1, Diestel 3.5: Deduce the k = 2 case of Menger's theorem (3.3.1) from Proposition 3.1.1.

2, **Diestel 3.17** (i): Find the error in the following 'simple proof' of Menger's theorem (3.3.1). Let X be an A-B separator of minimum size. Denote by G_A the subgraph of G induced by X and all the components of G - X that meet A, and define G_B correspondingly. By the minimality of X, there can be no A-X separator in G_A with fewer than |X| vertices, so G_A contains k disjoint A-X paths by induction. Similarly, G_B contains k disjoint X-B paths. Together, all these paths form the desired A-B paths in G.

3, Diestel 3.18: Prove Menger's theorem by induction on ||G||, as follows. Given an edge e = xy, consider a smallest A-B separator S in G - e. Show that the induction hypothesis implies a solution for G unless $S \cup \{x\}$ and $S \cup \{y\}$ are smallest A-B separators in G. Then show that if choosing neither of these separators as X in the previous exercise gives a valid proof, there is only one easy case left to do.

4, **Diestel 3.21**: Let $k \ge 2$. Show that every k-connected graph of order at least 2k contains a cycle of length at least 2k.

5, Diestel 3.22: Let $k \ge 2$. Show that in a k-connected graph any k vertices lie on a common cycle.