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1 Counting Numerically

Counting is generally really difficult; there are many sets which cannot be counted in any nice way,
and even if a set is nice to count, there are still many ways to accidentally undercount/overcount
and relatively few ways to count correctly. Even so, that doesn’t stop us from trying!

1.1 Fundamental Principles

Proposition 1 (Addition Principle). If a finite set S is partitioned into S1, . . . , Sk, i.e.
⋃k

i=1 Si = S

and Si ∩ Sj = ∅ for i 6= j, then |S| =
∑k

i=1 |Si|.

Informally, this states that if the thing we’re trying to count can be completely split into some k
nonoverlapping cases, then we can add the results we get for the cases to get what we’re trying
to count. For this, it is important to explicitly check that your cases actually cover everything
and that they do not overlap. Often, these are pretty obvious, but nonzero work should be shown,
especially in claiming that everything is attained. Technically, we should also be showing that our
cases give us elements in the desired set, but we normally define the cases to do exactly that.

Proposition 2 (Multiplication Principle (informal)). If a set of n-tuples is created by picking
coordinates in a process such that there are a1 choices for the first coordinate, and given any choice
of values of the first i coordinates, there are ai+1 choices for the i+1st coordinate, then the number
of such n-tuples is

∏n
i=1 ai.

Even more informally, this states that if the thing we’re trying to count is found by some process
in which each step always has the same number of choices (regardless of everything else), then we
can multiply these numbers of choices to get what we’re trying to count. It is extremely important
to note that generates a tuple; often, we want to count the number of sets rather than tuples. We
can work around this by treating these sets as having a specific ordering (which we get to decide),
and then counting the number of tuples with that precise ordering.

Proposition 3 (Complementary Counting). Given a finite set X and a subset U ⊆ X. Then
|U | = |X| − |X \ U |.

Some times it is easier to count the complement than what you originally wanted—this is often the
case when your original set is complicated or filled with many cases. A keyword which may suggest
complementary counting is something like “at least” or “at most,” where the complement has very
few cases when looking at exact quantities. Of course, if the original “at least” only requires 2
exact cases when the complement requires like 4, attempting to use the complement is just much
more work.

1.2 Checking Your Answer

After writing down a process, it can still be unclear if your process actually produces the set you
wanted—perhaps it may have missed some elements or repeated some elements. (Formally, we
want a bijection from the tuples found to whatever set we desire; typically we won’t make any
such bijection explicit.) It may be helpful to think about what the process produces and consider
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a sample element that we want to get from the set. Given this sample object, can you attain
it somehow in your process? Can you attain it multiple ways? The latter is very commonly a
problem which emerges when trying to count sets. Steps which say “pick anything” are prone to
overcounting, especially if there is some other step with overlapping choices. Attempting to run
your process may also help you to determine how to specify your process in your writeup.

Another common way to check your answer is to attempt to count your set in a different way—
perhaps you can change the order in which you pick things, perhaps you can use complementary
counting, or perhaps you can interpret your set differently (i.e. change the scenario you are in; I
for one, like thinking about lattice paths).

Yet another way to check your answer (or actually to approach the problem) is to try a much
smaller case of the same problem or a similar problem, so you can explicitly list out cases. This
is often tedious and prone to other errors (maybe you made a different problem or you made a
mistake listing out cases), but it can still be helpful in attempting to make your problem more
concrete/approachable.

1.3 Lots of Problems

Example 1 (Warmup). How many ways are there to label the 4 corners of a square with letters
(i.e. A to Z) such that adjacent corners get different letters?

Thoughts. We begin labeling the top left corner—26 choices. We label the top right and bottom
left—25 choices each. Now when we get to labeling the bottom right corner, we need it to be
different from the top right and bottom left. At this point you may be tempted to say there are
24 choices left but if the top right and bottom left corner are the same, then there are actually 25
choices! We fix our argument to case on if corners are the same and then proceed to write it up...

Proof. We case on whether or not the top left and bottom right corners have the same label. Note
that there are exactly two possibilities: either they have the same label or they have different
labels. Since the second possibility is really the negation of the first possibility, one must happen,
and clearly the corners cannot simultaneously have the same and different labels. Thus, we have a
partition and can apply the addition principle.

• Case 1: Top left and bottom right corners have the same label. Our process is then:

1. Pick the label for the top left corner. There are 26 choices.
2. Pick the label for the bottom right corner. This is fixed to be the same as the top left,

so we have 1 choice.
3. Pick the label for the top right corner. Since this label must differ from that of the top

left and bottom right, we omit that label and only have 25 choices.
4. Pick the label for the bottom left corner. Analgously to the previous case, this label

must different from that of the top left and bottom right, so there are 25 choices.

By the multiplication principle, we have 26 · 1 · 25 · 25 ways in this case.

• Case 2: Top left and bottom right corners have different labels. Our process is then:

1. Pick the label for the top left corner. There are 26 choices.
2. Pick the label for the bottom right corner. It must differ from the top left corner, so we

omit that label to get 25 choices.
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3. Pick the label for the top right corner. It must differ from the top left and bottom right,
so we omit those 2 labels to get 24 choices.

4. Pick the label for the bottom left corner. Again it differs from the top left and bottom
right, so we have 24 choices.

By the multiplication principle, we have 26 · 25 · 24 · 24 ways in this case.

Combining the cases via the addition principle, we have a total of 26 · 252 + 26 · 25 · 242 = 390, 650
ways to label the square.

Example 2 (Two Suits). How many hands of 4 cards from a standard 52-card deck contain cards
of exactly 2 suits?

Thoughts. I actually screwed up many times when trying to count this. The main idea is that
we want to pick which 2 suits appear and then pick the 4 cards from these suits. This suggest(
4
2

)(
26
4

)
—but this does not work since it also includes cases where only 1 suit appears. You may

then think that you just need to remove the number of ways to get 1 suit, but it turns out that
this actually counts the number of ways to get cards of a single suit multiple times! Thus, it may
be better to explicitly case on how many cards of each suit appear.

Proof. We case on whether there is 1 card of a suit and 3 cards of the other or 2 cards of both
suits. Note that the suit with fewer cards must still have at least 1 card, and it cannot have more
than 2 cards, since then it would have more than half of the total cards and so more cards than
the other suit. Thus, we cover all cases. Clearly you cannot have different amounts of cards of a
single suit in the same hand, so these cases are also disjoint. Thus, these form a partition and we
can apply the addition principle.

• Case 1: 1 card of a suit and 3 cards of the other

1. Pick the suit for the single card:
(
4
1

)
2. Pick the rank for the single card:

(
13
1

)
3. Pick the suit for the triple of cards:

(
3
1

)
(note: we can’t re-pick the first suit)

4. Pick the ranks for the triple of cards:
(
13
3

)
By the multiplication principle, we have 4 · 13 · 3 ·

(
13
3

)
ways in the case.

• Case 2: 2 cards of each suit

1. Pick the 2 suits (note that we do not care which order the suits are in):
(
4
2

)
2. Pick the 2 ranks from the suit first in alphabetical order:

(
13
2

)
3. Pick the 2 ranks from the remaining suit:

(
13
2

)
By the multiplication principle, we have

(
4
2

)(
13
2

)(
13
2

)
ways in the case.

Combining via the addition principle, we have a total of 4 · 13 · 3 ·
(
13
3

)
+
(
4
2

)(
13
2

)(
13
2

)
= 81, 120 ways

to pick a hand of 4 cards such that exactly 2 suits appear.

We can also write an alternative proof using inclusion/exclusion and complementary counting which
basically does what the original thoughts were.
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Proof. (Inclusion/Exclusion + Complementary). We find the number of hands of 4 cards with
exactly 2 suits by finding the number of hands of 4 cards such that at most 2 suits appear and then
subtracting out the number of hands of 4 cards such that at most 1 suit appears. Note if at most
1 suit appears, then we have that exactly 1 suit appears.

• At most 2 suits: Define sets S1, . . . , S6 to have hands of 4 cards contained among some set
of 2 suits: in particular, we can let S1 be hands of spades/hearts, S2 of spades/clubs, S3

of spades/diamond, S4 of hearts/clubs, S5 of hearts/diamonds, S6 of clubs/diamonds. Note

then that we want to find
∣∣∣⋃6

i=1 Si

∣∣∣ and so we proceed by inclusion/exclusion. First note that

|Si| =
(
26
4

)
since we pick 4 cards from the 2 suits.

Note that Si ∩ Sj (for i 6= j) either is empty if there are no suits in common or is the set
consisting of cards only from the single overlapping suit (if both suits were shared, the sets
would be the same). In particular, there are 4 ×

(
3
2

)
= 12 pairs of overlapping sets—4 ways

to pick the suit they overlap in and
(
3
2

)
ways to pick the other two suits for these sets. In this

case |Si ∩ Sj | =
(
13
4

)
, the number of ways to pick 4 cards from a single suit.

Similarly, Si ∩Sj ∩Sk for i, j, k different is only nonempty if all 3 have some suit in common.
Note that it is not possible for the 3 sets to share 2 suits just as in the previous case. Then,
there are 4×

(
3
3

)
= 4 such triples of sets. Again, we have |Si ∩ Sj ∩ Sk| =

(
13
4

)
, the number of

ways to pick 4 cards from a single suit.

We then apply Inclusion/Exclusion to get that∣∣∣∣∣
6⋃

i=1

Si

∣∣∣∣∣ =
6∑

i=1

|Si| −
∑

{i,j}⊆[6]

|Si ∩ Sj |+
∑

{i,j,k}⊆[6]

|Si ∩ Sj ∩ Sk| = 6

(
26

4

)
− 12

(
13

4

)
+ 4

(
13

4

)

• 1 suit: There are 4 ways to pick a suit, and then
(
13
4

)
ways to pick 4 cards from that suit. By

the multiplication principle, there are 4
(
13
4

)
ways total.

Using complementary counting, we have that there is a total of 6
(
26
4

)
− 8
(
13
4

)
− 4
(
13
4

)
= 6

(
26
4

)
−

12
(
13
4

)
= 81, 120 ways to pick a hand of 4 cards such that exactly 2 suits appear.

Example 3. How many ways are there for me to distribute some amount of my 10 (essentially
indistinguishable) Sinosaurus plushies to 4 distinguishable people? Note: I may want to keep some.

Remark 4. We can rephrase this as how many solutions are there to x1 +x2 +x3 +x4 ≤ 10, where
xi ∈ N for i ∈ [4]?

Thoughts/Proof. We can add me in as another person who gets a nonnegative number of plushies,
since I just get whatever is left. Then, our problem becomes how many solutions are there to∑5

i=1 xi = 10 where xi ∈ N for i ∈ [5]. We now know how to solve this—there are
(
10+5−1
5−1

)
=(

14
4

)
= 1001 ways to distribute plushies!

Remark 5. The technique used to count the number of solutions to
∑k

i=1 xi = n is often called
stars and bars (or balls and urns). This is since we are trying to arrange n indistinguishable stars
and k − 1 indistinguishable dividing bars in n + k − 1 slots. It’s also important to remember that
the space before the first and after the last divider also account for x1 and xn respectively, so we
only need k − 1 dividers.
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Example 4. Given 2 red dice and 3 green dice, how many ways are there such that exactly 3 dice
rolls have the same value and the remaining two have different values? Note: I cannot tell the red
dice apart, so getting a 5 and a 3 on the red dice is the same as getting a 3 and a 5.

Proof. We case on the number of red dice which are a part of the triple of the same value. Note
that since there are 2 red dice, either none of them, 1 of them, or both of them are in that triple.
These cases are clearly disjoint, so we have a partition.

• No red dice:

1. Pick the value for the triple (these are all green dice): 6 ways
2. Pick the values for the 2 red dice:

(
5
2

)
ways (order does not matter)

By multiplication principle we have 6
(
5
2

)
ways in this case.

• One red die:

1. Pick the value for the triple (2 green, 1 red): 6 ways
2. Pick the value for the remaining green dice: 5 ways
3. Pick the value for the remaining red dice: 4 ways

Note here that the order of values for the remaining dice matters since they are of different
colors. By the multiplication principle we have 6 · 5 · 4 ways in this case.

• Two red dice:

1. Pick the value for the triple (2 red, 1 green): 6 ways
2. Pick the values for the remaining green dice:

(
5
2

)
ways (order does not matter)

By multiplication principle, we have 6
(
5
2

)
ways in this case.

By the addition principle, we get a total of 6
(
5
2

)
+ 6 · 5 · 4 + 6

(
5
2

)
= 360 ways.

Definition 6 (Lattice Path). A lattice path is some sequence of moves each going one unit right
or up; often we consider it from (0, 0) to (m,n) for m,n ∈ N.

Example 5. How many lattice paths are there from (0, 0) to (m,n)?

Proof. Note that in every such lattice path, we have precisely m right moves and n up moves.
Then, it is just a matter of deciding which of the m+n total moves are right moves, since then the
remaining moves are just up moves. Thus, there are

(
m+n
m

)
paths.

Example 6. How many lattice paths from (0, 0) to (5, 3) avoid (1, 1), (1, 2), (2, 1), (2, 2)?

Figure 1: Avoid the darkened square

Proof. (Cases). Note that if we have both a right and an up in the first 3 moves, we intersect the
square. Thus, the only ways to avoid the square are by going right 3 times or up 3 times for our
first 3 moves. Clearly these do not overlap, so we have a partition of the desired paths.
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• 3 rights: Then 2 rights and 3 ups remain for a total of
(
5
2

)
= 10 paths.

• 3 ups: Then 5 rights and 0 ups remain for a total of
(
5
0

)
= 1 path.

By the addition principle, we have a total of 10 + 1 = 11 paths avoiding the square.

Proof. (Complementary Counting). Note that it suffices to count the total number of paths and
subtract the number of paths intersecting the square. There are

(
8
3

)
total paths. Note that any

path intersecting the square must either intersect (1, 2) or (2, 1)—if it intersects (1, 1), the next
move brings us to one of these and if it intersects (2, 2), we either came from an up (came from
(2, 1)) or right (came from (1, 2)). Also no path can intersect both since that would require a left
or down. This is then a partition.

• Reaches (1, 2):

1. Pick a path to get to (1, 2):
(
3
1

)
ways

2. Pick a path to get from (1, 2) to (5, 3):
(
5
1

)
ways (4 rights, 1 up)

By the multiplication principle, we have 3 · 5 ways in this case.

• Reaches (2, 1):

1. Pick a path to get to (2, 1):
(
3
1

)
ways

2. Pick a path to get from (2, 1) to (5, 3):
(
5
3

)
ways (3 rights, 2 ups)

By the multiplication principle, we have 3
(
5
3

)
ways in this case.

By the addition principle, we have a total of 3 ·5 + 3
(
5
3

)
= 45 ways. We subtract this from the total

number of paths to get
(
8
3

)
− 3 · 5− 3

(
5
3

)
= 56− 45 = 11 paths avoiding the square.

Remark 7. While in this case, the path avoiding the removed square was easy to directly case on,
this is not generally the case. Consider running through the argument for:

Example 7. Find the number of lattice paths from (0, 0) to (m,n) where you go left exactly once
and the whole path remains within the rectangle formed by (0, 0), (m, 0), (m,n), (0, n).

Proof. This ends up being a surprisingly simple process. We have a total of m+n+2 moves, where
m + 2 are horizontal moves and n are up’s. We first pick which are the horizontal moves, of which
there are

(
m+n+2
m+2

)
ways. But then we must pick which of the horizontal moves is the left—it cannot

be the first move, since then we’d go negative, and it cannot be the last move, since then we’d go
too far right. However, any other moves keep us within the rectangle, so we have m choices for the
left. By the multiplication principle, there are m

(
m+n+2
m+2

)
ways.

Example 8. How many functions are there from [5] → [8] which are not injective? What about
from [k]→ [n] in general, where k ≤ n? (What happens if k > n?)

Thoughts. Please don’t actually list them out. Explicitly trying to figure out where outputs match
is also really difficult, but the “not” in the example should be quite suggestive...
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Proof. We find the number of functions from [k] → [n] which are not injective by complementary
counting. Note that there are a total of nk functions—we choose one of n values for each of the k
inputs. There are n · (n − 1) · · · (n − k + 1) = n!

(n−k)! injective functions where we pick the output
for each of the k inputs to be among the previously unpicked values. By complementary counting,
we then get that there are nk − n!

(n−k)! not-injective functions.

In our specific case, that gives us 85− 8!
3! = 26048 functions, which would’ve taken a very long time

to list.

Example 9. How many “words” can be formed from rearranging the letters of COMMITTEE?

Proof. We define a process to arrange the letters in the 9 positions as follows:

1. Pick 2 positions for the M’s:
(
9
2

)
2. Pick 2 positions for the T’s:

(
7
2

)
3. Pick 2 positions for the E’s:

(
5
2

)
4. Arrange the C, O, I within the remaining 3 positions: 3!

By the multiplication principle, we get that there are
(
9
2

)(
7
2

)(
5
2

)
3! = 9!

2!2!2! = 45360 ways.

Do you see where the second expression comes from? Also, if you happen to be me, the only
“arrangement” that matters is the misspelling of “committees” as “commitees”.

In counting, don’t be afraid to try different approaches if your first approach seems tedious or
seems to count the wrong thing. Do be very careful in constructing your processes though! Also
remember that upon seeing solutions, they may seem very simple, but this does not mean that they
are easy to find.
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2 Counting in Two Ways

The main idea of counting in two ways is to show that two expressions are equal by exhibiting
a set and showing that both sides count the size of this set. Note that by the uniqueness of the
cardinality of a set, we can conclude that the two expressions are thus equal. It is also possible to
have the expressions count two sets and then find a bijection between the sets—this may result in
more work since you then need to define a function and prove that it is well-defined and bijective.

Perhaps the hardest part of counting in two ways is constructing the set; this is where you need to
determine what your expressions can actually count and how they interact. Once you determine
your set, you have likely figured out how your expressions count the set. In some sense, this reverses
counting numerically, since you start with (abstract) sizes and try to build something of that size.

Important: Please do not do algebraic manipulations to an expression when we ask you to prove it
by counting in 2 ways! Also, “simple” manipulations should be fairly easy to reason about.

2.1 Fundamental Expressions

When counting in two ways, it’s very useful to have a sense of what the following can count/have
prototypical examples of how to think about various expressions. This list is certainly nonexhaus-
tive, and as you get practice, you should gain intuition on which of these may be easiest to work
with. Note that in counting in two ways, you will often have a combination of these expressions,
so it is good to understand how these sets interact.

•
(
n
k

)
: picking k things from n things

– number of subsets of [n] with size k
– number of binary strings with k 1’s (or k 0’s)
– number of lattice paths from (0, 0) to (k, n− k) (see examples above)

• 2n: making some binary choice n times (see an as well)

– number of subsets of [n]
– number of binary strings of length n

• an: deciding from a choices n times

– number of functions f : [n]→ [a]
– number of ways to color n distinguishable objects with a colors
– number of ways to divide n things into a (possibly empty) groups
– number of a-ary strings of length n (i.e. made of a symbols)

• n!: ordering n things

– number of permutations of [n] (or any other set)

•
∑n

k=0: partitioning based on some k

– k can represent the size of the sets in the partition
– k can represent a special element in the sets (eg. the largest element; often you will pick

fewer elements on one side for this case)
– k can represent the number of elements we pick from some part of a partition

• n: pick 1 thing from n things

– it can be helpful to interpret n as
(
n
1

)
sometimes
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There are other important identities (some of which we’ve alluded to in Counting Numerically
such as

(
n+k−1
k−1

)
) which may also help you interpret the expressions in a more natural way. Perhaps

one of the most important of those identities would be that
(
n
k

)
=
(

n
n−k
)

so you can think about
the things with that property (e.g. being in the set, being a 1) or without it. Also remember that
order does not matter in multiplication, so rearranging the terms in the product may also help.
Often expressions will be written in a way that looks aesthetically pleasing without regards to the
process used to make them.

A good thing to think about is how many things you’re picking and how many things you’re picking
from. From there, you also want to think about how these things interact—are they distinguishable?
is it a single set? is a tuple of sets? a set of tuples? Or if you’re working with a specific scenario,
how exactly do these committees/cases interact? Do you have special elements? A lot of this
intuition will come from practice, and the rest will come from just trying a lot of scenarios and
attempting many matchings of “variables” to amounts of stuff getting picked.

2.2 Lots of Problems

(these are mostly sourced from Mathematical Thinking: Problem-Solving and Proofs by John. P.
D’Angelo and Douglas B. West)
(I’ve also gotten lazy on showing intuition so you’ll have to be at the session to hear about it!)

Example 10. By counting in 2 ways, show that
∑n

k=1 2k−1 = 2n − 1 for n ∈ N.

Proof. Let S be the set of nonempty subsets of [n]. We prove that the LHS and RHS[1] count |S|.
For the RHS, note that there are 2n−1 nonempty subsets of [n] since there are a total of 2n subsets,
and we must remove the one empty one.

For the LHS, let Sk be the set of subsets of [n] with largest element k. Note that every nonempty
subset of [n] has a largest element which is between 1 and n, so

⋃n
k=1 Sk = [n] (technical note: this

actually only shows that
⋃n

k=1 Sk ⊇ [n], but we had defined Sk ⊆ S, so
⋃n

k=1 Sk ⊆ S). Furthermore
note that the largest element of a set is unique, so Si ∩ Sj = ∅ for i 6= j. Thus, this defines a
partition of S, so

∑n
i=1 |Sk| = |S|.

Now for a fixed k, we claim that |Sk| = 2k−1. This k must be in any subset [n] which is an element
of Sk, and then we must decide which elements smaller than k are in the subset. There are k − 1
elements smaller than k, each with a choice of being in or out of the set, so there are a total of
2k−1 subsets with k as the largest element.

Thus, we can conclude that
∑k

i=1 2k−1 = |S| = 2n − 1.

Example 11. By counting in 2 ways, show that
∑n

k=0 k
(
n
k

)
= n2n−1 for n ∈ N. (This is also equal

to n
∑n

k=1

(
n−1
k−1
)
)

Proof. We count the number of committees of any size with a chairperson (who is in the committee)
which can be formed from n distinguishable people in 2 ways. For the RHS, note that we can define
a process by:

1. Pick a chairperson: n ways
2. Pick the rest of the committee; each person is either in or out of the committee and there are

n− 1 remaining people, so we have 2n−1 ways

[1]LHS = left hand side, RHS = right hand side
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which gives us n2n−1 ways by the multiplication principle.

For the LHS, we case on the number of people in the committee. Note that we must pick some
number of people, and if k is the number of people in the committee, 0 ≤ k ≤ n since we have a
nonnegative number of people in the committee and at most as many people as we have can be in
the committee. Also the number of people in the committee cannot have 2 values, so these cases
are distinct and form a partition.

Now for a fixed k, we claim that there are k
(
n
k

)
ways to pick a committee of k people with a

chairperson (who is in the committee). There are
(
n
k

)
ways to pick the committee and k ways to

pick the chairperson from the committee, which by the multiplication principle gives us k
(
n
k

)
ways.

By the addition principle, we thus have that
∑n

k=0 k
(
n
k

)
= n2n−1.

Example 12. By counting in 2 ways, show that
∑k

i=0

(
m
i

)(
n

k−i
)

=
(
m+n
k

)
for m,n ∈ N.

This is also Example 4.2.51 in the Book.

Proof. We count the number of ways to pick k animals from m + n distinguishable animals where
m are birds and n are... not birds. For the RHS, note that we could simply pick k of the m + n
animals and be done and there

(
m+n
k

)
ways to do so.

For the LHS, we case on the number of birds we pick. Note that we must pick some number of
birds, and if i is the number of birds picked, clearly 0 ≤ i ≤ k (can only pick nonnegative number
and can pick at most the total number of things we pick). Also we cannot pick different amounts
of birds at the same time, so these cases are distinct and thus form a partition.

Now for a fixed i, note that the number of ways to pick k animals such that i are birds follows a
2-step process:

1. Pick the i birds:
(
m
i

)
ways

2. Pick the remaining k − i not-birds:
(

n
k−i
)

which gives us
(
m
i

)(
n

k−i
)

by the multiplication principle. By the addition principle, we thus have∑k
i=0

(
m
i

)(
n

k−i
)

=
(
n+m
k

)
.

Example 13. By counting in 2 ways, show that
∑n

k=−m
(
m+k
r

)(
n−k
s

)
=
(
m+n+1
r+s+1

)
for m,n, r, s ∈ N.

Proof. Let S be the set of subsets of T = {z ∈ Z | −m ≤ z ≤ n} of size r + s + 1. We prove that
the RHS and LHS count |S|. First, |T | = m + n + 1. Then, for the RHS, note that the number of
subsets of size r + s + 1 of a set of size m + n + 1 is simply

(
m+n+1
r+s+1

)
.

For the LHS, let Sk be the set of subsets of T of size r+s+1 such that the r+1st least element (i.e.
the least element after removing the least element r times—there’s really an induction argument
hiding here) is k. Note that any subset of T of size r + s + 1 must have an r + 1st least element,
and this element must be in T , so −m ≤ k ≤ n and

⋃n
k=−m Sk = S. Furthermore, the r + 1st

element is unique just as the least element is unique, so Si∩Sj = ∅ for i 6= j and this indeed forms
a partition, so by the addition principle,

∑n
k=−m |Sk| = |S|.

Now for a fixed k, we find |Sk|. This is a 2-step process:

1. Pick the r elements less than k; we are picking from {z ∈ Z | −m ≤ z ≤ k − 1} which has
size (k − 1) + m + 1 so there are

(
m+k
r

)
ways

2. Pick the s elements greater than k; we are picking from {z ∈ Z | k + 1 ≤ z ≤ n} which has
size n− (k + 1) + 1 so there are

(
n+k
s

)
ways
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so by the multiplication principle, there are a total of
(
m+k
r

)(
n+k
s

)
ways. By the addition principle,

we thus have
∑n

k=−m
(
m+k
r

)(
n−k
s

)
= |S| =

(
m+n+1
r+s+1

)
.

Remark 8. Note that for S = {z ∈ Z | a ≤ z ≤ b}, |S| = b − a + 1 and not b − a. To convince
yourself, define a bijection f : [b− a + 1]→ S via f(x) = a− 1 + x. What happens when we plug
in f(b− a + 1)? (Check that it’s actually a bijection)

Example 14. By counting in 2 ways, show that
(
n
k

)(
n−k
m

)
=
(
n−m
k

)(
n
m

)
for n, k,m ∈ N.

Proof. Let S = {(A,B) | A,B ⊆ [n], A ∩ B = ∅, |A| = k, |B| = m}. We show that the LHS and
RHS count |S|. For the LHS, we have a 2-step process:

1. Pick A from [n]; since |A| = k, there are
(
n
k

)
ways.

2. Pick B from [n] \ A (which makes A ∩ B = ∅); note that |[n] \A| = n − k and |B| = m, so
there are

(
n−k
m

)
ways.

By the multiplication principle, |S| =
(
n
k

)(
n−k
m

)
.

Now for the RHS, we also have a 2-step process:

1. Pick B from [n]; since |B| = m, there are
(
n
m

)
ways.

2. Pick A from [n] \B; note that |[n] \B| = n−m and |A| = k, so there are
(
n−m
k

)
ways.

By the multiplication principle, we thus have
(
n
k

)(
n−k
m

)
= |S| =

(
n−m
k

)(
n
m

)
.

Example 15. By counting in 2 ways, show that
∑m

k=0

(
n
k

)(
m

m−k
)
2n−k =

∑n
l=0

(
n
l

)(
n+m−l

m

)
for

m,n ∈ N. Hint [2]

Proof. Denote [−n] := {−z | z ∈ [n]} and define

S = {(A,B) | A ⊆ [−n] ∪ [m], |A| = m,B ⊆ [−n], A ∩B = ∅}

Intuitively, S is a set of pairs of subsets such that the first set has m elements and elements can be
picked from [m] or [−n], and the second set (possibly empty) is just picked from whatever remains
of [−n]. We show that the LHS and RHS count |S|.
For the RHS, let Sl = {(A,B) ∈ S | |B| = l}, i.e. the set of such pairs of subsets where we picked l
elements of [−n] for B. Note that we must pick some number of elements from [−n], and we must
have 0 ≤ l ≤ n, since we are picking a nonnegative number of elements from at most n elements.
We then have that

⋃n
l=0 Sl = S. Furthermore, since the cardinality of a set is unique, Si ∩ Sj = ∅

for i 6= j. Thus, we have a partition and by the addition principle,
∑n

l=0 |Sl| = |S|.

For a fixed l, we claim that |Sl| =
(
n
l

)(
n+m−l

m

)
. This comes from a 2-step process:

1. Pick the l elements of [−n] which belong to B:
(
n
l

)
ways

2. Pick the m elements from the remaining elements of [−n]∪[m]\B; note that |[−n] ∪ [m] \B| =
n + m− l so there are

(
n+m−l

m

)
ways

By the multiplication principle, there are
(
n
l

)(
n+m−l

m

)
elements. So by the addition principle,

|S| =
∑n

l=0

(
n
l

)(
n+m−l

m

)
and we’re halfway there.

For the LHS, let Tk = {(A,B) ∈ S | |A ∩ [−n]| = k}, i.e. the set of such pairs of subsets where
we picked k elements of [−n] for A. Note that we must have 0 ≤ |A ∩ [−n]| = k ≤ |A| = m, so

[2]Hint: pick 2 subsets
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⋃m
k=0 Tk = S. Since cardinalities are unique, Ti ∩ Tj = ∅ for i 6= j. Thus, this is a partition and by

the addition principle,
∑m

k=0 |Tk| = |S|.
Then for a fixed k, we claim that |Tk| =

(
n
k

)(
m

m−k
)
2n−k. This comes from a 3-step process:

1. Pick the k elements of [−n] which belong to A:
(
n
k

)
ways

2. Pick the m− k remaining elements of A from [m]:
(

m
m−k

)
ways

3. Pick a subset from the remaining elements of [−n] for B: there are n− k remaining elements
of [−n] and any of these can be in or out of B, giving 2n−k ways

By the multiplication principle, there are
(
n
k

)(
m

m−k
)
2n−k ways, and by the addition principle we

finally have
∑m

k=0

(
n
k

)(
m

m−k
)
2n−k = |S| =

∑n
l=0

(
n
l

)(
n+m−l

m

)
.

If you made it through all of this, congratulations! You are well on your way to becoming a counting
master. ,
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