1: Suppose that 13 people are each dealt 4 cards from a standard 52 -card deck. Show that it is possible for each of them to select one of their cards so that no two people have selected a card of the same rank.

2, Diestel 2.4: Moving alternatively, two players jointly construct a path in some fixed graph G. If v_{1}, \ldots, v_{n} is the path constructed so far, the player to move next has to find a vertex v_{n+1} such that v_{1}, \ldots, v_{n+1} is again a path. Whichever player cannot move loses. For which graphs G does the first player have a winning strategy, for which the second?

3, Diestel 2.10: Prove Sperner's theorem: in an n-set X there are never more than $\binom{n}{\lfloor n / 2\rfloor}$ subsets such that none of these contain another.
(Hint. Construct $\binom{n}{\lfloor n / 2\rfloor}$ chains covering the power set lattice of X.)

4, Diestel 2.18: Show that a graph G contains k independent edges if and only if $q(G-S) \leq$ $|S|+|G|-2 k$ for all sets $S \subseteq V(G)$.

5, Diestel 2.24: Show that if G has two edge-disjoint spanning trees, it has a connected spanning subgraph all whose degrees are even.

6: Show that a tree T has a perfect matching if and only if $q(T-v)=1$ for every $v \in V(T)$.

