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1, Diestel 7.17: Prove the Erdős-Sós conjecture for the case when the tree considered is a path.

(Hint. Use Exercise 9 of Chapter 1.)

We seek to prove that the maximal number of edges in a graph with n vertices that does not have a
path of length k as a subgraph is 1

2(k−1)n for each k ≥ 2. To do this, we will prove the contrapositive:
if G is a graph with ||G|| > 1

2(k − 1)|G|, then G contains a path of length k as a subgraph. We prove
this claim for fixed k by induction on |G|.
When |G| ≤ k, G has at most

(
k
2

)
= 1

2(k− 1)k ≥ 1
2(k− 1)n edges, so the implication is vacuously true.

Thus for the base case, let |G| = k + 1. If ||G|| ≤ 1
2(k − 1)|G|, the claim holds. Thus assume

||G|| > 1

2
(k − 1)|G| = 1

2
(|G| − 2)|G|.

We wish to bound δ(G). Note that at least one vertex has degree δ(G); other than this vertex, the
other |G| − 1 vertices may form a complete graph. Thus we have

||G|| ≤ δ(G) +

(
|G| − 1

2

)
= δ(G) +

1

2
(|G| − 2)(|G| − 1).

Combining these inequalities, we get

δ(G) +
1

2
(|G| − 2)(|G| − 1) >

1

2
(|G| − 2)|G| ⇒ δ(G) >

1

2
(|G| − 2).

Thus 2δ(G) > |G| − 2, so 2δ(G) ≥ |G| − 1 and δ(G) ≥ |G|−1
2 = k

2 . By exercise 8 in chaper 1 of

Diestel, G contains a path of length at least min{2δ(G), |G| − 1}. We have 2δ(G) ≥ 2k
2 = k and

|G| − 1 = k+ 1− 1 = k, so in either case we are guaranteed a path of length at least k, which of course
contains as a subgraph a path of length k.

Assume, for some fixed natural n > k + 1, that ex(j, Pk) ≤ 1
2(k − 1)j for all j < n. Let G be a graph

on n vertices and consider two cases.

Case 1) δ(G) ≥ k
2 . Then we have 2δ(G) ≥ k and |G| − 1 = n − 1 > k + 1 − 1 = k, so once again by

exercise 8 of chapter 1 in Diestel, we have a path of length k.

Case 2) δ(G) < k
2 . If ||G|| ≤ 1

2(k − 1)|G|, then the implication holds vacuously, so assume otherwise.

Let v be a vertex of degree δ(G). Then 2deg(v) < k so 2deg(v) ≤ k − 1 and deg(v) ≤ k−1
2 . Let H be

G− v. We have |H| = |G| − 1, and ||H|| = ||G|| − deg(v) ≥ ||G|| − k−1
2 . Then

||G|| > 1

2
(k − 1)|G| By assumption

||G|| − k − 1

2
>

1

2
(k − 1)|G| − k − 1

2

||G|| − k − 1

2
>

1

2
((k − 1)|G| − (k − 1))

||G|| − k − 1

2
>

1

2
(k − 1)(|G| − 1)

and

||H|| ≥ ||G|| − k − 1

2
>

1

2
(k − 1)(|G| − 1) =

1

2
(k − 1)|H|

so as |H| < n, by our induction hypothesis H contains a path of length k and thus so does G.
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2, Diestel 7.18: Can large average degree force the chromatic number up if we exclude some tree as
an induced subgraph? More precisely: For which trees T is there a function f : N→ N such that, for
every k ∈ N, every graph of average degree at least f(k) either has chromatic number at least k or
contains an induced copy of T?

We claim the set of such trees is exactly the set of stars. (Note: an r-star is a tree with only leaves
and one vertex of degree r.)

First, let T be an r-star. Let f(k) = r(k−2). Let G be a graph such that d(G) ≥ r(k−2). If χ(G) ≥ k,
we’re done, so assume χ(G) < k and let ϕ be a k − 1-coloring of G. As d(G) ≥ r(k − 2), there must
be a vertex of degree at least r(k − 2), say v. Consider the partition of N(v) into ϕ-color classes. As,
without loss of generality, v is colored 1, there are at most k− 2 classes. By the pigeon-hole principle,
at least one class, say color j, must be of size r (as v has r(k − 2) neighbors). The vertices of color j
are not adjacent, so taking the incuded subgraph of r of those vertices and v gives an r-star. Thus T
is an induced subgraph of G.

Now let T be a graph such that there is a function f such that for any graph G and any k, d(G) ≥
k ⇒ χ(G) ≥ k or T is an induced subgraph of G. Fix k > 2 (the k ≤ 2 cases are trivial) and let
G = Kf(k),f(k). Note that G is bipartite, and thus χ(G) = 2 < k, and d(G) = δ(G) = f(k) ≥ f(k), so
G contains T as an induced subgraph. Let A and B be the parts of G. Let A′ = A∩T and B′ = B∩T .
Assume, without loss of generality, |A′| ≤ |B′|. First we claim |A′| ≤ 1. Assume otherwise. Then
a1, a2 ∈ A′ and b1, b2 ∈ B′ and a1b1a2b2a1 is a cycle in T , contradicting that it is a tree. If |A′| = 0,
then |B′| ≤ 1, and T is a trivial star. Otherwise, |A′| = 1 and T is a |B′|-star. In either case, T is a
star.

Thus we conclude the set of trees with the given property are exactly the star graphs.
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3, Diestel 7.21: Given a graph G with ε(G) > k ∈ N, find a minor H 4 G such that
δ(H) > k > |H|/2.

Let G be a graph with ε(G) ≥ k. Let G′ be a minor of G minimal by subgraph inclusion such that
ε(G′) ≥ k. (We know such a minor exists as G is one.) Note ε(G′) ≥ k ⇒ d(G′) ≥ 2k. We claim
G′ contains a vertex of degree at most 2k. Otherwise, every vertex has degree at least 2k + 1 and
removing any edge gives a more minimal minor while still having ε(G) = 1

2d(G) ≥ 1
2δ(G) = k. Thus

there is x ∈ G′ such that d(x) ≤ 2k. Consider y ∈ N(x). Note if |N(x) ∩N(y)| < k, then G′/xy is a
more minimal minor as it has one fewer vertex but at most k − 1 + 1 = k fewer edges. Let H be the
graph induced by N(x). We have |H| ≤ 2k ⇒ k ≥ |H|

2 and δ(H) ≥ k as each vertex had at least k
neighbors in common with x. Thus H is the minor we seek.
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4, Diestel 7.24: Show that any function h as in Lemma 3.5.1 satisfies the inequality h(r) > 1
8r

2 for
all even r, and hence that Theorem 7.2.3 is best possible up to the value of the constant c.

For positive, even r, the “easiest” way to find a TKr in a Ks,s is to select r
2 vertices in each partition to

be non-subdivided vertices. Then, each partition will need to have an additional
(
r/2
2

)
vertices in the

opposite partition in order to add the missing edges. This is because there are
(
r/2
2

)
pairs of selected

vertices in one partition, and each such pair is missing an edge (by the definition of bipartite), and so
the subdivision will require the use of at least one other vertex (and possibly more) in the opposite
partition. Thus, the subdivision will require a total of at least

r

2
+

(
r/2

2

)
=
r

2
+

r
2( r2 − 1)

2
=

1

8
r2 +

1

4
r

vertices in each partition. With this preliminary calculation in mind, we tackle the general case.

Observe that if more than r/2 vertices are selected in one partition, it is in fact the other partition
that will require more vertices (because of the quadratic number of missing edges). To formalize this,
say that r/2 + x with x ≥ 0 vertices are selected in partition U . Then, assuming r ≥ 4, we have

s ≥ |V | ≥ r

2
− x+

( r
2 + x

2

)
=
r

2
− x+

( r2 + x)( r2 + x− 1)

2
=
r2 + 4x2 + (4r − 12)x+ 2r

8
≥ r2 + 2r

8
.

In the event that r is divisible by 4, this shows that Kr2/8,r2/8 has no subdivision of Kr. In the
event that r is congruent to 2 mod 4, this shows that the complete, balanced bipartite graph with
r2+2r

8 − 1 > r2

8 vertices in each partition has no subdivision of Kr. In both cases, we have exhibited

graphs with average degree at least r2

8 containing no subdivision of Kr. We consider separately the
r = 2 case, because h is a function to natural numbers, and it is clear we must require the average
degree to be at least 1, because all graphs with average degree 0 contain no edges, and therefore no
TK2.
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5, Diestel 7.33: Prove Hadwiger’s conjecture for r = 4 from first principles. Hint: Use induction on
|G|. Color a shortest cycle in G (if G has a cycle) and extend the coloring to the rest of the graph.

We prove by induction on the order of G that if G has no K4 minor then G is 3-colorable. When G
has fewer than 4 vertices, we have at least one color per vertex. Also, when G has no cycles, G is a
forest. So each component of G is a tree, and we can 2-color each tree by beginning at an arbitrary
root and coloring according to the parity of the distance from the root.

Otherwise, G has a cycle, and we let C be a minimum cycle in G. C has no chords, as a chord would
create a smaller cycle. So C is an induced cycle. It is possible therefore to 3-color G[V (C)] by traveling
around the cycle alternating between two colors and coloring the last vertex with the third color. Fix
such a coloring of C. If G = C we are done, otherwise G− C is non-empty.

Let S1, . . . , Sk be the components of G− C. Each has order strictly smaller than G, and is K4-minor
free (by transitivity of the minor relationship). Let 1 ≤ i ≤ k be arbitrary. Si has at most 2 neighbors
in C, because otherwise contracting Si to one vertex and contracting along C to remove all vertices of
C except 3 neighbors forms a K4.

If Si has no neighbors in C we get a coloring of Si from the induction hypothesis and need not modify
it.

If Si has only one neighbor in C, or two neighbors that both received the same color in the coloring
of C, take G[V (C) ∪ V (Si)] and contract C to a single vertex, vC , to get a graph that is K4-minor
free (transitivity) and of smaller order, so 3-colorable by the induction hypothesis. Take a 3-coloring
of this graph, and exchange colors so that vC receives the same color as the neighbor(s) of Si did in
the coloring of C. The result is a 3-coloring of Si that is proper on Si but also proper with respect to
the coloring of C that was fixed.

Otherwise, Si has neighbors x and y in C that received different colors. In this case takeG[V (C)∪V (Si)]
and contract C until only x and y remain from C. The result is again K4 minor free and of smaller
order, so 3-colorable. Take a 3-coloring of this graph, and permute colors so that x gets the same color
as it had in the fixed coloring of C and y gets the same color as it had in C. This is possible because
x and y were adjacent in the original coloring, so they received different colors, just as they do in the
coloring of C. The result is again a 3-coloring of Si that is proper with respect to the coloring of C.

By performing the above for each Si, we obtain a 3-coloring on the entire graph G that is proper,
completing the proof.
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6, Diestel 7.35: Prove Corollary 7.3.5: A graph with n > 2 vertices and no K5 minor has at most
3n− 6 edges.

We assume that n ≥ 3 from the context of the problem (and because otherwise the statement is false.)

We prove by induction on the structure given by Theorem 7.3.4 for the graph. For our base case, we
observe that a planar graph has at most 3n - 6 edges (4.2.10). We also count that W has 8 vertices
and 12 edges, so it satisfies the bound.

Finally, we prove that pasting two graphs that satisfy the bound along an edge or along a triangle
preserves the bound. Let G1 have

||G1|| ≤ 3|G1| − 6

and
||G2|| ≤ 3|G2| − 6.

Say the graph G is formed by pasting G1 and G2 along an edge. Then

||G|| = ||G1||+ ||G2|| − 1 ≤ 3|G1|+ 3|G2| − 13.

Also
|G| = |G1|+ |G2| − 2

so
||G|| ≤ (3|G1|+ 3|G2| − 6)− 7

and
||G|| ≤ 3|G| − 7 < 3|G| − 6.

Now say that G is formed by pasting G1 and G2 along a triangle. Then

||G|| = ||G1||+ ||G2|| − 3 ≤ 3|G1|+ 3|G2| − 15.

Also
|G| = |G1|+ |G2| − 3

so
||G|| ≤ (3|G1|+ 3|G2| − 9)− 6

and
||G|| ≤ 3|G| − 6.
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