21-127 Practice Problems

1. (i) Use the Euclidean Algorithm to compute the greatest common divisor of 212 and 188, and then find all integer solutions of $212 x+188 y=\operatorname{gcd}(212,188)$. Show your work.
(ii) Apples cost 50 cents apiece and bananas cost 30 cents apiece. Joe spends a total of 40 dollars on apples and bananas, eats an apple and then finds that he can split the remaining apples into 5 equal groups and the bananas into 6 equal groups. How many bananas did Joe buy? Show your work.
2. (i) Define a relation Ω on the integers by $(a, b) \in \Omega \Longleftrightarrow a b \equiv 1 \bmod 5$. Is Ω an equivalence relation? Explain why or why not.
(ii) Define a relation Γ on the integers by $(a, b) \in \Gamma \Longleftrightarrow 5 \mid(a-b)^{2}$. Is Γ an equivalence relation? Explain why or why not.
3. Show that if a and b are coprime integers, then the greatest common divisor of $2 a^{2}$ and b^{2} must be 1 or 2 .
4. Let x be an odd integer. Find, with proof, $\operatorname{gcd}\left(2 x^{4}, x^{2}+1\right)$.
5. Define a relation Ω on $\mathbb{Z} \times \mathbb{Z}$ by $(a, b) \Omega(c, d) \Longleftrightarrow a+d \equiv b+c \bmod 3$. Prove that Ω is an equivalence relation.
6. Show that $1^{2}-2^{2}+3^{2}-4^{2}+\cdots+(-1)^{n-1} n^{2}=(-1)^{n-1}[n(n+1) / 2]$ for every natural number n.
7. Let x be a real number. Show that if $x+1 / x$ is an integer, then $x^{n}+1 / x^{n}$ is an integer for every positive integer n.
