Q1. Let X and X^{\prime} be minimal separators in G such that X meets (intersects non-trivially) at least two components of $G-X^{\prime}$. Show that X^{\prime} meets all the components of $G-X$, and that X meets all the components of $G-X^{\prime}$.

Q2. Show the block graph of any connected graph is a tree.
Q3. Let G be a k-connected graph, and let $x y$ be an edge of G. Show that $G / x y$ is k-connected if and only if $G-\{x, y\}$ is $(k-1)$-connected.

Q4. (i) Let e be an edge in a 2 -connected graph $G \neq K^{3}$. Show that either $G-e$ or G / e is again 2-connected.
(ii) Does every 2-connected graph $G \neq K^{3}$ have an edge e such that G / e is still 2-connected?

Q5. Show that every transitive graph G with $\kappa(G)=2$ is a cycle. Hint: Exercise 3.4 is useful.

