## INDUCTIONFEST

Inductionfest was first held in 2004. It is always so successful that it is held the following year.
Instructions: Work the first problem. After working a problem, work the problem that follows it.

Example 1. Show that for every positive integer $n, \quad 1 \cdot 1!+2 \cdot 2!+\cdots n \cdot n!=(n+1)!-1$.

Example 2. Let $h$ be a real number, $h \geq-1$. Show that for every positive integer $n$,

$$
1+n h \leq(1+h)^{n} .
$$

Example 3. Show that for every positive integer $n, \quad 21 \mid\left(4^{n+1}+5^{2 n-1}\right)$.

Example 4. Consider the sequence $\left\{a_{n}\right\}$ defined by $a_{0}=2, a_{1}=1$, and $a_{n}=3 a_{n-1}+a_{n-2}$ when $n \geq 2$. First show that for all natural numbers $n, \quad 3 \nmid a_{n}$. As a second problem, show that $a_{n}$ is even if and only if $n$ is a multiple of 3 .

Example 5. Show that every positive integer $n$ can be written as a sum of Fibonacci numbers, such that no number is repeated and no pair of adjacent Fibonacci numbers are used (for example, 1 can't be repeated and 5 and 8 can't both be used).

