Q1. Let X and X' be minimal separators in G such that X meets (intersects non-trivially) at least two components of G - X'. Show that X' meets all the components of G - X, and that X meets all the components of G - X'.

Q2. Show the block graph of any connected graph is a tree.

Q3. Let G be a k-connected graph, and let xy be an edge of G. Show that G/xy is k-connected if and only if $G - \{x, y\}$ is (k - 1)-connected.

Q4. (i) Let e be an edge in a 2-connected graph $G \neq K^3$. Show that either G - e or G/e is again 2-connected.

(ii) Does every 2-connected graph $G \neq K^3$ have an edge e such that G/e is still 2-connected?

Q5. Show that every transitive graph G with $\kappa(G) = 2$ is a cycle. Hint: Exercise 3.4 is useful.