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Abstract. A framework is introduced for the identification of controls for single-class time-
varying queueing networks that are asymptotically optimal in the so-called uniform acceleration
regime. A related, but simpler, first-order (or fluid) control problem is first formulated and, for a
class of performance measures that satisfy a certain continuity property, it is then shown that any
policy that is optimal for the fluid control problem is asymptotically optimal for the original network
problem. Examples of performance measures with this property are presented, and simulations im-
plementing proposed asymptotically optimal policies are presented. The use of directional derivatives
of the reflection map for solving fluid optimal control problems is also illustrated. This work serves
to complement a large body of literature on asymptotically optimal controls for time-homogeneous
networks.
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1. Introduction. Most real-world queueing systems evolve according to laws
that vary with time. The expository paper [27] outlines the applications of time-
varying stochastic networks to telecommunications. In the context of computer en-
gineering applications arise in the fields of power aware scheduling and temperature
aware scheduling (see, e.g., [2, 38, 39]), as well as the design of web servers (see,
e.g., [8]). For a broader range of applications pertaining to computer science, the
reader is directed to [18] and references therein. Examples of other applications can
be found in, e.g., [6, 17, 23, 37], while for work focusing on time-dependent phase-type
distributions one should consult [31, 32] and references therein.

The focal point of the present paper is the rigorous study of certain aspects of
stochastic optimal control of time-inhomogeneous queueing networks. In most cases,
an exact analytic solution is not available. Instead, we use an asymptotic analysis to
gain insight into the design of good controls. Specifically, we embed the actual system
into a sequence of systems with rates tending to infinity, and look for a sequence of
controls that are asymptotically optimal (in the sense to be described precisely in
Definition 3.1).

In many cases, the identification of a class of asymptotically optimal sequences of
controls is facilitated by first solving certain related, but simpler, first-order (or fluid)
and/or second-order control problems. The first-order problems arise from Functional
Strong Law of Large Numbers (or FSLLN, see, e.g., Theorem 2.1 of [25]) limits of the
original systems and lead to deterministic control problems. Second-order problems,
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additionally, take into account certain fluctuations around the FSLLN limits. In the
time-homogeneous case, the second-order approximation of a queueing network is
usually given by a reflected diffusion, leading to a single reflected diffusion control
problem.

The methodology of using fluid and diffusion control problems to identify asymp-
totically optimal controls for queueing networks is fairly well-developed in the time-
homogeneous setting. Historically, asymptotic limit theorems were first established
to shed insight into the performance of these networks under various scheduling disci-
plines. Inspired by these limit theorems, a “formal” limiting control problem was then
proposed (say, the Brownian control problem (BCP) for systems in heavy traffic; see,
e.g., [42] for references on this subject). Only subsequently were rigorous theorems
established in specific settings to link the solution of the limiting control problem to
the so-called pre-limit control problem (see [3, 4, 5] for examples). Other references
in this context include [12, 14, 29, 30, 28] for the use of fluid control problems and
[1, 19, 21, 24] for the use of diffusion control problems.

1.1. Time-inhomogeneous networks - performance analysis. Thus far,
the study of time-inhomogeneous networks has mainly concentrated on performance
analysis. The seminal paper of Mandelbaum and Massey [25] is the cornerstone of
the rigorous approach to the identification of both the first- and the second-order
approximations for the Mt/Mt/1 queue under the uniform acceleration regime. The
authors of [25] employ the theory of strong approximations (see, e.g., [9, 10, 16]) to de-
velop a Taylor-like expansion of sample paths of queue lengths, establishing a FSLLN
and a Functional Central Limit Theorem (FCLT). Furthermore, explicit forms of the
first-order (in the almost sure sense) and second-order (in the distributional sense)
approximations of the queue lengths are identified. Chapter 9 of [40] relaxes certain
technical assumptions posited in [25] and exhibits some more general results. An
off-shoot of the queue-length expansion developed in [25] is the study of the second-
order approximation term as a directional derivative of the one-sided reflection map
(in an appropriate topology on the path-space). With a view towards establishing
analogous approximations for networks with time-inhomogeneous arrival and service
rates, properties of directional derivatives of multi-dimensional reflection maps corre-
sponding to a general class of queueing networks were established in [26]. The article
[26] also contains an intuitive introduction into this theory, as well as an overview of
related references.

1.2. Time-inhomogeneous networks - optimal control. In the domain of
time-inhomogeneous networks, while heuristics for designing controls were proposed
by Newell [36], there is relatively little rigorous work. A noteworthy example of an
optimal control problem with a fluid model in the time-inhomogeneous setting is
given in [7], where the authors study an optimal resource allocation control problem
for a (stochastic) fluid model with multiple classes, and a controller who dynamically
schedules different classes in a system that experiences an overload. To the best
of the authors’ knowledge, there are no general results in the time-inhomogeneous
setting that rigorously show convergence of value functions of the pre-limit to the
value function of a limiting control problem. As mentioned above, even for the time-
homogeneous setting, a general theorem of this nature was obtained only relatively
recently [4, 5]. In fact, even a concept akin to the notion of fluid-scale asymptotic
optimality described in [28] for time-homogeneous networks appears not to have been
formulated in the time-inhomogeneous setting.

One of the main aims of this paper is to take a step towards developing a suitable
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methodology for asymptotic optimal control for time-inhomogeneous networks. In
this paper, we consider controls that are arrival and/or service rates in time-varying
single-class queueing networks. Our general goal is to determine if there is a systematic
way to design high-performance controls for a time-varying network by carrying out
an optimal control analysis of a related (fluid) approximation of the network. While
this philosophy is similar to that used for time-homogeneous networks, the nature of
the asymptotic approximation has to be modified so as to capture the time-varying
behaviour. In particular, the so-called uniform acceleration technique is used to embed
the particular queueing system into a sequence of systems which, once properly scaled,
converge to a deterministic fluid limit system in the strong sense. We refer to the
systems in this sequence with uniformly accelerated rates as the pre-limit systems.
With the view that optimal control problems for the fluid limit are typically more
tractable than for the pre-limit, we wish to answer the following question:

Can we characterize a broad class of performance measures for which the solution
of the fluid optimal control problem suffices to identify asymptotically optimal

sequences of controls?

The phrase “suffices to identify” above can be interpreted in many ways. For instance,
one may resolve to use exactly a fluid-optimal discipline when controlling the pre-limit
systems, one may try to formalize the fluid-optimal disciplines in terms of a state
dependent (feedback) rule and then use this rule to control the pre-limit systems, or
one may opt for a heuristic way to “tweak” fluid-optimal policies to perform well in
the pre-limit. We choose to focus on the simplest of the above-mentioned options,
i.e., we simply seek a characterization of the class of performance measures for which
the fluid-optimal disciplines are also asymptotically optimal. This characterization is
the main result of the present paper and is exhibited in Theorem 5.3.

While it is natural to expect that such a connection between the fluid and pre-limit
optimal control problems exists, in Section 7.2 we describe several natural situations
where this fails to hold. This underscores the need for a rigorous analysis to determine
when this intuition is indeed valid. We also emphasize that the task of identifying
a fluid-optimal policy is not always straightforward. One approach, exploiting the
results of [26] on the directional derivatives of the oblique reflection map (ORM),
is illustrated in Section 6.1.4. This calculus of variations type technique may be of
independent interest.

1.3. Outline of the paper. The paper is organized as follows: the general
stochastic optimal control problem of interest is presented in Section 2 and the notion
of asymptotically optimality is formulated in Section 3. The related fluid optimal
control problem is described in Section 4. The question of characterization we posed
earlier is formalized in Section 5 via the notion of fluid-optimizability of performance
measures, and our main results are stated and proved. Section 6 is dedicated to exam-
ples of relevant fluid-optimizable performance measures including aggregate Lipschitz
holding cost. Concluding remarks and, in particular, examples where the connection
between the fluid and original control problems fails to hold, are given in Section 7.
All auxiliary technical results are gathered in the Appendix.

1.4. Notation and technical periphernalia. The following (standard) nota-
tion will be used throughout the paper.

• R̄ = R ∪ {−∞,+∞};
• L0

+(Ω,F ,P) denotes the set of all (a.s.-equivalence classes of) nonnegative
random variables on the probability space (Ω,F ,P);
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• meas(·) denotes the Lebesgue measure on R;
• L1[0, T ] denotes the set of all integrable functions defined on [0, T ] (with

respect to the Lebesgue measure);
• L1

+[0, T ] denotes the set of all non-negative functions in L1[0, T ];
• C[0, T ] is the set of all continuous functions x : [0, T ]→ R;
• I : (L1[0, T ])k → (C[0, T ])k is the (integral) mapping defined by

It(f) =
(∫ t

0

f1(s)ds, . . . ,
∫ t

0

fk(s)ds
)

for t ∈ [0, T ]

with f = (f1, . . . , fk) ∈ (L1[0, T ])k;
• D denotes the set of all real-valued right-continuous functions on [0, T ] with

finite left limits at all points in (0, T ];
• D↑ denotes the subset of D containing all nondecreasing functions;
• D↑,f stands for the subset of D↑ containing functions with at most finitely

many jumps ;
• ‖·‖T , defined by ‖x‖T = supt∈[0,T ] |x(t)| for x ∈ D, is the uniform convergence

norm on the space D;
• B(Y ) denotes the Borel σ−algebra on the topological space Y .

For the sake of completeness, we provide the following definitions to be used in
the sequel:

Definition 1.1. Let R ∈ Rκ×κ have positive diagonal elements, and let x be in
Dκ. We say that a pair (z, l) ∈ Dκ × Dκ↑ solves the oblique reflection problem(ORP)
associated with the constraint matrix R, for the function x if x(0) = z(0), and if for
every t ∈ [0, T ],

(i) z(t) ≥ 0;
(ii) z(t) = x(t) +R l(t);

(iii)
∫ t

0
1[zi(s)>0] dl

i(s) = 0, for i = 1, . . . , κ.
If, given a matrix R, for every x ∈ Dκ, there exists a unique pair (z, l) as above, we
define the oblique reflection map(ORM) Γ : Dκ → Dκ as Γ(x) = z, for every x ∈ Dκ.
The existence and uniqueness of the ORM for a particular class of matrices R was
proved in the seminal paper [20] for continous functions. Those results can be di-
rectly extended to càdlàg functions to support the above definition (see, for example,
Theorems 2.1 in [13]). Further discussion of the ORM can be found in [26].

Remark 1.2. Depending on typographical convenience, we will use Zt and Z(t)
(to denote the value of a process Z at time t) interchangeably throughout the text.

2. Optimal Control of Time-Inhomogeneous, Single-Class Queueing
Networks. The main goal of the present paper is to elucidate the relationship be-
tween fluid optimality and asymptotic optimality (both to be defined precisely in the
sequel) in the case of single-class open time-varying queueing networks with a fixed
finite number κ of stations (nodes) and fixed routing dynamics, operated under the
FIFO service discipline. The primitive data and dynamical equations governing the
model are introduced in Sections 2.1 and 2.2. The class of performance measures
under consideration is described in Section 2.3.

2.1. Primitive data. Assuming that each station is initially empty and has
infinite waiting room, the dynamics of any such network are determined by a pair of
processes (E,S), where

• E = (E(i), i = 1, 2, . . . , κ) ∈ Dκ↑,f stands for the vector of (cumulative) exoge-
nous arrivals to each of the κ stations;
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• S = (S(i,j), i = 1, 2, . . . , κ, j = 1, 2, . . . , κ+1) ∈ Dκ
2+κ
↑,f denotes the κ× (κ+1)

matrix of (cumulative) potential service completions in the κ stations, i.e., for
all pairs of indices (i, j) ∈ 1, 2, . . . , κ2 the entry Sij in the matrix stands for
the process of (cumulative) potential services at the ith station that would be
routed to the jth station and, for j = κ+1, Si,κ+1 represents the (cumulative)
number of jobs that would complete service at the station i and leave the
network if the ith station were always busy.

In this paper, we focus on the case when E and S are constructed from Poisson point
processes (PPPs) with rates determined by the functions λ = (λ1, . . . , λk) ∈ L1

+[0, T ]κ

and µ = (µ1, µ2, . . . , µk) ∈ L1
+[0, T ]κ, and a “routing” matrix P = (pij ; 1 ≤ i, j ≤ κ)

in the manner described below. For a thorough and concise treatment of PPPs, the
reader should consult [22]. The component functions of λ represent the time-varying
rates of exogenous arrivals to their respective nodes, while the component functions
of µ correspond to the rates of potential services at each of the κ stations. Transitions
from a station i to another station j are not deterministic; they are governed by the
probabilities encoded in the matrix P = (pij ; 1 ≤ i, j ≤ κ) as follows: once a job is
completed at the ith station, it queues up at the jth station with probability pij . The
job leaves the network altogether with probability 1−

∑κ
j=1 pij . We assume that the

matrix P ∈ Rκ×κ has spectral radius strictly less than 1.
Remark 2.1. The above condition on P implies that the constraint matrix R

associated with the routing matrix P , in the sense of Remark 1.4 of [26], satisfies
the [H-R] condition of Definition 1.2 of [26]. This assumption on P yields the well-
definedness of the Oblique Reflection Problem (ORP) and Lipschitz continuity of the
reflection mapping associated with the routing matrix P . For more details, the reader
is directed to Theorem 3.1 of [26].

Specifically, suppose the primitive data (λ,µ, P ) are given, and let ζ = (ζ1, . . . , ζk)
and ξ = (ξ1, . . . , ξk) be independent vectors of mutually independent PPPs on the
domains S := [0, T ]× [0,∞) and S ′ := [0, T ]× [0,∞)× [0, 1], respectively, with mean
intensity measures dt× dx and dt× dx× dy. For each k ∈ {1, 2, . . . , κ}, the process
of exogenous arrivals to the kth station is given by

E
(k)
t = E

(k)
t (λ) = ζk{(s, x) : s ≤ t, x ≤ λk(s)}, for every t ∈ [0, T ]. (2.1)

Analogously, we model the potential service process at the kth station representing
the jobs that would transition on completion into the jth station as

S
(k,j)
t = S

(k,j)
t (µ) = ξk

{
(s, x, y) : s ≤ t, x ≤ µk(s),

j−1∑
i=1

pki < y ≤
j∑
i=1

pki

}
, (2.2)

and the jobs that would leave the network as

S
(k,κ+1)
t = S

(k,κ+1)
t (µ) = ξk

{
(s, x, y) : s ≤ t, x ≤ µk(s),

κ∑
i=1

pki < y ≤ 1
}
, (2.3)

for t ∈ [0, T ].
Remark 2.2.
(i) We assume that the routing matrix P is fixed throughout, and do not em-

phasize the dependence of the process S on P in the notation.
(ii) Note that the above definitions can be naturally extended to the case of

random rates (λ,µ) on the same probability space and taking values in
L1

+[0, T ]2κ. We will need this extension in the sequel.
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2.2. Dynamic equations. We now show how the evolution of the network
model can be uniquely determined from the primitive data (λ,µ, P ) and associated
processes (E,S). Consider the following system of equations:

S̃
(k,j)
t = ξk

{
(s, x, y) : s ∈ B(k)

t , x ≤ µk(s),
j−1∑
i=1

pki < y ≤
j∑
i=1

pki

}
,

B
(k)
t = {s ≤ t : Z(k)

s > 0},

Z
(k)
t = E

(k)
t +

κ∑
j=1

S̃
(j,k)
t −

κ+1∑
j=1

S̃
(k,j)
t , k = 1, . . . , κ, t ∈ [0, T ],

(2.4)

where
• Bt = (B(1)

t , . . . , B
(κ)
t ) is a vector of stochastic processes on [0, T ] with values

in B([0, T ]); for every k and t, the set B(k)
t stands for the period up to time

t during which the kth queue in the system was not empty;
• S̃t = (S̃(k,j)

t , 1 ≤ k ≤ κ, 1 ≤ j ≤ κ + 1) ∈ Dκ+κ2

↑,f denotes the matrix of
random processes of actual service completions in the κ stations indexed by
k, depending on whether they depart to a station j = 1, . . . , κ or leave the
network (for j = κ+ 1);

• Zt = (Z(k)
t , k = 1, 2, . . . , κ) ∈ Dκ stands for the vector of queue-length pro-

cesses in the κ stations.
It can be shown that the system (2.4) uniquely describes the dynamics of an open

network using the principle of mathematical induction on the number of stopping
times representing the times of arrivals or potential departures from the stations.
Since the stochastic processes modeling the times of these events are PPPs, with
probability one, there are at most a finite number of such events during the time
interval [0, T ]; hence, the principle of mathematical induction is applicable. Recalling
that all the PPPs above are assumed to be mutually independent, with probability one
there are no two stopping times in the inductive scheme that happen simultaneously.
So, the resulting solution to the system (2.4) is unique with probability one. It is
worthwhile to note that the above construction departs from the one common in
time-homogeneous systems. Here, one keeps track of the entire set of times when a
station is empty and loss of service is possible, and not only of the length of that time.

Moreover, in the case of a feedforward network (i.e., for P being an upper-
triangular 0–1 matrix), the progression of completed jobs through the system becomes
deterministic. So, Z admits an alternative representation in terms of the so-called net-
put process X = (X(1), . . . , X(κ)), which is defined by

X
(i)
t = E

(i)
t −

κ+1∑
j=1

S
(i,j)
t +

κ∑
j=1

S
(j,i)
t , t ∈ [0, T ], i = 1, . . . , κ. (2.5)

Standard arguments (see, e.g., [26]) can be used to show that Z satisfies

Z = ΓP (X) (2.6)

where ΓP denotes the multi-dimensional oblique reflection map associated with P , as
stated in Remark 2.1.
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2.3. The optimal control problem. The performance of a given network can
be viewed as a function J : D2κ+κ2

↑,f → R that maps (E,S) to the real-valued perfor-
mance measure of interest. The formal definition, which imposes additional technical
conditions, is as follows:

Definition 2.3. Any mapping J : D2κ+κ2

↑,f → R that is bounded from below

and Borel measurable with D2κ+κ2

↑,f endowed with the Borel σ−algebra in the product
M ′1−topology is called a performance measure.
For the definition of the M ′1-topology as well as a discussion of its basic properties,
the reader is referred to Section 13.6.2 of [41].

When (E,S) are constructed from the primitive data (λ,µ, P ) as described in
Section 2.1, for fixed P , the rates (λ,µ) represent the only ingredient of the mod-
elling equations that can (potentially) be varied by the controller. It is reasonable
to assume that the controller can observe the system, but cannot predict its future
behavior. Technically, admissible controls must be non-anticipating, i.e., predictable
with respect to the filtration {Ht} defined by

Ht = σ(ζ(A) : A ∈ B(([0, t]× [0,∞))κ)
∨ σ(ξ(B) : B ∈ B(([0, t]× [0,∞)× [0, 1])κ)). (2.7)

In addition, we allow for the incorporation of certain exogeneous constraints that may
have to be imposed on the set of rates that the controller can choose at any given
time. Let A stand for the subset of (L1

+[0, T ])2κ containing rates that respect these
constraints, and let A denote the set of all {Ht}−predictable random processes whose
trajectories take values in A. We define A to be the set of admissible controls.

Remark 2.4. The above notion of admissibility implies that the controller has
full information of the past and present of a run of the system. This means that the
constraints imposed on the admissible control policies are by construction quantitative.
In this paper, we do not consider optimal control problems that involve constraints
based on information available (e.g., cases of delayed information of the state of the
system). However, we do address the extreme case of lack of information on the
evolution of the system when we look into deterministic (i.e., not state-dependent)
controls.

For any (λ,µ) ∈ A, we define E(λ) = (E(1)(λ), . . . , E(κ)(λ)) and S(µ) =
(S(1)(µ), . . . , S(κ)(µ)) via (2.1), (2.2) and (2.3), though now λ and µ are stochas-
tic (as opposed to deterministic) processes (see Remark 2.2 (ii)). It is natural to
consider the following control problems: given a performance measure J , identify

min
(λ,µ)∈A

J(E(λ),S(µ)), (2.8)

where the minimum is in the almost sure sense, or identify

min
(λ,µ)∈A

E[J(E(λ),S(µ))], (2.9)

assuming the quantity above is well-defined. Concrete examples of such optimal con-
trol problems are provided in Sections 6.1 and 6.2.

3. Definition of Asymptotically Optimal Controls. Unfortunately, in most
situations of interest, the control problems introduced in (2.8) and (2.9) are not ex-
plicitly solvable. Instead, in this section, we consider a sequence of “uniformly ac-
celerated” systems, and study the related problem of identifying an asymptotically
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optimal sequence of controls (in the sense of Definition 3.1 below). As will be shown
in Section 5, for a large class of performance measures that satisfy a certain continuity
condition, this problem reduces to the (typically easier) problem of solving a related
deterministic optimal control problem (the so-called “fluid optimal control problem”
introduced in Section 4). Moreover, as discussed in Section 6, the asymptotically
optimal sequence of controls can be used to identify near-optimal controls for systems
whose parameters lie in the appropriate asymptotic regime.

LetA be the set of admissible controls defined in Section 2.3. With any given rout-
ing matrix P , we associate a sequence of performance measures {Jn}n corresponding
to a sequence of networks with routing matrix P and with “uniformly accelerated”
rates. More precisely, we define the mapping Jn : A → L0

+(Ω,F ,P) by

Jn(λ,µ) = J
(

1
nE(nλ), 1

nS(nµ)
)
, for every (λ,µ) in A (3.1)

with E(nλ) and S(nµ) defined as in (2.1), (2.2) and (2.3). Given a performance
measure J and a resulting sequence {Jn}n of performance measures associated with
a sequence of uniformly accelerated systems, as defined in (3.1), we loosely formulate
an asymptotically optimal control problem as follows:

Identify an admissible sequence such that its performance in the limit is no worse
than the performance of any other admissible sequence.

Here, an admissible sequence of controls refers to an element of the space AN of all
sequences of admissible controls. The following definition formalizes the meaning of
the solution of the asymptotically optimal control problem loosely posed above:

Definition 3.1. We say that an admissible sequence {(λ∗n,µ∗n)}n∈N in AN is:
(i) asymptotically optimal if

lim inf
n→∞

[Jn(λn,µn)− Jn(λ∗n,µ
∗
n)] ≥ 0, a.s., for all {(λn,µn)}n∈N ∈ AN.

(ii) average asymptotically optimal if E[Jn(λ∗n,µ
∗
n)] <∞ for all n ∈ N and

lim inf
n→∞

E[Jn(λn,µn)− Jn(λ∗n,µ
∗
n)] ≥ 0, for all {(λn,µn)}n∈N ∈ AN.

4. A Simpler Optimal Control Problem. In Section 4.1, we describe a fluid
version of the network equations considered in Section 2.2. In view of Theorem A.1,
the fluid network is the FSLLN-limit of a uniformly accelerated sequence of queueing
networks. In Section 4.2, we present the fluid optimal control problem.

4.1. Fluid network equations. Given a routing matrix P and (λ,µ) ∈ A, a
continuous or “fluid” analogue of the network equations introduced in Section 2.2 is

X̄t = It(λ)− (I −Q)It(µ), Z̄t = ΓP (X̄)t, t ∈ [0, T ], (4.1)

where
• I denotes the κ× κ−dimensional identity matrix;
• Q = P τ stands for the transpose of the fixed routing matrix P ;
• I(λ) ∈ (C[0, T ])κ is the vector of mean exogenous arrivals to each of the κ

stations;
• I(µ) ∈ (C[0, T ])κ denotes the vector of mean potential service completions in

the κ stations;
• X̄ ∈ (C[0, T ])κ is the vector of mean netput processes in the κ stations;
• ΓP : Dκ↑ → Dκ↑ is the oblique reflection map (ORM) generated by the oblique

reflection problem (ORP) associated with the routing matrix P .
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4.2. Fluid-limit performance measure. Given the definition of the sequence
of performance measures Jn from (3.1), the appropriate analogue of the performance
measure in the fluid system is the mapping J̄ : A→ R given by

J̄(λ,µ) = J(I(λ), diag(I(µ))P̂ ), for every (λ,µ) ∈ A, (4.2)

where P̂ is a κ × (κ + 1) matrix obtained by appending the column vector (1 −∑κ
i=1 pki, 1 ≤ k ≤ κ) to the routing matrix P , and A is the subset of (L1

+[0, T ])2κ

containing rates that respect any exogenous contraints that may be imposed.
The fluid optimal control problem can be formulated as follows:

Optimize the value of J̄(λ,µ) over the set A.

In particular cases where the optimal value in the fluid optimal control problem is
attained, the following definition makes sense.

Definition 4.1. A policy (λ∗,µ∗) ∈ A is said to be fluid optimal if J̄(λ∗,µ∗) ≤
J̄(λ,µ), for every (λ,µ) ∈ A.

5. A Criterion for Identification of Asymptotically Optimal Controls.
The fluid optimal control problem is typically significantly easier to analyze than the
original control problems described in (2.8) and (2.9). It is, therefore, natural to pose
the following question:

Under what conditions on the performance measure J will all admissible sequences
whose terms are identically equal to a fixed fluid-optimal policy be (average)

asymptotically optimal?

Theorem 5.3 provides a sufficient condition for an affirmative answer to this question,
which is formally phrased in terms of the following notion:

Definition 5.1. Let J : D2κ+κ2

↑,f → R be a performance measure and let (λ∗,µ∗) ∈
A be fluid optimal for the associated fluid performance measure J̄ in the sense of
Definition 4.1. If

lim inf
n→∞

[Jn(λn,µn)− Jn(λ∗,µ∗)] ≥ 0, a.s., ∀ {(λn,µn)}n∈N ∈ AN, (5.1)

we say that the performance measure J is fluid-optimizable. The performance measure
J is called average fluid-optimizable if

lim inf
n→∞

E[Jn(λn,µn)− Jn(λ∗,µ∗)] ≥ 0, ∀ {(λn,µn)}n∈N ∈ AN. (5.2)

For the remainder of the paper, we assume that the constraint set satisfies the
following mild assumption.

Assumption 5.2. The constraint set A is bounded in the space (L1
+[0, T ])2κ.

Theorem 5.3. Suppose the mapping J : D2κ+κ2

↑,f → R is continuous with respect

to the product M ′1−topology on D2κ+κ2

↑,f . Then, a.s.,

lim
n→∞

[J̄(λ∗,µ∗)− Jn(λ∗,µ∗)] = 0, (5.3)

and J is fluid-optimizable.
If, in addition, the mapping J is uniformly bounded, then it is also average fluid-

optimizable.
Remark 5.4. We can, in fact, immediately deduce a seemingly stronger result.

Namely, if J has the continuity properties stated in Theorem 5.3, then the pre-limit
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value functions converge, along with the performances of the fluid-optimal policies,
to the fluid-optimal value. More precisely, let V n = inf(λ,µ)∈A J

n(λ,µ) be the value
function associated with the nth system. Then, clearly, for any fluid-optimal policy
(λ∗,µ∗) ∈ A, we have

lim sup
n−→∞

(V n − Jn(λ∗,µ∗)) ≤ 0.

On the other hand, if J has the continuity property stated in Theorem 5.3, then J is
fluid-optimizable. Therefore, it follows from (5.1) that

lim inf
n−→∞

(V n − Jn(λ∗,µ∗)) ≥ 0.

The last two assertions, when combined with (5.3), show that

lim
n−→∞

V n = J̄(λ∗,µ∗). (5.4)

We now turn to the proof of Theorem 5.3.
Proof. First, recalling that the uniform topology is stronger than the M ′1−topo-

logy (see, e.g., the beginning of Section 13.6.2 of [41]), and using the continuity in
the M ′1-topology of the mapping J , we conclude that J is continuous in the uniform
topology.

Let {(λn,µn)} be an arbitrary admissible sequence. The left-hand side of the
inequality in (5.1) can be expanded and bounded from below in the following fashion:

lim inf
n→∞

[Jn(λn,µn)− Jn(λ∗,µ∗)]

≥ lim inf
n→∞

[Jn(λn,µn)− J̄(λ∗,µ∗)] + lim inf
n→∞

[J̄(λ∗,µ∗)− Jn(λ∗,µ∗)].
(5.5)

Using (3.1) and (4.2), we can rewrite the last term in (5.5) in terms of J as

lim inf
n→∞

[J̄(λ∗,µ∗)− Jn(λ∗,µ∗)]

= lim inf
n→∞

[
J(I(λ∗), diag(I(µ∗))P̂ )− J( 1

nE(nλ∗), 1
nS(nµ∗))

]
.

(5.6)

The FSLLN result established in Theorem A.1 shows that P-a.s., we have∥∥ 1
nE(nλ∗)− I(λ∗)

∥∥
T
→ 0,

∥∥∥ 1
nS(nµ∗)− diag(I(µ∗))P̂

∥∥∥
T
→ 0. (5.7)

More precisely, for every k and j, as n → ∞, we have 1
nE

(k)(nλ∗) → I(λ∗k) and
1
nS

(k,j)(nµ∗)→ I(pkjµ∗k), P−a.s., in the uniform topology on D([0, T ]). Due to (5.7)
and the continuity of J in the uniform topology, the limit inferior in (5.6) is the proper
limit and it is equal to zero. This establishes (5.3).

Let us now concentrate on the right-hand side of the inequality (5.5), and fix an
ω ∈ Ω for which (5.7) holds. All random quantities in the remainder of the proof will
be evaluated at that ω without explicit mention. Due to fluid-optimality of (λ∗,µ∗),
this term dominates

j := lim inf
n→∞

[Jn(λn,µn)− J̄(λn,µn)].

Without loss of generality, we can assume that j < ∞. Let {(ηl, νl)}l∈N denote the
subsequence of pairs {(λnl

,µnl
)l}l∈N along which the limit inferior above is attained

as the proper limit.
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Since Assumption 5.2 implies that {(ηl, νl)}l∈N are bounded in (L1
+[0, T ])2κ, by

Lemma B.1 there exists a further subsequence {(ηli , νli)}i∈N and a function F ∈ D2κ+κ2

↑,f

such that (I(ηli), diag(I(νli))P̂ ) → F in the product M ′1−topology on D2κ+κ2

↑,f . The
assumed continuity of J in the product M ′1−topology and the definition of J̄ given in
(4.2) yields

lim
i→∞

J̄(ηli , νli) = lim
i→∞

J(I(ηli),diag I(νli)P̂ ) = J(F ).

On the other hand, by Theorem A.1, the components of the random vector ( 1
nE(ne),

1
nS(ne)) converge to the identity function e on [0, T ] in the uniform topology. So, we
can utilize Lemma B.3 with the components of ( 1

nli
E(nlie),

1
nli

S(nlie)) corresponding
to the Yn in the lemma and the components of (ηnli

, νli) corresponding to the νn in
the lemma to conclude that

( 1
nli

E(nliηli),
1
nli

S(nliνli))→ F as i→∞,

in the product M ′1−topology. Hence, limi→∞ Jnli (ηli , νli) = J(F ). We conclude that
j = 0, which completes the proof of the first statement.

As for the average fluid-optimizability, note that due to the boundedness of the
mapping J , the terms

Jn(λn,µn)− Jn(λ∗,µ∗) = J( 1
nE(nλn), 1

nS(nµn))− J( 1
nE(nλ∗), 1

nS(nµ∗))

are bounded from below by a constant (say, by −2L, where L denotes the uniform
upper bound on the mapping J). Hence, Fatou’s lemma is applicable to the left-hand
side of (5.2). This, along with the already proved inequality (5.1), completes the proof
of the second statement.

If one is willing to impose a stricter - uniform - continuity condition in the above
result, then one can relax the topology with respect to which continuity is required.
To substantiate this claim, we need the following lemma, which is a direct consequence
of Definition 3.1.

Lemma 5.5. Let {(λ∗n,µ∗n)}n∈N be an admissible sequence.
(i) Suppose that {J∗n}n∈N is a sequence of random variables such that

lim inf
n→∞

[Jn(λn,µn)− J∗n] ≥ 0, a.s., for all {(λn,µn)}n∈N ∈ AN, (5.8)

and

lim
n→∞

[Jn(λ∗n,µ
∗
n)− J∗n] = 0, a.s. (5.9)

Then {(λ∗n,µ∗n)}n∈N is (strongly) asymptotically optimal.
(ii) Suppose that {J̃∗n}n∈N is a sequence of real numbers such that

lim inf
n→∞

(
E[Jn(λn,µn)]− J̃∗n

)
≥ 0, for all {(λn,µn)}n∈N ∈ AN,

and

lim
n→∞

(
E[Jn(λ∗n,µ

∗
n)]− J̃∗n

)
= 0.

Then {(λ∗n,µ∗n)}n∈N is average asymptotically optimal.
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Proposition 5.6. Assume that J is uniformly continuous in the uniform topol-
ogy on D2κ+κ2

↑,f . Then J is a fluid-optimizable performance measure.
Moreover, if J is bounded and uniformly continuous in the uniform topology on

D2κ+κ2

↑,f , then it is average fluid-optimizable.
Proof. We will reuse the notation established in the statement and proof of

Theorem 5.3. Define the constant sequence J∗n = J̄(λ∗,µ∗) for every n ∈ N. We have
already shown (see expansion (5.6), the limit in (5.7) and the discussion following it)
that the limit in (5.9) holds due to the continuity of the mapping J in the uniform
topology. It remains to verify that condition (5.8) of Lemma 5.5 holds as well.

To see this, let us temporarily fix the admissible sequence {(λn,µn)}n∈N and
bound the term in (5.8) as follows:

lim inf
n→∞

[Jn(λn,µn)− J∗n]

≥ lim inf
n→∞

[Jn(λn,µn)− J̄(λn,µn)] + lim inf
n→∞

[J̄(λn,µn)− J̄(λ∗,µ∗)].

The second term on the right-hand side of the above display is a.s. nonnegative due
to fluid-optimality of the policy (λ∗,µ∗). As for the first term, we will prove that the
limit inferior is a proper limit and equal to zero. Our tools are the Borel-Cantelli
lemma and the submartingale inequality. Fix an arbitrary δ > 0. Due to the uniform
continuity of J , there exists a positive constant ε(δ) such that for every x, y ∈ D2κ+κ2

↑,f ,
‖x− y‖T < ε(δ) ⇒ |J(x)− J(y)| < δ. Hence, for every n, we have

P[|Jn(λn,µn)− J̄(λn,µn)| > δ]

= P
[∣∣∣J( 1

nE(nλn), 1
nS(nµn))− J(I(λn), diag(I(µn)) · P̂ )

∣∣∣ > δ
]

≤ P
[∥∥∥ 1

n (E(nλn),S(nµn))− (I(λn), diag(I(µn)) · P̂ )
∥∥∥
T
> ε(δ)

]
.

(5.10)

Using Lemma A.2 and the expression for the fourth moment of a Poisson random
variable, we can further bound the last expression in (5.10) by

2κ
n4ε(δ)4

(3n2K2
n + nKn),

where Kn = max1≤i≤κ(IT ((λn)i) ∨ IT ((µn)i)). Now, thanks to Assumption 5.2, we
conclude that Kn are bounded from above by a constant, and so

∞∑
n=1

P[|Jn(λn,µn)− J̄(λn,µn)| > δ] <∞.

Since the choice of δ was arbitrary, the Borel-Cantelli lemma completes the proof of
the first claim.

The same reasoning that was employed in the proof of Theorem 5.3 yields the
second claim.

6. Applications of Fluid-optimizability Criteria. In this section, we illus-
trate how the concept of fluid-optimizability can be applied to study certain network
optimal control problems. Specifically, we provide examples of optimal control prob-
lems for which the performance measure is fluid-optimizable and the fluid-optimal
control policy can be explicitly determined. The latter is done with the use of di-
rectional derivatives of the multi-dimensional reflection map introduced in [26], a
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technique that may be of independent interest. In addition, we discuss how the fluid-
optimal policy can be used to design (near-optimal) controls for a given “pre-limit”
system. In addition, we use simulations to explore the effect that the choice of the
uniformly accelerated sequence into which the actual system of interest is embedded
has on the resulting near-optimal control. The simulations also serve to illustrate the
fluid-optimizability result of Theorem 5.3. In Section 6.1, we consider a holding cost
performance measure, while in Section 6.2 we consider a variant that also incorporates
throughput. In both cases, we assume that the open network has κ stations and that
a 0–1 upper-triangular routing matrix P (i.e., it is feedforward and with deterministic
routing).

6.1. An example with holding costs. In this section we consider a perfor-
mance measure involving the so-called holding costs (also referred to as congestion
costs) at every station in the network which are given in terms of nondecreasing func-
tions of queue-lengths. In fact, cost structures similar to ours are quite standard (see,
e.g., Chapter 7 of [19] or p. 60 of [43]). For more recent examples of similar cost func-
tions, the reader is directed to [15] and references therein. It is worth noting that due
to the fact that our time-horizon is finite, there is no discounting or time-averaging
of the holding cost.

6.1.1. The performance measure. Let hk : R+ → R+, k = 1, . . . , κ, be locally
Lipschitz functions representing the holding costs at the κ stations in the open net-
work. The total holding cost accumulated over the time period [0, T ] is

h(E,S) =
κ∑
k=1

∫ T

0

hk(Z(k)(t)) dt, for every (E,S) ∈ D2κ+κ2

↑,f , (6.1)

where Z = (Z(1), Z(2), . . . , Z(κ)) is the queue-length vector defined in (2.4). In this
context (recall (2.6)), the vector Z admits the representation

Z = ΓP (X), X = E− (I − P τ )S (6.2)

where ΓP is the oblique reflection map associated with the routing matrix P (see
Definition 1.1) and S = (S(k), 1 ≤ k ≤ κ) with S(k) =

∑κ+1
i=1 S

(k,i).
Lemma 6.1. The mapping h defined in (6.1) is Lipschitz continuous on D2κ+κ2

↑,f
with respect to the uniform metric. If, in addition, Assumption 5.2 is satisfied, h is a
fluid-optimizable performance measure.

Proof. Consider (E,S) and (Ẽ, S̃) in D2κ+κ2

↑,f . Then an application of the triangle
inequality yields

|h(E,S)− h(Ẽ, S̃)| ≤
κ∑
k=1

∫ T

0

∣∣∣hk(Z(k)(t))− h(Z̃(k)(t))
∣∣∣ dt,

where Z = (Z(1), Z(2), . . . , Z(κ)) and Z̃ = (Z̃(1), Z̃(2), . . . , Z̃(κ)) represent the queue-
length vectors of (2.4) associated with pairs (E,S) and (Ẽ, S̃), respectively.

For every k and t, due to the Lipschitz continuity of hk, we have

|hk(Z(k)(t))− hk(Z̃(k)(t))| ≤ Ck|Z(k)(t)− Z̃(k)(t)| ≤ Ck‖Z(k) − Z̃(k)‖T

where Ck stands for the Lipschitz constant of the mapping hk. By (6.2) and the
Lipschitz continuity of ΓP (see Theorem 14.3.4 of [41]), we have

‖Z(k) − Z̃(k)‖T ≤ K(‖E− Ẽ‖T ∨ ‖S− S̃‖T ), for every k.
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Combining the last three inequalities, we deduce that the mapping h is indeed Lips-
chitz and, thus, uniformly continuous with respect to the uniform topology on D2κ+κ2

↑,f .
In the presence of Assumption 5.2, we invoke Proposition 5.6 to conclude that

the performance measure h is fluid-optimizable.

6.1.2. The optimal control problem. Consider a tandem queue with the processes
EA, SA1 and SA2 of exogenous arrivals to the first station and potential services
at the first and second station, respectively, being modelled using PPPs and rates
λA, µA1 , µ

A
2 ∈ L1

+[0, T ], as in (2.1), (2.2) and (2.3) (with obvious modifications in the
notation). For simplicity, we assume that there are no exogenous arrivals to the sec-
ond station. The service rate µA1 in the first station serves as the control, while λA

and µA2 are taken to be known (one can assume that λA and µA2 can be estimated
through statistics of previous runs of the system). The actual performance measure
that we wish to minimize is the aggregate holding cost in both stations, defined by

JA(EA, SA) =
∫ T

0

(hA1 (ZA1 (t)) + hA2 (ZA2 (t))) dt

for (EA, SA) ∈ (D↑,f [0, T ])2, where
• ZAi denotes the queue length of the ith queue in the tandem for i = 1, 2,

associated with the arrival and service processes (EA, SA1 , S
A
2 );

• hA1 : R+ → R+ is given by hA1 (x) = cA1 x
2 for every x ∈ R+, with cA1 > 0

constant;
• hA2 : R+ → R+ is given by hA2 (x) = cA2 x for every x ∈ R+ and for a certain

constant 0 < cA2 < IT (λA).
It is natural to impose the following constraint on µA1 which ensures that admissible
policies do not have more (mean) cumulative service available than there are (mean)
cumulative arrivals:

IT (µA1 ) ≤ IT (λA). (6.3)

Remark 6.2. The above set-up can be envisioned as an example of inventory
control in a manufacturing system with two phases (one for each station in the tandem
queue) and with separate storage facilities (buffers) at each station at which holding
costs corresponding to functions hA1 and hA2 of the queue lengths are incurred. The
controller’s goal is to minimize the total holding cost JA by varying the service in
the first station; the arrivals to the first station can be understood to depend on
the arrival of either raw materials or partially completed products from the previous
production phase, while the service at the second station could be taken to depend
on the demand for the (partially) finished product.

The superscript “A” used above refers to the fact that these quantities correspond
to the actual network control problem of interest. Following the philosophy outlined
in Section 5, in order to analyze this control problem, we will embed it into a sequence
of “uniformly accelerated” systems, with the N th term in the sequence (for some cho-
sen fixed integer N) representing the actual system. Simulations illustrating the effect
of the choice of the “embedding constant” N on the near-optimal control obtained
are presented in Section 6.1.5. With an integer N that will serve as the embedding
constant fixed, the construction of a uniformly accelerated sequence of systems de-
scribed in Section 3 implies that in order for the actual system to correspond to the
N th system in the sequence, the “basic” arrival rate to the first station λ ∈ L1

+[0, T ]
and the “basic” service rate µ2 at the second station should be given by λ = 1

N λA
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and µ2 = 1
N µA2 . Moreover, the performance measure J for the “basic” system must

take the form

J(E,S) =
∫ T

0

(h1(Z1(t)) + h2(Z2(t))) dt for (E,S) ∈ (D↑,f [0, T ])2 (6.4)

with hi, i = 1, 2, given by h1(x) = N2cA1 x
2 and h2(x) = NcA2 x for every x ∈ R+, where

Zi denotes the queue length of the ith queue in the tandem for i = 1, 2, associated
with the triplet (E,S1, S2) of arrival and service processes (as defined via (2.1), (2.2)
and (2.3) for n = 1 and the “basic” arrival and service rates above). Indeed, with
these definitions, it is easily seen that JA(EA, SA) = JN (λ, µ), where JN is the
performance measure of the N th system in the sequence, defined in terms of J via
(3.1).

In addition, using the notation introduced in Section 2.3, we can translate the
constraint (6.3) pertaining to the actual system into the following constraint on the
“basic” controls:

Assumption 6.3. The constraint set is A = {µ ∈ L1
+[0, T ] : IT (µ) ≤ IT (λ)}.

6.1.3. The related fluid optimal control problem. Since h is fluid-optimizable, it
follows from Definitions 3.1 and 4.1 that to identify a strongly asymptotically optimal
sequence for a control problem with h as performance measure, it suffices to analyze
the corresponding fluid optimal control problem. We illustrate this procedure for
the control problem introduced in Section 6.1.2, using calculus of variations type
techniques.

Consider a fluid tandem queue with a given deterministic exogenous arrival rate
to the first station denoted by λ ∈ L1

+[0, T ], and a given deterministic service rate
in the second station µ2 ∈ L1

+[0, T ]. Assume that there are no exogenous arrivals
to the second station. Our fluid optimal control problem consists of minimizing the
aggregate holding cost in this system by varying the service rate µ in the first station
across A. In view of (4.2) and (6.4), we define the fluid-limit holding cost as

h̄(µ) =
∫ T

0

[
h1(Z̄1

t (µ)) + h2(Z̄2
t (µ))

]
dt for every µ ∈ A, (6.5)

with hi : R+ → R+, i = 1, 2, given by h1(x) = c1x
2 and h2(x) = c2x for every x ∈ R+,

where we set c1 = N2cA1 and c2 = NcA2 to simplify the notation, while Z̄i(µ), i = 1, 2
denote the queue lengths in the fluid tandem queue (as a function of µ).

6.1.4. Solution of the fluid optimal control problem. In the present section, we
identify a fluid-optimal control. To keep the calculations as simple as possible and
make the illustration of our calculus of variations-like approach to the problem trans-
parent, we additionally set µA2 ≡ 0. The explicit form of the directional derivative of
the ORM obtained in [26] plays a crucial role in the calculations. Also, note that the
fluid optimal control problem is not trivial. Due to the convexity of the cost structure
in the first station, there is a tradeoff between the marginal costs in the two stations
to be considered. Heuristically, one needs to identify a threshold for the queue length
in the first station at which the marginal holding cost in the first station starts to
exceed the marginal holding cost in the second station. As we are going to see shortly,
this intuition coincides with the formal solution.

Lemma 6.4. The policy µ̂ ∈ A, defined by

µ̂ = λ1[tc,T ] with tc = inf{t ∈ [0, T ] : It(λ) ≥ c := c2
2c1
}
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is fluid optimal for the fluid optimal control problem of Section 6.1.3.
Proof. Suppose that a fluid-optimal policy exists and denote it by µ̂. We shall

first argue that the following claim holds:
Claim 1: Without loss of generality, we can assume It(µ̂) ≤ It(λ) for all t ∈ [0, T ].
Proof of Claim 1. Suppose, to the contrary, that the proposed inequality is violated.
The queue-lengths in the fluid system must satisfy the equations (4.1). It is well known
that the queue-length in the first station, when µ̂ is the service employed there, can
be rewritten as

Z̄1
t (µ̂) = It(λ− µ̂) +

∫ t

0

(−λ(s) + µ̂(s))+1[Z̄1
s (µ̂)=0] ds, t ∈ [0, T ],

while the queue-length in the second station equals

Z̄2
t (µ̂) = It(µ̂)−

∫ t

0

(−λ(s) + µ̂(s))+1[Z̄1
s (µ̂)=0] ds, t ∈ [0, T ].

Let us define µ̌ ∈ A as

µ̌(t) = µ̂(t)− (−λ(t) + µ̂(t))+1[Z̄1
t (µ̂)=0], t ∈ [0, T ].

Then, It(λ) − It(µ̌) = Z̄1
t (µ̂) ≥ 0 for every t. Moreover, Z̄it(µ̂) = Z̄it(µ̌) for i = 1, 2

and t ∈ [0, T ]. Hence, h(µ̂) = h(µ̌) while µ̌ satisfies the desired inequality.
Let us return to the proof of the lemma assuming that µ̂ satisfies the inequality

in Claim 1. If µ̂ is fluid optimal, then for every perturbation ∆µ ∈ L1[0, T ] and for
every constant ε > 0 such that µ̂+ ε∆µ ∈ A, we must have

h̄(µ̂+ ε∆µ)− h̄(µ̂) ≥ 0. (6.6)

From the above equations for Z̄, it is clear that for any µ ∈ A that satisfies the
condition of Claim 1,

Z̄(µ) = (Z̄1(µ), Z̄2(µ)) = Γ(X̄(µ)) = Γ(I(λ− µ), I(µ− µ2)). (6.7)

Therefore, setting χ = (I(−∆µ), I(∆µ)), we can write

1
ε (Z̄(µ̂+ ε∆µ)− Z̄(µ̂)) = ∇εχ(X̄(µ̂)),

where, as in [26], we adopt the notation

∇εχΓ(ψ) .= 1
ε [Γ(ψ + εχ)− Γ(ψ)]

for any càdlàg ψ. Using the definition of h̄ and observing that h1(x+ ∆x)− h1(x) =
c1∆x(2x+ ∆x) and h2(x+ ∆x)−h2(x) = c2∆x, we see that (6.6) holds if and only if

1
ε

∫ T

0

[
c1(Z̄1

t (µ̂+ ε∆µ)− Z̄1
t (µ̂))(Z̄1

t (µ̂+ ε∆µ) + Z̄1
t (µ̂))

+ c2(Z̄2
t (µ̂+ ε∆µ)− Z̄2

t (µ̂))
]
dt ≥ 0.

(6.8)

It follows from Theorem 1.6.2 in [26] that, as ε ↓ 0, the pointwise limit of ∇εχΓ(X̄(µ̂))
exists and is given explicitly by

∇χΓ(X̄(µ̂)) = lim
ε↓0
∇εχΓ(X̄(µ̂)) = χ+ (γ1,−γ1 + γ2),
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where

γ1(t) = sup
s∈Φ1(t)

[Is(∆µ)]+, γ2(t) = sup
s∈Φ2(t)

[−Is(∆µ) + γ1(s)]+,

and Φi(t) .= {s ≤ t : Z̄is(µ̂) = 0} = {s ≤ t : X̄i
s(µ̂) = 0}, i = 1, 2, for every t ∈ [0, T ].

Here, the latter equality for the sets Φi(t), i = 1, 2, t ∈ [0, T ] is implied by the fact
that both queues in the tandem are non-idling (see Claim 1).

Therefore, for every perturbation ∆µ such that µ + ε∆µ ∈ A for all sufficiently
small ε > 0 (we shall refer to such perturbations as admissible perturbations), taking
limits as ε ↓ 0 in (6.8), we see that∫ T

0

[
(Z̄1

t (µ̂)− c)(−It(∆µ) + γ1(t)) + cγ2(t)
]
dt ≥ 0, (6.9)

with c := c2
2c1

. Define the time instances

t̂ = inf{t ∈ [0, T ] : It(µ̂) > 0} and tc = inf{t ∈ [0, T ] : It(λ) ≥ c}.

Due to the assumption that µ2 ≡ 0, we immediately conclude that Φ2(t) = [0, t ∧ t̂]
for every t ∈ [0, T ]. We now claim that:
Claim 2: tc ≤ t̂.
Proof of Claim 2: Consider a perturbation ∆µ such that ∆µ(t) ≤ 0 for all t ∈ [0, T ]
and ∆µ(t) = 0 for every t ∈ [0, t̂]. Then, ∆µ is clearly an admissible perturbation and,
moreover, γ1 ≡ 0 and γ2(t) = sups∈[0,t∧t̂] [−Is(∆µ)] = 0. Therefore, (6.9) reduces to∫ T

0

[
(Z̄1

t (µ̂)− c)(−It(∆µ))
]
dt =

∫ T

t̂

[
(Z̄1

t (µ̂)− c)(−It(∆µ))
]
dt ≥ 0.

Since −It(∆µ) ≥ 0 and the above inequality must hold for all such ∆µ, we conclude
that Z̄1

t (µ̂) = It(λ− µ̂) ≥ c for all t ≥ t̂, which establishes the claim.
We now show that, in fact:

Claim 3: tc = t̂.
Proof of Claim 3: Let us assume that tc < t̂ and consider an arbitrary admissible
perturbation ∆µ ≥ 0. Then, γ1(t) = Im1(t)(∆µ), where m1(t) := sup Φ1(t) for every
t ∈ [0, T ]. So,

γ2(t) = sup
s∈Φ2(t)

[−Is(∆µ) + γ1(s)]+ = sup
s∈Φ2(t)

[−Is(∆µ) + Im1(s)(∆µ)]+.

By definition, m1(s) ≤ s, for every s, and so, recalling that ∆µ ≥ 0, we conclude that
γ2 ≡ 0. Thus, the inequality (6.9) can be rewritten as∫ T

0

[
(Z̄1

t (µ̂)− c)(−It(∆µ) + Im1(t)(∆µ))
]
dt ≥ 0, for every ∆µ ≥ 0.

Thus,∫ T

0

∫ T

0

[
(Z̄1

t (µ̂)− c)(−1[m1(t),t](u))∆µ(u)
]
du dt ≥ 0, for every ∆µ ≥ 0.

Due to Fubini’s theorem, the above inequality yields∫ T

0

∆µ(u)(
∫ T

0

[
(Z̄1

t (µ̂)− c)(−1[m1(t),t](u))
]
dt) du ≥ 0, for every ∆µ ≥ 0.
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We define the function F : [0, T ]→ R+

F (u) =
∫ T

0

[
(Z̄1

t (µ̂)− c)(−1[m1(t),t](u))
]
dt

and deduce that F (u) ≥ 0, u− a.e. However, for every u ∈ (tc, t̂), using Claim 2, the
fact that −1[0,tc](u) = 0 and It(λ) ≥ c for every t > tc, we have

F (u) =
∫ t̂

0

[
(Z̄1

t (µ̂)− c)(−1[0,t](u))
]
dt =

∫ t̂

tc

[
(It(λ)− c)(−1[0,t](u))

]
dt ≤ 0.

This leads to a contradiction, and so Claim 3 follows.
To conclude the proof of the lemma, it suffices to show

Claim 4: µ̂(t) = λ(t) for almost every t ≥ t̂.
Proof of Claim 4: Let us assume that there exists a pair of time instances t1 < t2
such that t̂ < t1 and Z̄1

t (µ̂) > c for every t ∈ (t1, t2). Note that Φ1(t) ⊂ (t1, t2)c and
recall that Φ2(t) = [0, t ∧ t̂] for every t. Consider any admissible perturbation ∆µ
such that ∆µ(t) = 0 for every t ∈ (t1, t2)c, It1(∆µ) = It2(∆µ) = 0, and It(∆µ) > 0
for every t ∈ (t1, t2). Then, for such a function ∆µ, γ1(t) = γ2(t) = 0 for all t. Thus,
the left-hand side of the inequality (6.9) reads as∫ t2

t1

[
(Z̄1

t (µ̂)− c)(−It(∆µ))
]
dt.

From the choice of ∆µ and the definition of t1 and t2, we conclude that and the above
expression must be strictly negative, which contradicts the inequality (6.9). Thus,
Z̄1
t (µ̂) ≤ c for every t ∈ (t̂, T ).

Using an analogous argument, one can show that Z̄1
t (µ̂) ≥ c for every t ∈ (t̂, T ).

Indeed, assume the contrary and set

t1 = inf{t > t̂ : Z̄1
t (µ̂) < c} ∧ T,

t2 = inf{t > t1 : Z̄1
t (µ̂) = c} ∧ inf{t > t1 : X̄1

t (µ̂) = 0} ∧ T.

With this choice of t1 and t2, we again have Φ1(t) ⊂ (t1, t2)c. Let ∆µ be an admis-
sible permutation such that ∆µ(t) = 0 for t ∈ (t1, t2), It1(∆µ) = It2(∆µ) = 0 and
It(∆µ) < 0 for t ∈ (t1, t2). This choice of ∆µ implies γ1(t) = γ2(t) = 0 for all t, and
the left hand side of (6.9) becomes∫ t2

t1

[
(Z̄1

t (µ̂)− c)(−It(∆µ))
]
dt.

Using the negativity of It(∆µ) for t ∈ (t1, t2) and the definition of t1 and t2, we con-
clude that the above expression is negative which contradicts (6.9). Hence, Z̄1

t (µ̂) ≥ c
for t ∈ (t̂, T ).

Combining the above two inequalities, we conclude that Z̄1
t (µ̂) = c for t ∈ (t̂, T ).

So, µ̂(t) = λ(t), for almost every t ∈ (t̂, T ). This proves the fourth claim and, thus,
concludes the proof of the lemma.

Finally, we have the following corollary which shows that the fluid-optimal value
for the above fluid control problem does not depend on the embedding constant.
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Corollary 6.5. The fluid-optimal value for the fluid optimal control problem of
Section 6.1.3 is given by

h̄(µ̂) = cA1

∫ tAc

0

(It(λA))2 dt+ cA2

∫ T

tAc

(It(λA)− cA

2
) dt

with tAc = inf{t > 0 : It(λA) > cA := cA
2

2cA
1
} and cA1 , c

A
2 and λA as in Section 6.1.2.

Proof. Using the form of the fluid-optimal policy µ̂ obtained in Lemma 6.4, we
have that for every t ∈ [0, T ],

Z̄1
t (µ̂) = It(λ) ∧ c and Z̄2

t (µ̂) = (It(λ)− c) ∨ 0.

Hence,

h̄(µ̂) =
∫ tc

0

c1(It(λ))2 dt+
∫ T

tc

[c1 c2 + c2(It(λ)− c)] dt

= c1

∫ tc

0

(It(λ))2 dt+ c2

∫ T

tc

(It(λ)− c

2
) dt.

(6.10)

Recalling that λ = 1
N λ

A, c1 = N2cA1 and c2 = NcA2 , we get that

c = NcA
2

2N2cA
1

= cA

N ,

tc = inf{t > 0 : It(λ) > c} = inf{t > 0 : It(λA) > cA} = tAc .

With this in mind, the expression for the fluid-optimal cost of (6.10) becomes

h̄(µ̂) = N2cA1

∫ tAc

0

1
N2 (It(λA))2 dt+NcA2

∫ T

tAc

1
N (It(λA)− cA

2
) dt

= cA1

∫ tAc

0

(It(λA))2 dt+ cA2

∫ T

tAc

(It(λA)− cA

2
) dt.

6.1.5. Implementation. Lemmas 6.1 and 6.4, Assumption 6.3 and Proposition
5.6, when combined, show that the sequence of controls constructed from µ̂ is asymp-
totically optimal. We use this conclusion to design a good control for the system
introduced in Section 6.1.2. The details of the embedding procedure preceding the
formulation and the solution of the fluid optimal control problem are described in
Sections 6.1.2 and 6.1.4, respectively.

To illustrate the performance of the fluid-optimal discipline we obtained above, we
ran simulations of the pre-limit systems when the fluid-optimal policy is implemented.
All the simulations were conducted in C++ and the graphs were produced by R.
We set a time horizon at T = 1 and conducted the simulations for the periodic
arrival rate λA(t) = 100(1 + sin(10t)), for t ∈ [0, T ]. As in the previous section,
the service rate in the second station is set to zero. The constants in the definition
of the holding cost function are set to be cA1 = 1/20, 000 and cA2 = 1/200. We
looked at three uniform acceleration coefficients: n = 50, n = 100 and n = 1000.
Examining the effect of choosing the embedding constant N = 50, we get the fluid-
performance measure h̄ defined in (6.5) with constants c1 = 2500cA1 = 0.125 and
c2 = 50cA2 = 0.25. Using Lemma 6.4, we obtain a fluid-optimal control µ̂ = λ1[tc,T ]
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Fig. 6.1. Histograms of costs realized for the embedding constant of 50, λA(t) = 100(1 +
sin(10t)), t ∈ [0, 1], and for uniform acceleration coefficients n = 50, 500, 1000. An approximate
fluid-optimal value is 0.190846 (calculated using Mathematica).

Accel. Coeff. Min. 1st Qu. Median Mean 3rd Qu. Max.

50 0.1221 0.1716 0.1926 0.1950 0.2162 0.3370
500 0.1612 0.1846 0.1912 0.1915 0.1982 0.2299
1000 0.1712 0.1862 0.1906 0.1911 0.1959 0.2158

Table 6.1
Summary statistics for 1000 simulations of the cost in case of the embedding constant of 50,

λA(t) = 100(1 + sin(10t)) and for acceleration coefficients in the first column.

with tc = inf{t ∈ [0, T ] : It(λ) ≥ 1} and λ(t) = 2(1 + sin(10t)). We present the
histograms of the costs based on 1000 simulation runs for these coefficients, along
with the sample summary statistics. Figure 6.1 and Table 6.1 summarize the results
of applying the fluid-optimal policy µ̂ to the pre-limit systems. The embedding index
of 50 is the one corresponding to the actual system in the sense of 6.1.2 and the
outcome of the simulations of the cost of applying the fluid-limit optimal policy to
the actual system can be seen in the leftmost graph in Figure 6.1.

Next, we look at the embedding constant N = 100 and repeat the simulations
described above for uniform acceleration coefficients n = 50, n = 100 and n = 1000.
This time, the arrival rates to the first station were either the constant arrival rate
λA ≡ 100, or the periodic arrival rate λA(t) = 100(1 + sin(10t)), t ∈ [0, T ]. The fluid
performance measure h̄ is again as in (6.5), but now with constants c1 = c2 = 0.5.
According to Lemma 6.4, the fluid-optimal policy in this case has the form µ̂ = λ1[tc,T ]

with tc = inf{t ∈ [0, T ] : It(λ) ≥ 1/2} with λ(t) = 1 + sin(10t). The histograms for
n = 50, n = 100 and n = 1000 are shown in Figures 6.2 and 6.3, and the summary
statistics are provided in Tables 6.2 and 6.3. The simulated costs of employing the
fluid-optimal policy in the actual system are given in the middle graphs on Figures
6.2 and 6.3. The reader interested in comparing the effects of different embedding
constants should compare the left-most graph in Figure 6.1 to the middle graph in
Figure 6.3. Figures 6.4 and 6.5 show the graphs of the queue lengths as functions of
time for a particular simulation with the uniform acceleration factor n = 1000 and for
constant and periodic arrival rates, respectively. These two figures illustrate the time
at which the fluid-optimal service begins in the first station and starts “matching”
the arrivals to the first station.
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Fig. 6.2. Histograms of costs realized for the embedding constant of 100, λA ≡ 100 and for
uniform acceleration coefficients n = 50, 100, 1000. The fluid-optimal value is 7/48 ≈ 0.14583.
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Fig. 6.3. Histograms of costs realized for the embedding constant of 100, λA(t) = 100(1 +
sin(10t)), t ∈ [0, 1], and for uniform acceleration coefficients n = 50, 100, 1000. An approximate
fluid-optimal value is 0.190846 (calculated using Mathematica).

Remark 6.6. Note that the simulation results in the present section indeed
illustrate the claim of Proposition 5.6 and Remark 5.4. In particular, the simulation
values become more concentrated around their averages which, in turn, approach
the theoretical fluid-optimal value, which also equals the limit of the pre-limit value
functions.

6.2. Trade-off between holding cost and throughput. In this section, we
consider a variation on the optimal control problem from Section 6.1 which, in addition
to the holding cost, takes into account a reward for the completion of jobs during the
interval [0, T ]. The controller’s goal is to balance the holding cost penalty with the
profit generated by the completed jobs.

This can be viewed as a model of inventory control, in a setting similar to that
described in Remark 6.2, except that this time the controller is in charge of a single
station with a holding cost which is an increasing function of the number of jobs in
the queue; on the other hand, there is revenue for all products that get out of the
station which offsets the holding cost.

6.2.1. The performance measure and the optimal control problem. The aggrega-
te holding cost h associated with the pair (E,S) was defined in (6.1). Let the profit
generated by the completion of jobs during the time interval [0, T ] be given by a
Lipschitz continuous function p : R+ → R+.
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Accel. Coeff. Min. 1st Qu. Median Mean 3rd Qu. Max.

50 0.0699 0.1235 0.1436 0.1489 0.1683 0.3724
100 0.0823 0.1291 0.1455 0.1479 0.1642 0.2457
1000 0.1206 0.1405 0.1458 0.1460 0.1516 0.1721

Table 6.2
Summary statistics for 1000 simulations of the cost in case of the embedding constant of 100,

λA ≡ 100 and for acceleration coefficients in the first column.

Accel. Coeff. Min. 1st Qu. Median Mean 3rd Qu. Max.

50 0.0941 0.1643 0.1929 0.1987 0.2270 0.4049
100 0.1137 0.1720 0.1924 0.1941 0.2141 0.2947
1000 0.1625 0.1840 0.1908 0.1909 0.1972 0.2261

Table 6.3
Summary statistics for 1000 simulations of the cost in case of the embedding constant of 100,

λA(t) = 100(1 + sin(10t)) and for acceleration coefficients in the first column.

We introduce a performance measure J : D2κ+κ2

↑,f → R as

J(E,S) = h(E,S)− p(
κ∑
k=1

Ek(T )−
κ∑
k=1

Zk(T )).

Due to the Lipschitz continuity of both the mapping p and the one-sided reflection
map, one can use the same rationale used in the proof of fluid-optimizability of h to
verify the uniform continuity of J . Proposition 5.6 then shows that the performance
measure J is fluid-optimizable whenever the set of admissible controls is bounded in
(L1

+[0, T ])2κ. Similarly to the previous example, the validity of Assumption 5.2 will
be enforced additionally for the particular optimal control problem we look at next.

Let us consider a single station with a given service rate µ ∈ L1
+[0, T ]. Suppose

that the strictly increasing, Lipschitz-continuous holding cost function h1 is such that
h1(0) = 0, and that the profit function p is the identity function. We wish to minimize
J by varying the arrival rate λ in the first station. In the proposed application above,
it is natural to assume that the cumulative mean arrivals of materials into a production
station do not greatly exceed the available cumulative service, and so we define the
constraint set as A = {λ ∈ L1

+[0, T ] : IT (λ) ≤ 2IT (µ)}.

6.2.2. A related fluid optimal control problem and its solution. As described in
Section 4.2, the fluid performance measure is

J̄(λ) =
∫ T

0

h1(Z̄1
t (λ)) dt− (IT (λ)− Z̄1

T (λ)) for every λ ∈ A,

where we suppress the given parameter µ from the notation and set X̄1
t (λ) = It(λ−µ)

and Z̄1
t (λ) = Γ(X̄1(λ))t for λ ∈ L1

+[0, T ], with Γ denoting the reflection map associ-
ated with the single queue (i.e., the standard one-sided reflection map). The fluid
optimal control problem consists of minimizing J̄ across λ ∈ A.
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Fig. 6.4. One trajectory of the queue lengths in the first (increasing in the beginning) and second
(the other curve) stations for the embedding constant of 100, the uniform acceleration coefficient
n = 1000 and λA ≡ 100. The time at which service in the first station begins is 0.5.
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Fig. 6.5. One trajectory of the queue lengths in the first (increasing in the beginning) and second
(the other curve) stations for the embedding constant of 100, the uniform acceleration coefficient
n = 1000 and λA ≡ 100(1 + sin(10t)). The time at which service in the first station begins is
approximately 0.3.

Lemma 6.7. The policy λ̂ = µ is fluid optimal for the above fluid optimal control
problem.

Proof. The fluid performance measure J̄ admits the following lower bound for
every λ ∈ L1

+[0, T ]:

J̄(λ) =
∫ T

0

h1(Z̄1
t (λ)) dt− (IT (λ)− Z̄1

T (λ)) ≥ −IT (λ) + X̄1
T (λ) = −IT (µ).

The policy λ̂ = µ attains this lower bound and is, hence, fluid optimal.
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Fig. 6.6. Histograms of costs realized for the “basic” service rate µ ≡ 1 and for uniform
acceleration coefficients n = 50, 100, 1000. The fluid-optimal value equals −1.
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Fig. 6.7. Histograms of costs realized for the basic service rate µ(t) = 1 + sin(10t) and for
uniform acceleration coefficients n = 50, 100, 1000. The fluid-optimal value is 1.1−cos(10) ≈ −1.184.

6.2.3. Implementation. As an illustration of the performance of the fluid-optimal
discipline we obtained in Lemma 6.7, we ran simulations of the pre-limit systems for
a time horizon T = 1 and for two choices of the given service rate: the constant
service rate µ ≡ 1, and the periodic service rate µ(t) = 1 + sin(10t), for t ∈ [0, T ].
In both cases, the holding cost function was taken to be the identity. We present
the histograms of the costs produced by 1000 simulation runs for these coefficients,
along with the sample summary statistics. The histograms of the costs in case of the
constant service rate are depicted in Figure 6.6 and in the case of periodic µ in Figure
6.7. The summary statistics are collected in Tables 6.4 and 6.5, for constant and
periodic service rates, respectively.

Remark 6.8. The approach of the simulated values to the theoretical limiting
cost is slower than in the previous example. So, we included the results of taking a
large uniform acceleration coefficient of 10, 000 (see Figure 6.8). We believe that this
is due to the effect of the system being continuously in heavy-traffic (under the fluid-
optimal discipline). In such situations, the time-mesh should be quite fine because
when the uniform acceleration coefficient is large, there is a high probability of an
arrival and/or potential departure in any given interval in the time-mesh. Due to the
discretization of time, the simulation will set the time of that jump in the simulated
process to be the next node in the partition of the interval [0, T ]. Hence, one needs
to be careful to choose a fine enough mesh-size (possibly at the cost of the speed of
simulation). We chose the length of every subinterval in the partition to be 10−6.

7. Concluding remarks and further research. In this section, we note some
features we encountered in this work which are unique to the time-inhomogeneous
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Accel. Coeff. Min. 1st Qu. Median Mean 3rd Qu. Max.

50 -1.2460 -0.9084 -0.8331 -0.8267 -0.7444 -0.4740
100 -1.1380 -0.9373 -0.8821 -0.8834 -0.8276 -0.6391
1000 -1.0380 -0.9815 -0.9640 -0.9632 -0.9457 -0.8605

Table 6.4
Summary statistics for 1000 simulations of the cost in case of µ ≡ 1 and for acceleration

coefficients in the first column.

Accel. Coeff. Min. 1st Qu. Median Mean 3rd Qu. Max.

50 -1.402 -1.093 -1.007 -1.001 -0.913 -0.517
100 -1.327 -1.127 -1.059 -1.060 -0.993 -0.770
1000 -1.234 -1.166 -1.146 -1.145 -1.125 -1.043
10000 -1.214 -1.191 -1.184 -1.183 -1.176 -1.154

Table 6.5
Summary statistics for 1000 simulations of the cost in case of µ(t) = 1 + sin(10t) and for

acceleration coefficients in the first column.

set-up. Some of these issues hint at possible directions of future research. Also, we
broadly outline particular problems which were among the topics of [11].

7.1. Important distinctions from the time-homogeneous setup. We stress
some unique properties of asymptotically optimal control of queueing networks with
time-varying rates. We do this by pointing out certain features of optimal control
in the time-homogeneous setting (say, the Brownian control problem (BCP) for sys-
tems in heavy traffic; see, e.g., [42] for references on this subject), and comparing
them to the time-inhomogeneous case. In the time-homogeneous context, the only
useful option for the control of a given system is the so-called “feedback” control,
i.e., control which observes the system and is dynamically adapted according to the
state in which the system is. Also, to accommodate the information available to the
controller, a filtration generated by the stochastic processes driving the model of the
system at hand (reflected diffusions in the BCP case) is constructed. Both of these
issues are illustrated repeatedly throughout the rich literature of optimal control of
time-homogeneous networks.

On the other hand, for the asymptotic analysis in the time-inhomogeneous setting,
it is possible to consider deterministic controls that are prescribed by the controller
in advance of the run of the system and which depend only on the given parameters
of the model of the system. In fact, fluid-optimal policies are deterministic, and it is,
indeed, sensible to consider their asymptotic optimality (see Section 5). Moreover, to
allow for stochastic (state-dependent) controls, a novel structure of the accumulation
of information available to the controller must be formulated to incorporate the past
and present of the system. The theory of Poisson point processes (PPPs) proved to
be a convenient modelling tool in this respect (see Section 2.1). Both of these points
are by-products of our analysis of the main problem.

Having proposed an asymptotically optimal sequence, we would like to implement
an element of this sequence of controls in the actual system which inspired the problem
in the first place. In the case of BCPs, this connection is more-or-less straightforward
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Fig. 6.8. Histogram of costs in the optimal control problem aimed at balancing the holding
cost and the throughput, realized for µ(t) = 1 + sin(10t) and for the uniform acceleration coefficient
n = 10, 000.

(see, e.g., Section 5.5 of [41] for an overview). On the other hand, in the case of time-
inhomogeneous queues it is not immediately clear what the appropriate choice of the
index of the actual system when embedded in the pre-limit sequence of uniformly
accelerated systems should be. The question of choice of this index is not trivial,
and we did not attempt to consider it in the present work. However, recalling that
the uniform acceleration method preserves the ratio of arrival and service rates and
encouraged by the simulation results presented in Section 6 (see, also, Corollary 6.5),
we are hopeful that there is a rich collection of optimal control problems for which
the choice of the index assigned to the actual system will not strongly influence the
performance of the class of asymptotically optimal controls constructed. A more
rigorous study of this issue would be worthy of future investigation. In the same vein,
it would be interesting to construct a “test” model in which it is possible to solve the
pre-limit stochastic optimal control problems and compare the performance of the
fluid-optimal policies to the performance of the optimal control for the actual model.

7.2. Pertinent examples in earlier work. It may be intuitive to expect that
fluid-optimal policies would provide near-optimal policies for some performance mea-
sures, and indeed such heuristics are employed by practitioners (see, e.g., [33, 34, 35]).
However, the need for a rigorous approach such as the one provided in this paper is
underscored by the fact that this may fail to hold in several natural situations. In
[11], the following points were illustrated:

• not all reasonable performance measures are fluid-optimizable;
• even if a performance measure is not fluid-optimizable, there may be a sub-

stantial family of fluid-optimal policies which yield asymptotically optimal
sequences.
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To this end, two examples of stochastic optimal control problems were identified –
one involving a single station and one involving a tandem queue.

In the single-station example, both the corresponding fluid control problem and
the asymptotically optimal control problem were solved. More precisely, a necessary
and sufficient condition for fluid-optimality, as well as a broad class of asymptotically
optimal sequences of policies, were identified (see Theorem 3.2.5 (p.40) and Theorem
3.4.8 (p.49), respectively, in [11]). Using these results, it is easy to show that for a
certain set of parameters most, but not all, fluid-optimal policies are asymptotically
optimal. In addition, it is also possible to construct an example (not studied in [11]) for
which there is a unique fluid-optimal policy that does not generate an asymptotically
optimal sequence. All of the above results are easily generalizable to the single station
with a feedback loop.

In the tandem queue set-up, it was demonstrated that for a certain set of param-
eters, not only is the performance measure in question not average fluid-optimizable,
but it is not possible to have an asymptotically optimal sequence that consists of de-
terministic policies (see Section 4.7 (p.91) of [11]). This result indicates that in some
situations, a first-order analysis may not be sufficient to design near-optimal policies,
but a more detailed analysis will be required. This further emphasizes the need for
determining rigorous conditions under which a first-order analysis is sufficient.

Appendix A. The Functional Strong Law of Large Numbers (FSLLN).
In this section, we present and prove a version of the Functional Strong Law of Large
Numbers (FSLLN). We emphasize that this result, albeit very similar in spirit to
Theorem 2.1 of [25], is different. Stochastic processes used to model the exogenous
arrival and potential service processes in [25] and in the present paper are merely
identically distributed. However, since the processes involved are required to converge
almost surely, it is necessary to formulate and justify the FSLLN in the present setting.
Recall that our model for the primitive processes in the open network via PPPs was
necessary to keep track of the accumulation of information available in the associated
optimal control problem by means of the filtration {Ht} of (2.7).

Theorem A.1. Let µ ∈ L1
+[0, T ] and p : [0, T ] → [0, 1] be deterministic mea-

surable functions and let ξ be a PPP on the domain S := [0, T ] × [0,∞) × [0, 1]
with Lebesgue measure as the mean intensity measure. Let the sequence of stochastic
processes {Y (n)} be defined as

Y (n)(t) = ξ{(s, x, y) : s ≤ t, x ≤ nµs, y > ps}, t ∈ [0,∞), n ∈ N.

Then, as n→∞,

1
nY

(n) → I((1− p)µ), a.s. in the uniform topology. (A.1)

To prove this theorem, we start with an equality in distribution. Its proof is
straightforward, but technical and lengthy. However, since we could not find a refer-
ence for the result, we include it here for completeness.

Lemma A.2. Suppose that N is a unit Poisson process and let µ ∈ L1
+[0, T ] and

p : [0, T ]→ [0, 1] be deterministic measurable functions. Furthermore, let ξ be a PPP
on the domain S := [0, T ] × [0,∞) × [0, 1] with Lebesgue measure as the intensity
measure. Define the stochastic process Y as

Y (t) = ξ{(s, x, y) : s ≤ t, x ≤ µs, y > ps}.
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Then we have the following distributional equality:

N(I((1− p)µ))
(d)
= Y.

Proof. Let ζ denote the Poisson point process on [0, T ] associated with the Poisson
process N(I((1−p)µ)). On the other hand, consider the point process χ on S obtained
as a ν−randomization of the Poisson point process ξ for the probability kernel ν from
S to T := {0, 1} given by

ν((s, x, y), {1}) = 1{x≤µs y>ps},

ν((s, x, y), {0}) = 1− ν((s, x, y), {0}).

We introduce the point process χ because the point process χ̂ on [0, T ], defined as
χ̂(C) = χ(C × [0,∞) × [0, 1] × {1}) on Borel measurable sets C ⊂ [0, T ], is the
Poisson point process associated with the process Y . By the Uniqueness Theorem
for Laplace transforms and Lemma 12.1. in [22], the Laplace transform of a point
process uniquely determines its law. Hence, it suffices to prove that ψχ̂(f) = ψζ(f),
for every nonnegative, measurable f , where ψχ̂ and ψζ are the Laplace transforms
of point processes χ̂ and ζ, respectively. By Lemma 12.2 from [22], we have that for
every nonnegative, Borel measurable f : S × {0, 1} → R+

ψχ(f) = E[exp(ξ(log(ν̂(e−f ))))], (A.2)

where ν̂((s, x, y), ·) = δ(s, x, y) ⊗ ν((s, x, y), ·), for every (s, x, y) ∈ S. Let us tem-
porarily fix the function f as above, and introduce the function G : S → R, as
G = − log(ν̂(e−f )). Using the interpretation of the kernel ν̂ as an operator on the
space of measurable functions, the function G can be rewritten more conveniently as

G(s, x, y) = − log(
∫
T
e−f((s, x, y), t)ν̂((s, x, y), dt))

= − log(
∫
T
e−f((s, x, y), t)δ(s, x, y) ⊗ ν((s, x, y), dt)),

for every triplet (s, x, y) ∈ S. The newly introduced function G allows us to rewrite
(A.2) as

ψχ(f) = E[exp(ξ(log(ν̂(e−f ))))], (A.3)

Directly from the definition, we conclude that G is Borel measurable. Since f is
nonnegative, we must have that e−f ≤ 1, and since ν is a probability kernel, it is
necessary that ν̂(e−f ) ≤ 1. Therefore, G ≥ 0, and we can use Lemma 12.2 from [22]
again to obtain

ψχ(f) = E[exp(−ξ(G))] = exp{−ϑ(1− e−G(s, x, y))}, (A.4)

where ϑ is the intensity measure of the process ξ, i.e., ϑ = E[ξ]. Recalling that ξ is a
unit Poisson point process on S, we conclude that

ψχ(f) = exp

{
−
∫

[0,1]

∫
R+

∫
[0,T ]

(1− e−G(s, x, y)) ds dx dy

}
. (A.5)
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From the definition of G in terms of f , the expression in (A.5) equals

ψχ(f) = exp
{
−
∫
S

(1− elog(ν̂(e−f((s,x,y),·)))) ds dx dy
}

= exp
{
−
∫
S

(1−
∫
T
e−f((s,x,y),t)δs ⊗ ν((s, x, y), dt)) ds dx dy

}
= exp

{
−
∫
S

(1−
∫
T
e−f((s,x,y),t)ν((s, x, y), dt)) ds dx dy

}
= exp

{
−
∫
S

(1− e−f((s,x,y),1)1{x≤µs y>ps} − e
−f((s,x,y),0)1{x>µs y≤ps}) ds dx dy

}
.

In particular, for all f such that f(·, 0) = 0, we have

ψχ(f) = exp
{
−
∫
S

(1− e−f((s,x,y),1)1{x≤µs y>ps} − (1− 1{x≤µs y>ps})) ds dx dy
}

= exp
{
−
∫
S

1{x≤µs y>ps}(1− e
−f((s,x,y),1)) ds dx dy

}
.

(A.6)

Let us define the operator F on real functions on S to real functions on S × T
as F (g)((s, x, y), t) = g(s, x, y)1{1}(t). Then we have, using (A.6), that for every
measurable g : S → R+

ψχ(F (g)) = exp{−
∫
S

1{x≤µs y>ps}(1− e
−g(s,x,y)) ds dx dy}. (A.7)

Claim 1. For every Borel measurable g : S → R+,

ψχ̂(g) = ψχ(F (g)). (A.8)

In order to prove this ancillary claim, we use “measure theoretic induction”.
1◦ Let g be of the form g = 1B for a Borel set B in [0, T ]. Then we have that

ψχ̂(g) = E[e−χ̂(g)] = E[e−χ̂(B)].

By the definition of χ̂, the above equals

ψχ̂(g) = E[e−χ(B×[0,∞)×[0,1]×{ 1})] = E[e−χ(1B×[0,∞)×[0,1]×{ 1})]

= E[e−χ(1B×[0,∞)×[0,1]×T 1D×{1})] = E[e−χ(F (g))] = ψχ(F (g)).

2◦ Let g be a simple function of the form g =
∑

m≤M
cm1Bm

, where {cm}Mm=1 are

positive constants, and the sets {Bm}Mm=1 are Borel in [0, T ] and mutually
disjoint. Then the operator F acts on g as

F (g)((s, x, y), t) = (
M∑
m=1

cm1Bm×[0,∞)×[0,1](s, x, y))1{1}(t)

=
M∑
m=1

cm1Bm×[0,∞)×[0,1](s, x, y)1{1}(t)

=
M∑
m=1

cmF (1Bm×[0,∞)×[0,1])(s, x, y).

(A.9)
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Due to the linearity of the integration with respect to χ̂, we get

ψχ̂(g) = E
[
e
−

MP
m=1

cmχ̂(Bm)]
.

By the definition of χ̂, the above equality gives us

ψχ̂(g) = E
[
e
−

MP
m=1

cmχ̂(Bm×[0,∞)×[0,1]×{ 1})]
.

Finally, using (A.9) and linearity of χ, we obtain

ψχ̂(g) = E
[
e−χ(F (g))

]
= ψχ(F (g)).

3◦ Finally, let {gn} be an increasing sequence of functions satisfying the equal-
ity (A.8), and such that gn ↑ g pointwise. By the Monotone Convergence
Theorem, we have both

ψχ̂(g) = lim
n→∞

ψχ̂(gn), and ψχ(F (g)) = lim
n→∞

ψχ(F (gn)).

Since functions gn were chosen so as to satisfy (A.8), the proposed claim
(A.8) holds for every appropriate g. We now have that the Laplace transform
of the Poisson point process χ̂ acts on nonnegative measurable functions g :
[0, T ]→ R+ in the following way:

ψχ̂(g) = exp
{
−
∫
S

1{x≤µs, y>ps}(1− e
−g(s)) ds dx dy

}
. (A.10)

Note that the Laplace transform of the Poisson point process ζ associated
with N(I((1− p)µ)) is given by

ψζ(g) = exp

{
−
∫ T

0

µs(1− ps)(1− e−g(s)) ds

}
, (A.11)

for every Borel measurable g : [0, T ]→ R+.
Claim 2. For every Borel measurable g : [0, T ]→ R+,

ψχ̂(g) = ψζ(g). (A.12)

Using (A.10) and (A.11), the left-hand side in (A.12) becomes

ψχ̂(g) = exp
{
−
∫
S

1{x≤nµs}1{y > ps}(1− e−g(s)) ds dx dy
}

= exp

{
−
∫ T

0

∫ ∞
0

1{x≤nµs}

∫ 1

0

1{y > ps}(1− e−g(s)) dx dy ds

}

= exp

{
−
∫ T

0

nµs(1− ps)(1− e−g(s)) ds

}
= ψζ(g).
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We continue with an application of the submartingale inequality.
Lemma A.3. For a unit Poisson process N and ϕ ∈ L1

+[0, T ] we have

∞∑
n=1

P
[∥∥ 1

nN(nI(ϕ))− I(ϕ)
∥∥
T
> ε
]
<∞, for every ε > 0.

Proof. For every n, it is readily seen that the process N(nI(ϕ)) − I(ϕ) is a
martingale. Thus, we can employ the submartingale inequality to obtain

P
[∥∥ 1

nN(nI(ϕ))− I(ϕ)
∥∥
T
> ε
]

= P
[

sup
0≤t≤T

( 1
nN(nIt(ϕ))− It(ϕ))4 > ε4

]
≤ E[(N(nIT (ϕ))−IT (ϕ))4]

n4ε4

≤ 3n(IT (ϕ))2+IT (ϕ)
n3ε4 .

The summability of the right-hand side of the above inequality yields the claim of the
lemma.

The result stated in Theorem A.1 is an easy consequence of Lemmas A.2 and A.3
combined with the Borel-Cantelli lemma.

Appendix B. Auxiliary Fluid-Optimizability Results. For the definitions
and the properties of the M1 and M ′1 topologies, the reader is directed to Sections
12.3 and 13.6. of [41], respectively.

Lemma B.1. Let the sequence {fn}n∈N be bounded in (L1
+[0, T ])k. Then, there

exist a function F in Dd and a subsequence {fnk
}k∈N such that I(fnk

)→ F as k →∞
in the product M ′1−topology on (D[0, T ])d and, equivalently, in the weak M1−topology
on (D(0, T ])d.

Proof. Let {qm} be a sequence containing all rational numbers in the interval
[0, T ] and the endpoint T . Then, the sequence of d−tuples {Iq1(f1

n)} (associated with
the first term q1 of the sequence of rational numbers) has a subsequence {Iq1(f1

nl
)}l

that converges in R. The sequence {Iq1(f2
nl

)}l has a further subsequence that con-
verges in R. We can continue this construction along the remaining components of
the sequence of d−tuples {Iq1(fn)} to obtain a subsequence that converges in Rd. A
continuation of these constructive steps across the elements of {qm} forms a diago-
nalization scheme which produces a sequence {Gl} which is a subsequence of {I(fn)}
and which converges at all the points in the set (Q ∩ [0, T ]) ∪ {T} to a limit in Rd.
We define the function F : [0, T ]→ Rd by

F (r) = inf
q∈Q∩[r,T ]

lim
l→∞

Gl(q).

The fact that the component functions of the terms in the sequence {Gl} are nonde-
creasing implies that the function F is well defined and that for every q ∈ Q ∩ [0, T ],

F (q) = lim
l→∞

Gl(q).

Moreover, since F itself has nondecreasing components, all the components of F
have both right and left limits at all points in (0, T ), the right limit at 0 and the
left limit at T . In addition, if necessary redefining the function F at T as F (T ) =
limt↑T F (t), we can assume that F is left-continuous at T . Next, let us extend the
component-functions of {Gl} and F to the domain [0,∞) so that the extensions are
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linear with the unit slope on [T,∞). By this construction, we have ensured that
the sequence of unbounded, nondecreasing component-functions of {Gl} converges to
the corresponding nondecreasing, unbounded component-functions of F on a dense
subset of (0,∞). These are precisely the conditions of Theorem 13.6.3 of [41]. So, we
conclude that

Gl → F in the product M ′1−topology on (D[0,∞))d.

Using the fact that T is a continuity point of F , we can restrict the domain of the
functions above and assert that

Gl → F in the product M ′1−topology on (D[0, T ])d.

Since by Theorem 12.5.2 of [41], the weak M1−topology coincides with the prod-
uct M1−topology on Dk, it suffices to again utilize Theorem 13.6.3. of [41] to conclude
that the components of {Gl} converge to the components of F in the M1−topology
on (D(0, T ])d.

Remark B.2. We draw attention to the fact that the necessity of the choice
of the M ′1−topology in Lemma B.1 stems from the possibility of a jump at 0 of the
limiting function F . Unless we either relax the choice of topology from the more
conventional M1 to M ′1 or restrict the domain of the converging subsequences, we
can have no hope of obtaining a “relative-compactness-like” result such as the one in
Lemma B.1.

We proceed with a simple lemma regarding the convergence in M ′1 of the compo-
sition of functions from two particular convergent sequences.

Lemma B.3. Let {Yn} and {νn} be sequences in D↑[0, T ] satisfying

Yn → e, in the M ′1−topology on D↑[0, T ], and
νn → ν, in the M ′1−topology on D↑[0, T ]

for some function ν ∈ D↑[0, T ] which is left-continuous at T , and where e denotes the
identity function on the interval [0, T ]. Then, we have

Yn ◦ νn → ν, in the M ′1−topology on D↑[0, T ].

Proof. It is convenient to reduce the discussion of M ′1−convergence D↑[0, T ] to the
discussion of convergence in the M1−topology of restrictions of functions in D↑[0, T ]
to D↑[ε, T ], ε > 0. To substantiate this statement, recall the manner in which the
functions in the proof of Lemma B.1 were extended, and also recall the equivalence
relationship of Theorem 13.6.3 in [41] and the fact that all the (linear, increasing
extensions of) the functions in the present lemma conform to the conditions outlined
therein. Then, one can invoke the definition of the M1−topology for functions on
non-compact domains from p. 414 of [41]. In summary, it suffices to verify that

Yn ◦ νn → ν, in the M1−topology on D↑[ε, T ],

for ε that are positive continuity points of ν. The last claim is a direct consequence
of Theorem 13.2.4 in [41], which completes the proof.
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