1, Diestel 3.5: Deduce the $k=2$ case of Menger's theorem (3.3.1) from Proposition 3.1.1.

2, Diestel 3.17 (i): Find the error in the following 'simple proof' of Menger's theorem (3.3.1). Let X be an $A-B$ separator of minimum size. Denote by G_{A} the subgraph of G induced by X and all the components of $G-X$ that meet A, and define G_{B} correspondingly. By the minimality of X, there can be no $A-X$ separator in G_{A} with fewer than $|X|$ vertices, so G_{A} contains k disjoint $A-X$ paths by induction. Similarly, G_{B} contains k disjoint $X-B$ paths. Together, all these paths form the desired $A-B$ paths in G.

3, Diestel 3.18: Prove Menger's theorem by induction on $\|G\|$, as follows. Given an edge $e=x y$, consider a smallest $A-B$ separator S in $G-e$. Show that the induction hypothesis implies a solution for G unless $S \cup\{x\}$ and $S \cup\{y\}$ are smallest $A-B$ separators in G. Then show that if choosing neither of these separators as X in the previous exercise gives a valid proof, there is only one easy case left to do.

4, Diestel 3.21: Let $k \geq 2$. Show that every k-connected graph of order at least $2 k$ contains a cycle of length at least $2 k$.

5, Diestel 3.22: Let $k \geq 2$. Show that in a k-connected graph any k vertices lie on a common cycle.

