J

γj,iζ̄i(N
∗
t )

= a∗
i (t) +

∑

j∈J

r∗i,j(Z
∗
j (t))z∗j (t).

Next, for t ∈ R such that Q∗
i (t) > 0, we have i ∈ N∗

t and hence, by (13),
ζi(N

∗
t ) = µi if t ≥ 0 and ζ̄i(N

∗
t ) = µi if t ≤ 0. From the definition of y∗

i given
in (19) and (20), it follows that y∗

i (t) = 0, and so the fourth relation in (10)
also follows, concluding the proof that (X∗, Z∗, Q∗, Y ∗, B∗) ∈ Q(A∗, S∗, R∗).

Since the components of (A∗, S∗, R∗) are piecewise linear, the statement
that (X∗, Z∗, Q∗, Y ∗, B∗) is the unique element of Q(A∗, S∗, R∗) follows from
Lemma 19 of [26]. The prerequisites therein follow from equations (3)
and (16). This completes the proof.

3.2 Statement of the Main Result

Recall the primitives and network processes (Ã, S̃, R̃, X̃, Z̃, Q̃, Ỹ , B̃) associ-
ated with the Jackson network, as described in Section 2. From Proposition
2, it immediately follows that (Ã, S̃, R̃, X̃, Z̃, Q̃, Ỹ , B̃) lies in the space

M := Iα × Iµ × Iγ × Iλ × Iλ ×D0 × Ie−̺ × I̺.

Let Γk be the ‘usual “functional law of large numbers” scaling transfor-
mation of functions i.e., we have

(ΓkD)(t) =
D(kt)

k
for t ∈ R.

We are now in a position to state the main result of this work.

Theorem 7 The sequence of scaled processes Γk(Ã, S̃, R̃, X̃, Z̃, Q̃, Ỹ , B̃),
conditioned on Q̃(0) ≥ kQ0, converges in distribution in M to the Dirac
measure of the path (A∗, S∗, R∗, X∗, Z∗, Q∗, Y ∗, B∗), as k → ∞. This con-
vergence is exponentially fast in the sense that for every ǫ > 0,

lim sup
k→∞

1

k
log P

(∥

∥

∥Γk(Ã, S̃, R̃, X̃, Z̃, Q̃, Ỹ , B̃)

− (S∗, A∗, R∗, X∗, Y ∗, B∗, Z∗, Q∗)‖ ≥ ǫ | Q̃(0) ≥ kQ0
)

< 0. (22)
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The proof of the theorem is presented in Section 5.5. In contrast to
the results in [2], our proof is carried out entirely within the framework of
large deviations theory. Also, the exponentially fast convergence stated in
Theorem 7 is stronger than the probabilistic bounds given in [2].

We note that the differential equations in Section 3.1, which describe the
asymptotic behavior on the positive time interval, simply characterize the
way in which a fluid Jackson network drains when it starts at level Q0 at
time 0, and arrival, service and routing rates are given by the mean rates α,
µ, and γ, respectively. This asymptotic conditional behavior is well known
from functional laws of large numbers and is referred to as the fluid limit
(see [6]). The important part in the theorem is the description of the asymp-
totic conditional behavior on the negative time interval. Here, the differential
equations describe the way in which queues build up, and as we will show
in Section 4, this is equivalent to the way in which a time-reversed queueing
network with arrival rates ᾱ, service rates µ and routing rates γ̄ drains from
a level Q0, but backwards in time. In this backwards description, the roles
of the departures from and entries to the network are interchanged.

3.3 A 3-dimensional Example

In order to illustrate the explicit nature of our results, we consider a Jackson
network with n = 3 queues, external arrival rate vector α = (2, 0, 0)T , service
rate vector µ = (3, 3, 5)T and routing matrix

γ =





0 0 0.7
0.8 0 0.2
0 0.4 0



 .

This network is depicted in Figure 3.
We calculated the paths A∗, S∗, R∗, X∗, Z∗, Q∗ Y ∗, B∗, for the target

queue lengths Q0 := (0, 0, 1)T via the algorithm specified in Section 3.1.
In Figure 4, we show the components of Q∗. Observe that three changes
of slope are required to build up the queue lengths Q0 at time zero and
another three changes of slopes are required to drain them. In Figure 5,
we plot the difference between the cumulative arrivals A∗

1 and the average
cumulative arrivals α1ι, and the difference between the cumulative number
of served customers S∗

1 ◦B∗
1 , S∗

2 ◦B∗
2 , S∗

3 ◦B∗
3 and the corresponding average

cumulative number of served customers λ1ι, λ2ι, λ3ι. Finally, in Figure 6, we
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queue 1

µ1 = 3

queue 2

µ2 = 3

queue 3

µ3 = 5

?

α1 = 2

?γ0,1 = 0.2 ?γ0,2 = 0.6 ?γ0,3 = 0.1

-
γ2,1 = 0.8

-
γ3,2 = 0.4

γ1,3 = 0.7

?

γ2,3 = 0.2

6

Figure 3: Example network
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Figure 5: Difference of cumulative external arrivals and number of served
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illustrate the difference between the cumulative routing decisions R∗
1,2 ◦ S∗

2 ◦
B∗

2 , R∗
2,3 ◦S∗

3 ◦B∗
3 , R∗

3,1 ◦S∗
1 ◦B∗

1 , R∗
3,2 ◦S∗

2 ◦B∗
2 and the corresponding average

cumulative routing decisions γ1,2λ2ι, γ2,3λ3ι, γ3,1λ1ι, γ3,2λ2ι. We note that
after time 0, these differences are zero.

This example shows that a coincidence of a complicated pattern of devi-
ations from the mean behavior of the arrival, service and routing processes
characterizes the most likely way in which a large queue length at queue 3
builds up. Our results permit the explicit calculation of such patterns in
general Jackson networks.

4 Time-reversed network behavior

In (14)–(15) we introduced the parameters associated with the time-reversed
Jackson network. In this section, we define a more detailed, deterministic
time-reversal of the Jackson network at the pathwise, functional level. Specif-
ically, we show that for certain network primitive paths (A, S,R) and corre-
sponding network paths (X,Z,Q, Y,B) ∈ Q(A, S,R), we can associate cor-
responding time-reversed paths (Ā, S̄, R̄) and (X̄, Z̄, Q̄, Ȳ , B̄) ∈ Q(Ā, S̄, R̄).
The time-reversed network will be used to identify the most likely large de-
viation trajectories in Section 5.4. We start by defining a class of primitive
paths and associated network paths that are amenable to time-reversal.

Definition 8 (Reversibility) Any pair of network primitive paths
(A, S,R) ∈ Iα × Iµ × Iγ and associated network paths (X,Z,Q, Y,B) ∈
Q(A, S,R) are said to be reversible if and only if they satisfy the following
three properties:

(a) A, S and R are continuous;

(b) for every i ∈ J , the path

R0,i := ι −
∑

j∈J

Rj,i (23)

is non-decreasing;

(c) there exists a vector η ∈ R
n satisfying

Xi(ηi) = R0,i(Zi(0)) +
∑

j∈J

Rj,i(Zi(ηj)) for i ∈ J . (24)
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Given reversible network primitives (A, S,R) ∈ Iα × Iµ × Iγ, associated
network processes (X,Z,Q, Y,B) ∈ Q(A, S,R), and a vector η satisfying con-
dition (24), we now define the corresponding time-reversed primitive paths
(Ā, S̄, R̄) and associated network paths (X̄, Z̄, Q̄, Ȳ , B̄). The first property
that must be satisfied by the time-reversed paths, which justifies the nomen-
clature, is

Q̄(t) := Q(−t) (25)

for every t ∈ R. In addition, for i, j ∈ J and t ∈ R, we define

X̄i(t) := Xi(ηi) − Zi(−t), (26)

Z̄i(t) := Xi(ηi) − Xi(−t), (27)

R̄i,j(Z̄j(t)) := Rj,i(Zi(ηj)) − Rj,i(Zi(−t)), (28)

Āi(t) := Zi(0) − Zi(−t) −
∑

j∈J

Rj,i(Zi(0)) +
∑

j∈J

Rj,i(Zi(−t)), (29)

B̄i(t) := Bi(ηi) − Bi(−t), (30)

Ȳi(t) := t − B̄i(t), (31)

S̄i(B̄i(t)) := Z̄i(t). (32)

The following theorem establishes certain basic properties of the time-
reversed paths.

Theorem 9 Given reversible network primitive paths (A, S,R) ∈ Iα ×
Iµ × Iγ and network paths (X,Z,Q, Y,B) ∈ Q(A, S,R), the time-reversed
paths (Ā, S̄, R̄) and (X̄, Z̄, Q̄, Ȳ , B̄) are well-defined by equations (25)–(32).
Moreover, (Ā(0), S̄(0), R̄(0)) = (0, 0, 0), (Ā, S̄, R̄) ∈ Iᾱ × Iµ × Iγ̄ and
(X̄, Z̄, Q̄, Ȳ , B̄) ∈ Q(Ā, S̄, R̄) ∩ Iλ × Iλ ×D0 × Ie−̺ × I̺.

Proof. Since Definition 8(a) ensures that (A, S,R) is continuous, from
Remark 3(a), it follows that (X,Z,Q, Y,B) ∈ Iλ × Iλ × D0 × Ie−̺ × I̺.
From the definitions (25)–(27) and (29)–(31), it is clear that the processes
X̄, Z̄, Q̄, Ȳ , B̄ and Ā are well-defined and, moreover, that X̄, Z̄ ∈ Iλ, Q̄ ∈ D0,
Ȳ ∈ Ie−̺ and B̄ ∈ I̺. In addition, the equations (29) and (23) imply that
for i ∈ J ,

Āi(t) = R0,i(Zi(0)) − R0,i(Zi(−t)).

In turn, this implies that Ā(0) = 0 and, since R0,i ∈ Iγ0,i
and Zi ∈ Iλi

for
every i ∈ {1, . . . , n}, that Ā ∈ Iᾱ.
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We shall now argue that R̄ is well-defined by equation (28), satisfies
R̄(0) = 0 and lies in Iγ̄ . Fix i, j ∈ J . Since Z̄j is non-decreasing, it suffices
to show that for any s < t such that Z̄j(t) = Z̄j(s), we have

Rj,i(Zi(−s)) = Rj,i(Zi(−t)).

By (26) and (27), Z̄j(t) = Z̄j(s) implies that Xj(−s) = Xj(−t) and thus
the equality in the last display follows from the network equation (5) and
the fact that Aj, Rj,k and Zk, k ∈ J , are all non-decreasing. Thus R̄i,j is
well-defined. Moreover, since Z̄j(−ηj) = 0 by (27), we have

R̄i,j(0) = R̄i,j(Z̄j(−ηj)) = Rj,i(Zi(ηj)) − Rj,i(Zi(ηj)) = 0.

Since Rj,i ∈ Iγj,i
and Zi ∈ Iλ, it follows from (28) and the definition of γ̄

given in (15) that R̄ is an element of Iγ̄ .
We now turn to the definition of S̄. Fix i ∈ J , and let s < t be such

that B̄i(s) = B̄i(t). Then equations (30) and (6) imply Bi(−t) = Bi(−s)
and Zi(−t) = Zi(−s). By (9), this implies Yi is strictly increasing on
[−t,−s] which, along with the “complementarity condition” (8), implies that
Qi(−t) = Qi(−s) = 0. Therefore, by (5), Xi(−t) = Zi(−t) = Zi(−s) =
Xi(−s), and so equation (27) shows that Z̄i(t) = Z̄i(s). Thus S̄i is well-
defined by (32). Furthermore, (30), (32) and (27) together imply that
B̄i(−ηi) = 0 and so S̄i(0) = S̄i(B̄i(−ηi)) = Z̄i(−ηi) = 0. When combined
with the fact that Z̄ ∈ Iλ, B̄ ∈ I̺ and the definition (4) of ̺, it follows that
S̄ ∈ Iµ. Thus we have established the first statement of the theorem and
also shown that (Ā(0), S̄(0), R̄(0)) = (0, 0, 0) and (Ā, S̄, R̄) ∈ Iᾱ × Iµ × Iγ̄

and (X̄, Z̄, Q̄, Ȳ , B̄) ∈ Iλ × Iλ ×D0 × Ie−̺ × I̺.
It only remains to show that (X̄, Z̄, Q̄, Ȳ , B̄) ∈ Q(Ā, S̄, R̄). First, note

that, combining equations (26), (24), (23), (29) and (28), we obtain for i ∈ J
and t ∈ R,

X̄i(t) = Zi(0) − Zi(−t) −
∑

j∈J

Rj,i(Zi(0)) +
∑

j∈J

Rj,i(Zi(ηj))

= Āi(t) +
∑

j∈J

R̄i,j(Z̄j(t)).

Moreover, as a result of equations (25)–(27) and (7), we have for i ∈ J and
t ∈ R,

Q̄i(t) = Qi(−t) = Xi(−t) − Zi(−t) = X̄i(t) − Z̄i(t).
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Since (31), (30) and (9) imply

Ȳi(t) = t − Bi(ηi) + Bi(−t) = Yi(ηi) − ηi − Yi(−t),

we obtain
∫ ∞

−∞

Q̄i(s)dȲi(s) =

∫ ∞

−∞

Qi(s)dYi(s) = 0,

where the last equality follows from (8). Comparing the last four equations
and equations (31) and (32) with the network equations of Definition 1, we see
that (X̄, Z̄, Q̄, Ȳ , B̄) ∈ Q(Ā, S̄, R̄) and the proof of the theorem is complete.

We now present a characterization of the derivatives of the time-reversed
quantities in the case when they are absolutely continuous, which is analogous
to the characterization given for the forward system in Remark 3(b).

Remark 10 Suppose the reversible network primitive paths (A, S,R) and
network paths (X,Z,Q, Y,B) are absolutely continuous. Then it follows
immediately from the definitions that the constructed time-reversed paths
(Ā, S̄, R̄) and (X̄, Z̄, Q̄, Ȳ , B̄) are also absolutely continuous and their deriva-
tives (represented by the lower case letters, as usual) satisfy for almost every
t ∈ R and every i, j ∈ J ,

āi(−t) = r0,i(Zi(t))zi(t), z̄i(−t) = xi(t),
s̄i(B̄i(−t))b̄i(−t) = xi(t), q̄i(−t) = −qi(t),

r̄i,j(Z̄j(−t))z̄j(−t) = rj,i(Zi(t))zi(t), ȳi(−t) = yi(t),
x̄i(−t) = zi(t), b̄i(−t) = bi(t).

(33)

Next we describe a standard situation in which paths are reversible.

Lemma 11 Suppose (A, S,R) ∈ Iα × Iµ × Iγ is continuous, R0,i is nonde-
creasing for every i ∈ J and (X,Z,Q, Y,B) ∈ Q(A, S,R) satisfies Q(t) = 0
for some t ≤ 0. Then the pair (A, S,R) and (X,Z,Q, Y,B) is reversible.

Proof. Clearly, we only have to show the existence of a vector η satisfying
condition (24) of Definition 8. We shall obtain η as the limit of a sequence
(ηk)k∈N that is constructed using an iterative procedure. We start with the
vector η1 := 0 and define, for k ∈ N and i ∈ J , the value ηk+1

i by

ηk+1
i := X−1

i

(

Zi(0) −
∑

j∈J

Rj,i(Zi(0)) +
∑

j∈J

Rj,i(Zi(η
k
j ))

)

, (34)
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where X−1
i denotes the left-continuous pseudo inverse of Xi defined by

X−1
i (c) := inf{t ∈ R: X(t) ≥ c}.

We first note that, for every i ∈ J , since X−1
i is non-decreasing and

Xi ≥ Zi by (7), we have

η2
i = X−1

i (Zi(0)) ≤ X−1
i (Xi(0)) = inf{t ∈ R: X(t) ≥ X(0)} ≤ 0 = η1

i .

Since Z and R are componentwise non-decreasing, definition (34) there-
fore implies by induction that the sequence (ηk)k∈N is componentwise non-
increasing.

Next, we show that this sequence is bounded below. Let t ≤ 0 be such
that Q(t) = 0, which exists by assumption. Then let θ be the vector defined
by θi := X−1

i (Xi(t)) for i ∈ J . For i ∈ J , since Xi(t) ≤ Xi(0), we have the
inequality

θi ≤ X−1
i (Xi(0)) ≤ 0 = η1

i .

This implies that θ ≤ ηk for k = 1. If ηk ≥ θ for some k ∈ N, then

Xi(η
k+1
i ) ≥ R0,i(Zi(0)) +

∑

j∈J

Rj,i(Zi(t))

= R0,i(Zi(0)) − R0,i(Zi(t)) + Xi(t) ≥ Xi(t)

for every i ∈ J and hence ηk+1 ≥ θ. (Here we used the fact that R0,i ◦ Zi

is non-decreasing.) By induction, we conclude that ηk ≥ θ for every k ∈ N.
Hence the sequence (ηk)k∈N converges to a vector η ∈ R

n. Applying the
function Xi to both sides of equation (34), using the convergence of the
sequence (ηk)k∈N, the identity Xi ◦ X−1

i = ι and the continuity of Z and R,
we conclude that η satisfies condition (24) for every i ∈ J .

The last result of this section connects the pathwise time-reversal de-
scribed above with the parameters ᾱ and γ̄ of the time-reversed Jackson
network introduced in (14) and (15).

Lemma 12 The network primitives (A∗, S∗, R∗) and network behavior
(X∗, Z∗, Q∗, Y ∗, B∗) are reversible. If (Ā∗, S̄∗, R̄∗) and (X̄∗, Z̄∗, Q̄∗, Ȳ ∗, B̄∗)
denotes the time-reversed primitives and network behavior, then for almost
every t ≥ 0 and every i ∈ J ,

ā∗
i (t) = ᾱi,

s̄∗i (B̄
∗(t)) = µi,

r̄∗i (Z̄
∗(t)) = γ̄i.
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Proof. We first show that for every i ∈ J , the function R∗
0,i := ι−

∑

j∈J R∗
j,i

is non-decreasing. The function R∗
0,i is absolutely continuous and for almost

all t < 0, definitions (23), (20) and (12) show that its derivative at Z∗
i (t)

satisfies

r∗0,i(Z
∗
i (t)) = 1 −

∑

j∈J

r∗j,i(Z
∗
i (t)) = 1 −

∑

j∈J

γ̄i,j ζ̄j(N
∗
t )

ξ̄i(N∗
t )

= 1 −
ξ̄i(N

∗
i ) − ᾱi

ξ̄i(N∗
i )

≥ 0.

Similarly, using (23) and (19), we have for almost all t ≥ 0,

r∗0,i(Z
∗
i (t)) = 1 −

∑

j∈J

r∗j,i(Z
∗
i (t)) = 1 −

∑

j∈J

γi,j ≥ 0,

where the latter follows from the assumption that γ is substochastic. This
shows that r∗0,i ◦Z∗

i is non-decreasing. Since the equation for z∗i in (20) shows
that Z∗

i is non-decreasing, this in turn implies that r∗0,i is non-decreasing.
When combined with Lemmas 5, 6 and 11, this establishes the first statement
of the lemma.

Combining the relation for ā in (33) with the definition (23) of r0,i, the
definition of z∗ and r∗j,i◦Z

∗
i given in (20) and the time-reversed version of (12),

we see that for a.e. t ≥ 0 and i ∈ J ,

ā∗
i (t) = z∗i (−t) −

∑

j∈J

r∗j,i(Z
∗
i (−t))z∗i (−t) = ξ̄i(N

∗
−t) −

∑

j∈J

γ̄i,jζj(N
∗
−t) = ᾱi.

Next, for i ∈ N∗
−t, we have bi(t) = 1 and hence the second equation in

(33), along with the definition of x∗ in (20) and the time-reversed version of
(13) shows that

s̄∗i (B̄
∗
i (t)) = x∗

i (−t) = ζ̄i(N
∗
−t) = µi.

For i 6∈ N∗
−t, we know that for a.e. t, Q∗

i (−t) = 0 and hence q∗i (−t) = 0 (since
Q∗ is absolutely continuous). In turn, due to the expressions for q∗ and s∗

in (20), this implies that x∗
i (t) = z∗i (t) and ξ̄i(N

∗
−t) = ζ̄i(N

∗
−t). Consequently,

using the second and sixth equations in (33), we obtain

s̄∗i (B̄
∗
i (t)) =

x∗
i (−t)

b∗i (−t)
=

z∗i (−t)

b∗i (−t)
= s∗i (B

∗
i (−t)) = µiξ̄i(N

∗
−t)/ζ̄i(N

∗
−t) = µi.

Thus the second equation of the lemma holds for all i ∈ J .
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Finally, for a.e. t ≥ 0 and i, j ≤ n, using the third and sixth relations in
(33), and the relations for x∗, z∗ and r∗ in (20), we conclude that

r̄∗i,j(Z̄
∗
j (t)) = r∗j,i(Zi(−t))z∗i (−t)/x∗

j(−t) = γ̄i,j,

thus completing the proof.

5 Large deviations

In this section we take advantage of the well known sample path large devi-
ation principle for the sequence (Γk(S̃, Ã, R̃))k∈N and the partial functional
continuity of the set-valued mapping Q in order to derive large deviation
bounds for sequence (Γk(S̃, Ã, R̃, X̃, B̃, Ỹ , Z̃, Q̃))k∈N.

We first recall some basic elements of large deviations theory [9]. An R+∪
{∞}-valued and lower semicontinuous functions is called a rate function. A
rate function is good if it has compact level sets. We will say that a sequence of
random paths (D̃k)k∈N in Dc satisfies a sample path large deviation principle
with rate function J : Dc → R+ ∪ {∞} if for every measurable set A ⊂ Dc

lim sup
k→∞

1

k
log P (D̃k ∈ A) ≤ − inf

D∈Ac
J(D)

and

lim inf
k→∞

1

k
log P (D̃k ∈ A) ≥ − inf

D∈Ao
J(D),

where Ac is the closure and Ao the interior of A with respect to the topology
induced by the norm (1). Sample path large deviation principles on product
path spaces are defined analogously.

In Section 5.1 we state the large deviation principle satisfied by the se-
quence of scaled Jackson network primitives and also introduce a correspond-
ing “pseudo local rate function”. In Section 5.3 we introduce a time-reversed
version of this local rate function. In Section 5.2, we use a type of contrac-
tion principle established in [27] to provide a variational characterization for
asymptotic probabilities related to the sequence of scaled Jackson network
processes (X̃, Z̃, Q̃, Ỹ , B̃). In Section 5.4 we use time-reversal arguments to
explicitly find the solution to this variational problem for the particular event
of a large queue build up at time 0. Finally, these elements are combined to
produce the proof of the main theorem in Section 5.5.
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5.1 LDP for Jackson Network Primitives

We first introduce some basic notation that is needed in order to state the
LDP for the sequence of scaled Jackson network primitives. For δ ≥ 0, we
define the function Φδ: R+ → R+ ∪ {∞} by

Φδ(δ
′) =







δ − δ′ if δ′ = 0,
∞ if δ = 0 and δ′ > 0,

δ − δ′ + δ′ log δ′

δ
otherwise.

For a vector π in R
n
+ satisfying

π0 := 1 −
∑

i∈J

πi ≥ 0,

we define the function Ψπ: R
n
+ → R+ ∪ {∞} by

Ψπ(π′) :=

{

∑n
i=0 π′

i log
π′

i

πi
if π′

0 := 1 −
∑

i∈J π′
i ≥ 0,

∞ otherwise

= Φ1−
P

i∈J
πi

(

1 −
∑

i∈J

π′
i

)

+
∑

i∈J

Φπi
(π′

i).

The sequence of scaled Jackson network primitives (Γk(Ã, S̃, R̃))k∈N satisfies
a sample path large deviation principle [26] with good rate function I: Iα ×
Iµ×Iγ → R+∪{∞} given by I(A, S,R) = ∞ if S(0) 6= 0, A(0) 6= 0, R(0) 6= 0
or one component of these network primitives is not absolutely continuous,
and

I(A, S,R) :=
∑

i∈J

∫

R

(Φαi
(ai(t)) + Φµi

(si(t)) + Ψγi
(ri(t))) dt,

otherwise. Here, γi (resp. ri) denotes the ith column vector of the matrix γ
(resp. r).

The rate function admits a more convenient representation, involving the
pseudo-local rate function Lα,µ,γ , which we define for µ′, α′ ∈ R

n
+, γ′ ∈ R

n
+

and β′ ∈ [0, 1]n, by

Lα,µ,γ(α
′, µ′, γ′, β′) :=

∑

i∈J

(Φαi
(α′

i) + β′
iΦµi

(µ′
i) + β′

iµ
′
iΨγi

(γ′
i)) .
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In addition, for absolutely continuous primitive paths (A, S,R), with S(0) =
0, A(0) = 0 and R(0) = 0 and a network path (X,Z,Q, Y,B) ∈ Q(A, S,R)
we can use a simple change of variables to rewrite the rate function I(A, S,R)
in the form

I(A, S,R) =

∫

R

Lα,µ,γ (a(t), s(B(t)), r(Z(t)), b(t)) dt

where for a matrix of functions M = (Mi,j)i,j∈J and a vector v = (vj)j∈J we
define the matrix M(v) by (M(v))i,j = Mi,j(vj).

For later use, we prove an elementary lemma about the zeros of the
“pseudo” local rate function Lα,µ,γ .

Lemma 13 Lα,µ,γ ≥ 0. Moreover, if (A, S,R) are absolutely continuous
network primitive paths and (X,Z,Q, Y,B) ∈ Q(A, S,R) then for a.e. t ∈ R

we have

Lα,µ,γ(a(t), s(B(t)), r(Z(t)), b(t)) = 0,

if and only if a(t) = α, s(B(t)) = µ and r(Z(t)) = γ.

Proof. Since (A, S,R) are absolutely continuous, by Remark 3(b),
(X,Z,Q, Y,B) ∈ Q(A, S,R) are also absolutely continuous and their deriva-
tives satisfy the set of equations (10) for a.e. t. Fix a t ∈ R such that the
equations (10) are satisfied and define α′ := a(t), µ′ := s(B(t)), γ′ = r(Z(t)),
β′ = b(t) and N := {i ∈ J : Qi(t) > 0}. Since αi is the only zero point
of Φαi

it immediately follows that α′
i = αi for every i ∈ J . Now, define

M := {i ∈ J : µ′
iβ

′
i = 0}. Then a similar argument (and the fact that clearly

β′
i 6= 0 for i 6∈ M) shows that µ′

i = µi and γi = γ′
i for i 6∈ M . Thus to prove

the lemma, it suffices to show that M = ∅.
From the fourth and fifth relations in (10), first notice that β′

i = 1 for
i ∈ N . By the same argument just invoked above, this implies that µ′

i = µi

for i ∈ N . In turn, since µ > 0, this implies M ∩ N = ∅. Next, observe that
the first, second, third and sixth relations in (10), when combined with the
fact that α = α′ and the definition of M , show that for i 6∈ N ,

µ′
iβ

′
i = α′

i +
∑

j∈J

γ′
i,jµ

′
jβ

′
j = αi +

∑

j∈J\M

γ′
i,jµ

′
jβ

′
j.
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Now suppose M is non-empty. Then applying the last equation for i ∈ M ⊆
J \N , the left-hand side is zero and so we conclude that αi = 0 and γ′

i,j = 0
for all i ∈ M and j 6∈ M . However, this contradicts the fact that

∞
∑

k=0

γkα = (I − γ)−1α = λ > 0,

and thus proves that M = ∅, concluding the proof of the lemma.

5.2 Variational Representation

If for every primitive path (A, S,R) ∈ Iα × Iµ × Iγ , there existed a unique
network path (X,Z,Q, Y,B) in Q(A, S,R) and the map from (A, S,R) to
(X,Z,Q, Y,B) were continuous, then we could use the so-called contraction
principle [9, 16] to obtain a large deviation principle for the scaled sequence
of network processes with a rate function given explicitly in terms of the rate
function I for the primitive processes. Although, we do not have precisely
this situation here, we can use the upper-semicontinuity of the map Q to
obtain a contraction-like principle.

Theorem 14 For every measurable set M ⊂ M

lim sup
k→∞

1

k
log P

(

Γk(Ã, S̃, R̃, X̃, Z̃, Q̃, Ỹ , B̃) ∈ M
)

≤ − inf
(S,A,R)∈Iα×Iµ×Iγ , {(A,S,R)}×Q(A,S,R)∩M 6=∅

I(A, S,R), (35)

lim inf
k→∞

1

k
log P

(

Γk(Ã, S̃, R̃, X̃, Z̃, Q̃, Ỹ , B̃) ∈ M
)

≥ − inf
(S,A,R)∈Iα×Iµ×Iγ , {(A,S,R)}×Q(A,S,R)⊂Mo

I(A, S,R), (36)

Proof. From Theorem 2 in [27], we know that the mapping Iα × (Iµ ∩Cµ)×
Iγ ∋ (A, S,R) 7→ {(A, S,R)} ×Q(A, S,R) is partially upper semicontinuous
in the sense that if (Ak, Sk, Rk)k∈N is a convergent sequence in Iα×(Iµ∩Cµ)×
Iγ with a continuous limit (A, S,R) and (Xk, Zk, Qk, Yk, Bk) ∈ Q(Ak, Sk, Rk)
for every k ∈ N, then there exists a subsequence of (Xk, Zk, Qk, Yk, Bk)k∈N

which converges and each such convergent subsequence converges to an ele-
ment of Q(A, S,R).
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For i ∈ J we define the processes Ŝi and Ẑi by linearly interpolating
the process S̃i, respectively, Z̃i between jumps. Furthermore we define Q̂ :=
X̃ − Ẑ. Using the properties of Theorem 2 one can verify (X̃, Ẑ, Q̂, Ỹ , B̃) ∈
Q(Ã, Ŝ, R̃) with probability 1. Note that the modified process Ŝ is continuous
and therefore the modified network primitives (Ã, Ŝ, R̃) fall into the range of
the indicated upper semicontinuity.

Using the mentioned upper semicontinuity, one can prove bounds (35)
and (36) with (Ã, S̃, R̃, X̃, Z̃, Q̃, Ỹ , B̃) replaced by (Ã, Ŝ, R̃, X̃, Ẑ, Q̂, Ỹ , B̃)
for measurable sets M ⊂ Iα × (Iµ ∩ Cµ) × Iγ × Iλ × Iλ × D0 × Ie−̺ × I̺

completely analogous as in the proof of Theorem 3 of [26].
By mimicking standard results of large deviations theory (e.g. the proof

of statement (a) in Lemma 4.1.5 of [9]), one can extend these bounds to be
valid for all measurable sets M of the larger space M.

The statement of the theorem now follows from the fact that sequences of
processes (Γk(Ã, S̃, R̃, X̃, Z̃, Q̃, Ỹ , B̃))k∈N and (Γk(Ã, Ŝ, R̃, X̃, Ẑ, Q̂, Ỹ , B̃))k∈N

are exponentially equivalent [9], since the distance of the kth elements of these
sequences is at most 1/k.

We will be interested in the particular case when M is the event that
the queue length at 0 is greater than a prescribed level Q0. We will solve
the above variational problem for this particular choice of M in Section 5.4.
The solution of this variational problem will be facilitated by a time-reversal
argument, which will make use of a time-reversed version of the pseudo local
rate function, which we introduce in the next section.

5.3 Time-reversal of the pseudo local rate function

Our objective in this section is to identify a time-reversed cost function Ī on
paths in the time-reversed network such that the minimum I-cost of inputs
(A, S,R) for which there exists a corresponding Q that reaches Q0 at time 0 in
the forward network is equal to the minimum Ī-cost over all inputs (Ā, S̄, R̄)
for which there exists a corresponding Q̄ that drains from Q0 to 0 in the
time-reversed network. This transforms the large deviations optimization
problem of finding the I-optimal trajectory that goes from 0 to Q0 (in the
forward network) into a fluid optimization problem of finding the Ī-optimal
trajectory that goes from Q0 to 0 (in the time-reversed network). The fact
that the latter class of optimization problems if often easier to solve provides
the motivation for trying to establish such an equivalence [16]. Indeed, in
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the proof of Theorem 15 we establish such an equivalence for the Jackson
network, and show that the minimizing trajectories can be identified easily
as a consequence. A major ingredient in this reformulation is the proof of
the local equivalence between forward and backward trajectories proved in
Theorem 15.

Theorem 15 Given any absolutely continuous network primitive paths
(A, S,R) and network paths (X,Z,Q, Y,B) ∈ Q(A, S,R) that are reversible,
and corresponding time reversed quantities (Ā, S̄, R̄) and (X̄, Z̄, Q̄, Ȳ , B̄), we
have for a.e. t ∈ R,

Lᾱ,µ,γ̄(ā(−t), s̄(B̄(−t)), r̄(Z̄(−t)), b̄(−t))

= Lα,µ,γ(a(t), s(B(t)), r(Z(t)), b(t)) −
∑

i∈J

qi(t) log
µi

λi

,

where Lᾱ,µ,γ̄ is defined as Lα,µ,γ but with the time-reversed mean rates.

Proof. We first derive a few identities that are required for the proof. The
definition (14) of ᾱ along with the traffic equation (3) yields the first identity

∑

i∈J

(ᾱi − αi) =
∑

i∈J

(γ0,iλi − αi) = 0. (37)

Now fix t ∈ R for which the network equations in (10) and (33) hold. In what
follows, for i, j ∈ {1, . . . , n} the functions si and ri,j are evaluated at Bi(t)
and Zj(t) respectively, while the functions a, x, y, b, z and q are evaluated at
t. Analogously, the functions s̄i and r̄i,j are evaluated at B̄i(−t) and Z̄j(−t)
respectively, while ā, x̄, ȳ, b̄, z̄ and q̄ are evaluated at −t. For notational
conciseness we will omit the arguments of the functions.

Define N := {i ∈ J : Qi > 0} and Nc := J \ N . Then i ∈ N implies
bi = 1 and i ∈ Nc implies qi = 0. This leads to the second identity,

∑

i∈J

ai −
∑

i∈J

r0,izi =
∑

i∈N

(xi − si) =
∑

i∈N

(xi − sibi) , (38)

which simply states that the net external arrival rate into the network minus
the net departure rate from the network should equal the net rate of increase
of the sum of all queues in the network.
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Next, we observe that Lᾱ,µ,γ̄(ā, s̄, r̄, b̄) is equal to

∑

i∈J

(

ᾱi − āi + āi log
āi

ᾱi

+ b̄iµi − b̄is̄i + b̄is̄i log
s̄i

µi

+
∑

j∈J

z̄ir̄j,i log
r̄j,i

γ̄j,i

+ z̄ir̄0,i log
r̄0,i

γ̄0,i

)

.

Adding and subtracting
∑

i∈J αi, using (37) and rewriting µ, γ̄, ā, s̄, r̄, b̄ in
terms of the corresponding forward network quantities as specified in Re-
mark 10, the above display can be shown to be equal to

∑

i∈J

(

αi − r0,izi + r0,izi log

(

r0,izi

γ0,iλi

)

+ biµi

)

−
∑

i∈Nc

bisi −
∑

i∈N

xi

+
∑

i∈Nc

bisi log
si

µi

+
∑

i∈N

xi log
xi

µi

+
∑

i,j∈J

ri,jzj log

(

ri,jzjλi

z̄iγi,jλj

)

+
∑

i∈J

ai log

(

aiλi

xiαi

)

.

Adding and subtracting
∑n

i=1 ai and rearranging terms, the above display
can be rewritten as
∑

i∈J

(αi − ai + biµi − bisi) +
∑

i,j∈J

ri,jzj log
ri,j

γi,j

+
∑

i∈J

r0,izi log
r0,i

γ0,i

+
∑

i∈J

ai log
ai

αi

+

(

∑

i∈J

ai +
∑

i∈N

(bisi − xi) −
∑

i∈J

r0izi

)

+
∑

i∈Nc

bisi log
si

µi

+
∑

i∈N

xi log
xi

µi

+
∑

i,j∈J

ri,jzj log

(

zjλi

xiλj

)

+
∑

i∈J

r0,izi log
zi

λi

+
∑

i∈J

ai log
λi

xi

.

Using (38), the definition of Lα,µ,γ and the fact that zj = xj for j ∈ Nc,
zj = sj for j ∈ N , and bi = 1 for i ∈ N this reduces to

Lα,µ,γ(a, s, r, b) −
∑

i∈N

si log
si

µi

+
∑

i∈N

xi log
xi

µi

+
∑

j∈Nc

∑

i∈J

ri,jxj log
xj

λj

+
∑

j∈N

∑

i∈J

ri,jsj log
sj

λj

+
∑

i∈Nc

r0,ixi log
xi

λi

+
∑

i∈N

r0,isi log
si

λi

+
∑

i,j∈J

ri,jzj log
λi

xi

+
∑

i∈J

ai log
λi

xi

.
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By Remark 3(b), qi = xi − si for i ∈ N , and so a rearrangement of terms in
the last display yields

Lα,µ,γ(a, s, r, b) +
∑

i∈N

qi log
λi

µi

+
∑

i∈N

(

r0,isi − si +
∑

j∈J

rj,isi

)

log
si

λi

+
∑

i∈J

(

ai +
∑

j∈J

ri,jzj −
∑

i∈Nc

r0,ixi −
∑

i∈N

xi −
∑

i∈Nc

∑

j∈J

rj,ixi

)

log
λi

xi

.

Observing that the last two terms are equal to zero due to the definition (23)
of r0,i and the first equation in (10), the last five displays can be combined
to obtain

Lᾱ,µ,γ̄(ā, s̄, r̄, b̄) = Lα,µ,γ(a, s, r, b) +
∑

i∈N

qi log
λi

µi

= Lα,µ,γ(a, s, r, b) −
∑

i∈J

qi log
µi

λi

,

where the last equation follows because qi = 0 for i ∈ Nc. This proves the
theorem.

5.4 Solution of a Variational Problem

We now solve the variational problem introduced in Section 5.2 for the par-
ticular event of the queue reaching a level Q0 at time 0. Indeed, the following
is the main result of this section.

Proposition 16 Only the network primitives (A∗, S∗, R∗) and network be-
havior (X∗, Z∗, Q∗, Y ∗, B∗) satisfy Q∗(0) ≥ Q0 and

I(A∗, S∗, R∗) = inf
(A, S, R) ∈ Iα × Iµ × Iγ such that

(X, Z, Q, B, Y ) ∈ Q(A, S, R)

exists with Q(0) ≥ Q0

I(A, S,R). (39)

The remainder of this section is devoted to the proof of this proposition.
We first establish two preliminary lemmas.
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Lemma 17 Suppose an absolutely continuous R ∈ Iγ satisfies R(0) = 0 and
for a.e. c ∈ R+ and j ∈ J there exists Nc ⊆ J such that

ri,j(c) = γ̄j,iζ̄i(Nc)/ξ̄j(Nc) for i ∈ J . (40)

Then vi ≤
∑

j∈J Ri,j(vj) implies v ≤ 0 for every v ∈ R
n.

Proof. Suppose there exists v ∈ R
n such that vi ≤

∑

j∈J Ri,j(vj) for i ∈ J
(otherwise the lemma is vacuously true) and let M := {i ∈ J : vi > 0}. We
will argue by contradiction to show that M = ∅. Indeed, suppose M 6= ∅.
Then condition (40), along with the time-reversed version of (12), implies

∑

i∈J

ri,j(c) =
∑

i∈J

γ̄j,iζ̄i(Nc)

ξ̄j(Nc)
= 1 −

ξ̄j(Nc) −
∑

i∈J

γ̄j,iζ̄i(Nc)

ξ̄j(Nc)
= 1 −

ᾱj

ξ̄j(Nc)
.

for every j ∈ J and a.e. c ≥ 0. Hence, there exists ε > 0 such that

∑

i∈J

Ri,j(c) ≤ c(1 − εᾱj)

for every c ∈ R+ and j ∈ J . As a result, we have

∑

i∈M

vi ≤
∑

i∈M

∑

j∈J

Ri,j(vj) =
∑

j∈J

∑

i∈M

Ri,j(vj) ≤
∑

j∈M

∑

i∈J

Ri,j(vj) ≤
∑

j∈M

vj(1−εᾱj),

where the second inequality uses the fact that Ri,j(vj) ≥ 0 for all j ∈ M and
Ri,j(vj) ≤ 0 for j 6∈ M . Since ε > 0 and ᾱ ≥ 0, this holds only if ᾱj = 0 for
every j ∈ M . However, because

∑∞
k=0 γ̄kᾱ = (I − γ̄)−1ᾱ = λ > 0 there is

a j′ ∈ M and i′ ∈ J \ M such that γ̄j′,i′ > 0. Then condition (40) implies
Ri′,j′(vj′) > 0, which leads to the contradiction (compare previous display)

∑

i∈M

vi ≤
∑

j∈J

∑

i∈M

Ri,j(vj) ≤
∑

j∈M

∑

i∈J

Ri,j(vj) − Ri′,j′(vj′) ≤
∑

j∈M

vj − Ri′,j′(vj′).

This shows that M = ∅ and concludes the proof.
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Lemma 18 If (A, S,R) ∈ Iα × Iµ × Iγ, (X,Z,Q, Y,B) ∈ Q(A, S,R) and
I(A, S,R) < ∞, then (A, S,R)and (X,Z,Q, Y,B) are reversible. If, in addi-
tion, Q(0) = Q0, time-reversed quantities are marked with a bar,

0 =

∫ ∞

0

Lα,µ,γ(a(t), s(B(t)), r(Z(t)), b(t)) dt

=

∫ 0

−∞

Lᾱ,µ,γ̄(ā(t), s̄(B̄(t)), r̄(Z̄(t)), b̄(t)) dt,

then (A, S,R,X,Z,Q, Y,B) = (A∗, S∗, R∗, X∗, Z∗, Q∗, Y ∗, B∗).

Proof. The first statement follows from statement 5 in Lemma 17 of [27]
and Lemma 11. For the second statement, first note that by Lemma 13, we
must have, for i ∈ J and a.e. t ≥ 0: s(B(t)) = µ, a(t) = α and ri(Zi(t)) = γi

and s̄(B̄(−t)) = µ, ā(−t) = ᾱ and r̄i(Z̄i(−t)) = γ̄i. As usual, we define
Nt := {i ∈ J : Qi(t) > 0} for t ∈ R. Now, the last four equations in (10)
along with the definitions (12) and (13) show that bi(t) = 1 if i 6∈ Nt and
xi(t) = zi(t) if i 6∈ Nt. Combining this with all the equations in (10), it is
straightforward to deduce that for i ∈ J and a.e. t ≥ 0,

xi(t) = ξi(Nt), zi(t) = ζi(Nt),
qi(t) = ξi(Nt) − ζi(Nt), yi(t) = 1 − ζi(Nt)/µi,
bi(t) = ζi(Nt)/µi.

Analogously, one can use Remark 10 to deduce that for a.e. t ≤ 0 and
i, j ∈ J ,

ai(t) = γ̄0,iζ̄i(Nt), si(Bi(t)) = µiξ̄i(Nt)/ζ̄i(Nt),
ri,j(Zj(t)) = γ̄j,iζ̄i(Nt), xi(t) = ζ̄i(Nt) − ξ̄i(Nt),

zi(t) = ξ̄i(Nt), qi(t) = ζ̄i(Nt) − ξ̄i(Nt),
yi(t) = 1 − ζ̄i(Nt)/µi, bi(t) = ζ̄i(Nt)/µi.

Now, since Q = X − Z ≥ 0 and A(0) = 0, we have for i ∈ J

Zi(0) ≤ Xi(0) =
∑

j∈J

Ri,j(Zj(0)).

Therefore Z(0) ≤ 0 by Lemma 17. Since R(0) = 0, we conclude that Ri,j(c) =
γi,jc for c ≥ Zj(0) and i, j ∈ J . This implies for i ∈ J

Zi(0) + Q0
i = Xi(0) =

∑

j∈J

γi,jZj(0)
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and hence

Z(0) = −(I − γ)−1Q0, B(0) = diag(µ)−1Z(0),
Y (0) = −B(0), X(0) = −γ(I − γ)−1Q0.

The above assertions, when combined, imply the statement of the lemma.

We are now in a position to complete the proof of Proposition 16.

Proof of Proposition 16. If (A, S,R) ∈ Iα×Iµ×Iγ are network primitives
with I(A, S,R) < ∞ and (X,Z,Q, Y,B) ∈ Q(A, S,R) satisfies Q(0) ≥ Q0

then this pair is reversible by Lemma 18. We let (Ā, S̄, R̄) and (X̄, Z̄, Q̄, Ȳ , B̄)
be the corresponding time reversed paths. From statement 6 of Lemma 17
in [27], we know lim|t|→∞ Q(t) = 0. Hence we can deduce from Theorem 15
that

I(A, S,R) =

∫ ∞

−∞

Lα,µ,γ(a(t), s(B(t), r(Z(t)), b(t)) dt

=

∫ 0

−∞

Lᾱ,µ,γ̄(ā(−t), s̄(B̄(−t)), r̄(Z̄(−t)), b̄(−t)) dt

+

∫ 0

−∞

∑

i∈J

qi(t) log
µi

λi

+

∫ ∞

0

Lα,µ,γ(a(t), s(B(t)), r(Z(t)), b(t)) dt ≥
∑

i∈J

Q0
i log

µi

λi

.

By Proposition 18, equality in the last display is equivalent to
(A, S,R,X,Z,Q, Y,B) = (A∗, S∗, R∗, X∗, Z∗, Q∗, Y ∗, B∗).

5.5 Proof of the Main Result

Proof of Theorem 7. By Lemma 6, Proposition 16, Proposition 2(1)
and a simple scaling argument, it follows that for every c > 1, the net-
work primitives (Γ1/cA

∗, Γ1/cS
∗, Γ1/cR

∗) give rise to the unique quintuple of
network paths (Γ1/cX

∗, Γ1/cZ
∗, Γ1/cQ

∗, Γ1/cY
∗, Γ1/cB

∗) ∈ Λα,µ,γ and satisfy
I(Γ1/cA

∗, Γ1/cS
∗, Γ1/cR

∗) = cI(A∗, S∗, R∗) and Γ1/cQ(0) > Q0. Hence the
lower bound (36) of Theorem 14 yields, for the open set

M := {(A, S,R,X,Z,Q, Y,B) ∈ M: Q(0) > Q0},
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the estimate

lim inf
k→∞

1

k
log P

(

Q̃(0) ≥ kQ0
)

≥ lim inf
k→∞

1

k
log P

(

Γk(Ã, S̃, R̃, X̃, Z̃, Q̃, Ỹ , B̃) ∈ M
)

≥ − inf
(A,S,R)∈Iα×Iµ×Iγ , {(A,S,R)}×Q(A,S,R)⊂M

I(A, S,R)

≥ − lim
c↓1

I(Γ1/cA
∗, Γ1/cS

∗, Γ1/cR
∗) = −I(A∗, S∗, R∗). (41)

On the other hand, for any fixed ε > 0, since the network primitives
(A∗, S∗, R∗) are the unique solution to the minimization problem (39) and
the rate function I has compact level sets we get from the large deviation
upper bound (35) of Theorem 14 applied to the closed set

M ′ :=

{

(A, S,R,X,Z,Q, Y,B) ∈ M: Q(0) ≥ Q0,
‖(A, S,R,X,Z,Q, Y,B) − (A∗, S∗, R∗, X∗, Z∗, Q∗, Y ∗, B∗)‖ ≥ ε

}

,

the estimate

lim sup
k→∞

1

k
log P

(

‖Γk(Ã, S̃, R̃, X̃, Z̃, Q̃, Ỹ , B̃)

−(A∗, S∗, R∗, X∗, Z∗, Q∗, Y ∗, B∗)‖ ≥ ε, Q̃(0) ≥ kQ0
)

= lim sup
k→∞

1

k
log P

(

Γk(Ã, S̃, R̃, X̃, Z̃, Q̃, Ỹ , B̃) ∈ M ′
)

≤ − inf
(A,S,R)∈Iα×Iµ×Iγ , {(A,S,R)}×Q(A,S,R)∩M ′ 6=∅

I(A, S,R)

< −I(A∗, S∗, R∗). (42)

Bounds (41) and (42) together imply estimate (22), which in turn implies
the weak convergence stated in Theorem 7 thus completing its proof.
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