
1. Give counterexamples for each of the following statements.
Briefly explain why your counterexamples are, in fact, counterexamples.

(i) (∀x ∈ R) (∃!y ∈ R) (xy = 0).

Consider x = 0. Then there are at least two different values of y such that
xy = 0, namely y = 1 and y = 2.

(ii) (∀ sets A, B) (A×B = B ×A⇔ A = B).

Consider A = ∅ and B = {1}. Then A×B = B ×A = ∅, but A 6= B.

(iii) (∀ sets A, B) (P(A) \ P(B) = P(A \B)).

Consider A = B = ∅. Then the left hand side is ∅, while the right hand side
is {∅}, which is not the empty set.



2. (i) Match each propositional formula on the left to the propositional
formula on the right with which it is equivalent. You can draw lines between
equivalent formulae and there is no need to justify or show work.

p q ∨ (p ∧ q)

q p ∨ ((¬p) ∧ q)

p ∨ q p⇒ q

p ∧ q p ∧ ((¬p) ∨ q)

(¬p) ∨ q p ∧ (p ∨ q)

Solution. The statements on the left are equivalent (in order) to the fifth,
first, second, fourth and third statements on the right.

(ii) Show that p⇒ (q ∨ r) is equivalent to (p⇒ q) ∨ (p⇒ r).

Solution. One can display a truth table verifying that the formulae have
the same truth values for each of the 8 possible truth assignments to p, q,
and r, or one can note that p ⇒ (q ∨ r) is false if and only if p is true
and q ∨ r is false, ie when p is true and both q and r are false. Similarly,
(p ⇒ q) ∨ (p ⇒ r) is false if and only if both p ⇒ q and p ⇒ r are false, ie
when p is true and both q and r are false. Since the necessary and sufficient
conditions for falsity are identical, the formulae are equivalent.



3. For each of the following statements, prove it or prove its negation.

(i) (∀ sets A, B)(∀ A1, A2 ⊆ A)(∀ f : A→ B) (f [A1] \ f [A2] = f [A1 \A2]).

Solution. The statement is false. Consider f : {1, 2} → {1} defined by
f(1) = 1 and f(2) = 1. Then

f [{1}] \ f [{2}] = ∅ 6= {1} = f [{1} \ {2}].

(ii) (∀ sets A, B)(∀ B1, B2 ⊆ B)(∀ f : A→ B) (f−1[B1] ∩ f−1[B2] = f−1[B1 ∩B2]).

Solution. The statement is true. Let the sets A, B, subsets B1, B2 ⊆ B,
and the function f : A→ B be given. Then

x ∈ f−1[B1] ∩ f−1[B2]

⇔ (x ∈ f−1[B1]) ∧ (x ∈ f−1[B2])

⇔ ((x ∈ A) ∧ (f(x) ∈ B1)) ∧ ((x ∈ A) ∧ (f(x) ∈ B2))

⇔ (x ∈ A) ∧ ((f(x) ∈ B1) ∧ (f(x) ∈ B2))

⇔ (x ∈ A) ∧ (f(x) ∈ B1 ∩B2)

⇔ x ∈ f−1[B1 ∩B2].



4. Let R+ be the set of positive real numbers. Consider

f : R+ × R+ → R× R+ defined by f(x, y) = (x2 − y2, x + y).

(i) Prove that f is an injection.

Solution. Let (x, y), (x′, y′) ∈ R+×R+, and assume that f(x, y) = f(x′, y′).
Then x2−y2 = (x′)2− (y′)2 and x+y = x′+y′. Factoring the first equation
yields (x− y)(x + y) = (x′ − y′)(x′ + y′). Using the fact that the factors on
the right are equal and non-zero, this implies that x − y = x′ − y′. Thus,
2x = (x+ y) + (x− y) = (x′ + y′) + (x′ − y′) = 2x′, from which we conclude
x = x′. Substituting this back into x + y = x′ + y′ yields y = y′ and hence
(x, y) = (x′, y′), as desired.

(ii) Prove that f is NOT a surjection.

Solution. The ordered pair (1, 1) is not in the image of f . Assume for the
sake of contradiction that there is (x, y) ∈ R+ × R+ such that f(x, y) =
(1, 1). Then x2 − y2 = (x − y)(x + y) = 1 and x + y = 1. Substituting
the second equation into the first yields x − y = 1. From this, we have
2y = (x + y) − (x − y) = 1 − 1 = 0, which implies that y = 0. This
contradicts our assumption that y is a positive real number.



5. Given sets A, B, C and D prove that (A ∩ B) \ (C ∩ D) is a subset of
(A \ C) ∪ (B \ D). Exhibit sets A, B, C and D which show that the two
quantities needn’t be equal.

Solution. Let x ∈ (A ∩ B) \ (C ∩D). Then x ∈ (A ∩ B) and x /∈ (C ∩D).
Since x ∈ (A ∩ B), x ∈ A and x ∈ B. Since x /∈ (C ∩ D), DeMorgan’s
Law implies that x /∈ C or x /∈ D. If x /∈ C, then x ∈ A \ C and hence
x ∈ (A\C)∪(B\D). If x /∈ D, then x ∈ B\D and hence x ∈ (A\C)∪(B\D).
In either case, x ∈ (A \ C) ∪ (B \D), and the result is proven.

To show that the two quantities needn’t be equal, let A = {1} and let B,
C, and D all be the empty set. In this case, (A∩B) \ (C ∩D) is the empty
set, while (A \ C) ∪ (B \D) = {1}.



Bonus. Let Tn be the number of ways of tiling a row of n squares using
dominoes (dominoes cover 2 adjacent squares) and squares.

Note that T1 = 1, T2 = 2, and T3 = 3. What is T10?

Solution. The tilings can be partitioned into two disjoint sets, depending on
whether the rightmost tile in the tiling is a domino or a square. This yields
the recurrence relation Tn = Tn−1 + Tn−2 for all n ≥ 3. Using this relation
recursively, we see that T4 = 5, T5 = 8, T6 = 13, T7 = 21, T8 = 34, T9 = 55,
and finally, T10 = 89.


