1, Diestel 1.31: Prove or disprove that a graph is bipartite if and only if no two adjacent vertices have the same distance from any other vertex.

Proposition 1.6.1 in Diestel states that a graph is bipartite if and only if it contains no odd cycle, so it suffices to show that a graph has an odd cycle if and only if it has a pair of adjacent vertices that are the same distance from another vertex.
(\Rightarrow) Let G be a graph with an odd cycle. Let $C=x_{0} x_{1} \cdots x_{m} x_{0}$ be a minimum odd cycle in G. (Note that C has size $m+1$.) We prove a lemma that for $x, y \in C, d_{G}(x, y)=d_{C}(x, y)$. WLOG let $x=x_{0}$ and let $y=x_{i}$ and $i \leq \frac{m+1}{2}$ (reindexing the cycle in the other direction handles the case where i is larger). We know $d_{C}(x, y)=i$, so suppose $d_{G}(x, y)<i$. Then there is an $x-y$ path P of length less than i. Because P starts and ends in P, but is shorter than $x_{0} x_{1} \cdots x_{i}, P$ contains a subpath P^{\prime} with endpoints x_{j} and x_{k} that is a $C-$ path and is shorter than $d_{C}\left(x_{j}, x_{k}\right)$. Consider two cycles:

$$
C_{1}=x_{j} x_{j+1} \cdots x_{k} P x_{j}
$$

and

$$
C_{2}=x_{j} P x_{k} x_{k+1} \cdots x_{m} x_{0} x_{1} \cdots x_{j}
$$

Let l be the length of P^{\prime}. Then C_{1} has size $k-j+l$ and C_{2} has size $(m+1)-(k-j)+l$. Because $l<(k-j) \leq i \leq \frac{m+1}{2}, C_{1}$ and C_{2} each have size strictly less than m. Adding the lengths of C_{1} and C_{2} gives $(m+1)+2 l$, which is odd because $m+1$ is odd. Therefore, one of the cycles is odd (the sum of two even things is even). So, we have found a smaller odd cycle, which is a contradiction. We conclude that for $x, y \in C$,

$$
d_{G}(x, y)=d_{C}(x, y)
$$

At this point, it suffices to take x_{0}, x_{1}, and $x_{(m+1) / 2}$ and observe that x_{0} and x_{1} are adjacent and

$$
d_{G}\left(x_{1}, x_{(m+1) / 2}\right)=d_{C}\left(x_{1}, x_{(m+1) / 2}\right)=\frac{m-1}{2}=d_{C}\left(x_{0}, x_{(m+1) / 2}\right)=d_{G}\left(x_{0}, x_{(m+1) / 2}\right)
$$

(\Leftarrow) Let G be a graph with vertices x, y, z such that $x y \in E(G)$ and

$$
d(x, z)=d(y, z)
$$

We do not consider infinite distances to be equal, so these distances are finite. Let P_{1} and P_{2} be $x-z$ and $y-z$ paths of minimum length (respectively). Let m be the first vertex in P_{1} that is also in P_{2} (such a vertex exists because z is in both paths). We claim $x P_{1} m$ and $y P_{2} m$ must have the same length. If WLOG $\left|x P_{1} m\right|<\left|y P_{2} m\right|$ then $\left|m P_{1} z\right|>\left|m P_{2} z\right|$ and $x P_{1} m+m P_{2} z$ is a shorter $x-z$ path than P_{1}, and this is a contradiction. We also know that x does not appear in P_{2} and y does not appear in P_{1} by a similar argument: $x P_{2} z$ would be a shorter $x-z$ path than P_{1}, and $y P_{1} z$ would be a shorter $y-z$ path than P_{2}, so $m \neq x$ and $m \neq y$.
By our choice of $m, x P_{1} \stackrel{\circ}{m}$ and $y P_{2} \stackrel{\circ}{m}$ are disjoint and nontrivial, so $C=x P_{1} m P_{2} y x$ is a cycle. We know (where $|P|$ denotes length):

$$
|C|=\left|x P_{1} m\right|+\left|m P_{2} y\right|+1=2\left|x P_{1} m\right|+1
$$

so C is an odd cycle.

2, Diestel 1.35: Prove or disprove that every connected graph contains a walk that traverses each of its edges exactly once in each direction.

Let G be an arbitrary connected graph. Given a walk, W, we will say that the walk has Property Q if the walk does not traverse an edge more than once in the same direction. Take a maximum walk with Property Q in G and call it $W=x_{0} x_{1} \cdots x_{k-1} x_{k}$. Also let $u=x_{0}$ and $v=x_{k}$
W must be closed. If W is not closed, then we observe that at vertex v, there are $\operatorname{deg}(v)$ edges, and so $2 \operatorname{deg}(v)$ "ways" to traverse an edge incident with v (where a "way" is an edge plus a direction). Each time that W traverses an edge to $v, x v$, the next edge must be from v : $v y$, with the obvious exception of the last edge, $x_{k-1} x_{k}$. It follows that W has taken i edges to v for some positive i, and $i-1$ from v. Therefore, there there is an edge that has not been taken from v, say $v z$, and we extend W by adding z to the end of the sequence of vertices to form W^{\prime}, a walk with Property Q that is longer than W, proving that W must be closed.
W must traverse each edge twice. Suppose some edge e is not traversed twice. Because G is connected, there is an $e-V(W)$ path (this is a path starting at a vertex of e, ending at a vertex of W, and internally disjoint from e and W. If this is a trivial path, let x be the edge of e that is in W and let y be the other edge of e. Otherwise, call the end of the path x and the penultimate vertex y, and observe that y is not in W so $x y$ is not traversed in either direction by W. In either case, x is in W and $x y$ is not traversed in some direction by W. We reindex W by starting at x : since $x=x_{i}$ for some i, $W^{\prime}=x_{i} x_{i+1} \cdots x_{k} x_{1} \cdots x_{i-1} x_{i}$ is a walk with Property Q because W was a closed walk with Property Q. If $x y$ has not been taken from x to y, then adding $x y$ to the end of W^{\prime} forms a walk longer than W that still has property Q. Otherwise, $x y$ has not been taken from y to x, so adding $x y$ to the end of W^{\prime} forms a longer walk than W that still has property Q. In any case, we get a contradiction, so we conclude that W traverses each edge twice, and by the definition of Property Q , this means W traverses each edge once in each direction.

3, Diestel 1.49: Let $A=\left(a_{i j}\right)_{n \times n}$ be the adjacency matrix of the graph G. Show that the matrix $A^{k}=\left(a_{i j}^{\prime}\right)_{n \times n}$ displays, for all $i, j \leq n$, the number $a_{i j}^{\prime}$ of walks of length k from v_{i} to v_{j} in G.

The proof goes by induction on k.
We consider two bases cases.
When $k=0$, we see A^{k} is the identity matrix. Fittingly, there is exactly one walk of length 0 from any vertex to itself, and there are no walks of length zero to any other vertex.
When $k=1, a_{i j}$ is 1 exactly when vertices i and j are adjacent; that is, when there is a walk of length 1 from i to j.
Assume the claim holds for all $j<k$ for some fixed k.
Consider $A^{k}=A^{k-1} \times A$. Let $B=\left(b_{i j}\right)=A^{k-1}$. The i, j entry in A^{k} is, by definition,

$$
\sum_{k} b_{i k} a_{k j} .
$$

By our induction hypothesis, $b_{i k}$ is the number of walks from i to k. Then, if k is adjacent to i, there are $b_{i k} i-j$ walks with penultimate vertex k; otherwise, there are no such walks. The i, j entry of A^{k}, then, is the sum across all k of the number of walks with penultimate vertex k. This completes the proof.

4: Let G be a connected graph whose edges have been assigned real numbers. As mentioned on page 14 of the text, G has at least one spanning tree. The weight of a spanning tree is the sum of the numbers on its edges. The spectrum of a spanning tree is the list of the numbers on its edges (each number listed as many times as it occurs on the edges of the tree) in non-decreasing order. Show that any two spanning trees of minimum weight (among all spanning trees of G) must have the same spectrum.

We require a lemma:
Lemma 1: If T is a tree and $u, v \in V(T)$ such that $\{u, v\} \notin E(T)$, then $T^{\prime}=T+\{u, v\}$ has a cycle $C=c_{0}, c_{1}, \ldots, c_{m}, c_{0}$. Furthermore, if $T^{\prime \prime}$ is the tree resulting from removing any edge $e=\left\{c_{i}, c_{i+1}\right\}$ from C, then $T^{\prime \prime}$ is a tree.

Proof: The first part of the lemma follows directly from Theorem 1.5.1 in Diestel. Thus all we must show is $T^{\prime \prime}$ is a tree. Let x and y be vertices in $T^{\prime \prime}$. As $V\left(T^{\prime \prime}\right)=V(T)$ and T is a tree, x and y are connected in T by a path $P: x=p_{0}, p_{1}, \ldots, p_{\ell-1}, p_{\ell}=y$. If $\left\{p_{j-1}, p_{j}\right\} \neq e$ (the edge we removed from C) for any $1 \leq j \leq \ell$, then P is a path in $T^{\prime \prime}$. Otherwise, suppose $\left\{p_{j-1}, p_{j}\right\}=e$. Then $p_{j-1}=c_{i}$ for some i (and $p_{j}=c_{i+1}$) because the edge we removed was on the cycle. So

$$
P^{\prime}=x=p_{0}, \ldots, p_{j-1}=c_{i}, c_{i-1}, \ldots, c_{0}, c_{m}, \ldots, c_{i+1}=p_{j}, p_{j+2}, \ldots, p_{\ell}=y
$$

is an $x-y$ walk in $T^{\prime \prime}$. As every walk contains a path, we conclude x and y are connected in $T^{\prime \prime}$. Furthermore, $\left|V\left(T^{\prime \prime}\right)\right|=|V(T)| \stackrel{\text { Corollary } 1.5 .3}{=}|E(T)|+1=\left|E\left(T^{\prime \prime}\right)\right|+1$, so by Corollary 1.5.3, $T^{\prime \prime}$ is a tree.

Now we prove the theorem.
Let G be a graph such that there exist minimum weight spanning trees in G that have different spectra (we will derive a contradiction from this fact). Let T_{X} and T_{Y} be two minimum weight spanning trees of G with different spectra such that (among all pairs of MSTs with different spectra):

- the lightest edge in which they differ has maximum weight
- and among all such pairs, there are as few differences in edges of that weight as possible.
T_{X} and T_{Y} are well-defined because there are finitely many spanning trees of a finite graph G, and we assumed there are spanning trees of different spectra. Differing in edge e means that one tree has e while the other does not.

Let e be one such minimum weight edge in which T_{X} and T_{Y} differ. WLOG $e \in E\left(T_{X}\right)$. By the lemma, $T_{Y}+e$ has some cycle C. Because T_{X} is acyclic, there must be some other edge $f \in C$ such that $f \notin T_{X}$. First, because T_{Y} is minimal, $w(f) \leq w(e)$, as otherwise $T_{Y}+e-f$ is a spanning tree of less weight than the minimum. Also, because e is the lightest edge in which T_{X} and T_{Y} differ, $w(f) \geq w(e)$ (because otherwise f would be the lightest edge where T_{X} and T_{Y} differ). So,

$$
w(e)=w(f)
$$

and again by the lemma $T_{Z}=T_{Y}+e-f$ is a minimum weight spanning tree. But, T_{Z} and T_{X} either no longer differ in edges of weight $\leq w(e)$ or now differ in fewer edges of that weight (since we removed one pair of differing edges, and the rest stayed fixed, so we have derived a contradiction.

5: An oriented complete graph is called a tournament. The outdegree of a vertex v , written $\operatorname{od}(v)$, is the number of edges directed away from v. Let T be a tournament with n vertices. Find a formula for the number of directed 3 -cycles in T in terms of n and the outdegrees of the vertices of T.

Let T be a tournament with n vertices. A vertex v of T is contained, as a vertex of outdegree two, in exactly $\binom{o d(v)}{2} 3$-vertex subtournaments which are not cycles. Each 3-vertex subtournament which is not a cycle contains exactly one vertex of outdegree two (within the subtournament itself). Thus, the number of 3 -vertex subtournaments which are not cycles is $\sum_{v \in T}\binom{o d(v)}{2}$. Hence, the number of 3 -cycles in T is $\binom{n}{3}-\sum_{v \in T}\binom{o d(v)}{2}$.

6: Let G be a graph with vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let the matrix M be defined by

$$
m_{i j}= \begin{cases}d\left(v_{i}\right) & \text { if } i=j \\ -1 & \text { if } v_{i} \text { is adjacent to } v_{j} \\ 0 & \text { otherwise }\end{cases}
$$

The Matrix Tree Theorem states that the number of spanning trees of G is equal to the value of any cofactor of M. Use the matrix tree theorem to find the number of spanning trees in $K_{n, n}$.
[I_{n} is an $n \times n$ identity matrix. $J_{m, n}$ is an $m \times n$ matrix with entry all one. $0_{m, n}=0 J_{m, n}$.]
For $G=K_{n, n}($ and $n \geq 2)$,

$$
M=\left[\begin{array}{cccccc}
n & \cdots & 0 & -1 & \cdots & -1 \\
\vdots & \ddots & \vdots & \vdots & & \vdots \\
0 & \cdots & n & -1 & \cdots & -1 \\
-1 & \cdots & -1 & n & \cdots & 0 \\
\vdots & & \vdots & \vdots & \ddots & \vdots \\
-1 & \cdots & -1 & 0 & \cdots & n
\end{array}\right]=\left[\begin{array}{ll|l}
& & \\
& n I_{n} & -J_{n, n-1} \\
& -J_{n-1, n} & n I_{n-1}
\end{array}\right]
$$

Add all of the rows except the first to the first (these are elementary row operations, and do not change the determinant). The first row is now

$$
\left\lceil\begin{array}{llllll}
1 & \cdots & 1 & 0 & \cdots & 0 \\
\hline
\end{array}\right.
$$

Adding the first row to each row of the bottom "half" gives

This is upper-triangular, so we multiply the entries on the diagonal to get

$$
\operatorname{det}(M)=1 \cdot n^{n-1} \cdot n^{n-1}=n^{2 n-2} .
$$

We note that there is one spanning tree on $K_{1,1}$, and so we have by the Matrix Tree Theorem that there are $n^{2 n-2}$ spanning trees on $K_{n, n}$ for all n.

