1: Given k and a k-coloring of a k-chromatic graph, prove that for any color c there is a vertex of color c which is adjacent to vertices of every other color.

2, Diestel 5.18: Given a graph G and $k \in \mathbb{N}$ let $P_{G}(k)$ denote the number of vertex colourings $V(G) \rightarrow\{1, \ldots, k\}$. Show that P_{G} is a polynomial in k of degree $n:=|G|$, in which the coefficient of k^{n} is 1 and the coefficient of k^{n-1} is $-\|G\| .\left(P_{G}\right.$ is called the chromatic polynomial of G.) (Hint. Apply induction on $\|G\|$.)

3, Diestel 5.19: Determine the class of all graphs G for which $P_{G}(k)=k(k-1)^{n-1}$. (As in the previous exercise, let $n:=|G|$, and let P_{G} denote the chromatic polynomial of G.)
Hint: A graph with n vertices is a tree if and only if it is connected and has $n-1$ edges.

