
HW2 21-484 Graph Theory SOLUTIONS (hbovick) - Q

1, Diestel 1.31: Prove or disprove that a graph is bipartite if and only if no two adjacent vertices
have the same distance from any other vertex.

Proposition 1.6.1 in Diestel states that a graph is bipartite if and only if it contains no odd cycle, so it
suffices to show that a graph has an odd cycle if and only if it has a pair of adjacent vertices that are
the same distance from another vertex.

(⇒) Let G be a graph with an odd cycle. Let C = x0x1 · · ·xmx0 be a minimum odd cycle in G. (Note
that C has size m + 1.) We prove a lemma that for x, y ∈ C, dG(x, y) = dC(x, y). WLOG let x = x0
and let y = xi and i ≤ m+1

2 (reindexing the cycle in the other direction handles the case where i is
larger). We know dC(x, y) = i, so suppose dG(x, y) < i. Then there is an x–y path P of length less
than i. Because P starts and ends in P , but is shorter than x0x1 · · ·xi, P contains a subpath P ′ with
endpoints xj and xk that is a C–path and is shorter than dC(xj , xk). Consider two cycles:

C1 = xjxj+1 · · ·xkPxj

and
C2 = xjPxkxk+1 · · ·xmx0x1 · · ·xj .

Let l be the length of P ′. Then C1 has size k − j + l and C2 has size (m + 1) − (k − j) + l. Because
l < (k − j) ≤ i ≤ m+1

2 , C1 and C2 each have size strictly less than m. Adding the lengths of C1 and
C2 gives (m + 1) + 2l, which is odd because m + 1 is odd. Therefore, one of the cycles is odd (the
sum of two even things is even). So, we have found a smaller odd cycle, which is a contradiction. We
conclude that for x, y ∈ C,

dG(x, y) = dC(x, y).

At this point, it suffices to take x0, x1, and x(m+1)/2 and observe that x0 and x1 are adjacent and

dG(x1, x(m+1)/2) = dC(x1, x(m+1)/2) =
m− 1

2
= dC(x0, x(m+1)/2) = dG(x0, x(m+1)/2).

(⇐) Let G be a graph with vertices x, y, z such that xy ∈ E(G) and

d(x, z) = d(y, z).

We do not consider infinite distances to be equal, so these distances are finite. Let P1 and P2 be x–z
and y–z paths of minimum length (respectively). Let m be the first vertex in P1 that is also in P2 (such
a vertex exists because z is in both paths). We claim xP1m and yP2m must have the same length. If
WLOG |xP1m| < |yP2m| then |mP1z| > |mP2z| and xP1m+mP2z is a shorter x–z path than P1, and
this is a contradiction. We also know that x does not appear in P2 and y does not appear in P1 by a
similar argument: xP2z would be a shorter x–z path than P1, and yP1z would be a shorter y–z path
than P2, so m 6= x and m 6= y.

By our choice of m, xP1
◦
m and yP2

◦
m are disjoint and nontrivial, so C = xP1mP2yx is a cycle. We

know (where |P | denotes length):

|C| = |xP1m|+ |mP2y|+ 1 = 2|xP1m|+ 1

so C is an odd cycle.
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2, Diestel 1.35: Prove or disprove that every connected graph contains a walk that traverses each of
its edges exactly once in each direction.

Let G be an arbitrary connected graph. Given a walk, W , we will say that the walk has Property Q if
the walk does not traverse an edge more than once in the same direction. Take a maximum walk with
Property Q in G and call it W = x0x1 · · ·xk−1xk. Also let u = x0 and v = xk

W must be closed. If W is not closed, then we observe that at vertex v, there are deg(v) edges, and so
2 deg(v) “ways” to traverse an edge incident with v (where a “way” is an edge plus a direction). Each
time that W traverses an edge to v, xv, the next edge must be from v: vy, with the obvious exception
of the last edge, xk−1xk. It follows that W has taken i edges to v for some positive i, and i− 1 from v.
Therefore, there there is an edge that has not been taken from v, say vz, and we extend W by adding
z to the end of the sequence of vertices to form W ′, a walk with Property Q that is longer than W ,
proving that W must be closed.

W must traverse each edge twice. Suppose some edge e is not traversed twice. Because G is connected,
there is an e–V (W ) path (this is a path starting at a vertex of e, ending at a vertex of W , and internally
disjoint from e and W . If this is a trivial path, let x be the edge of e that is in W and let y be the
other edge of e. Otherwise, call the end of the path x and the penultimate vertex y, and observe
that y is not in W so xy is not traversed in either direction by W . In either case, x is in W and xy
is not traversed in some direction by W . We reindex W by starting at x: since x = xi for some i,
W ′ = xixi+1 · · ·xkx1 · · ·xi−1xi is a walk with Property Q because W was a closed walk with Property
Q. If xy has not been taken from x to y, then adding xy to the end of W ′ forms a walk longer than
W that still has property Q. Otherwise, xy has not been taken from y to x, so adding xy to the end
of W ′ forms a longer walk than W that still has property Q. In any case, we get a contradiction, so
we conclude that W traverses each edge twice, and by the definition of Property Q, this means W
traverses each edge once in each direction.
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3, Diestel 1.49: Let A = (aij)n×n be the adjacency matrix of the graph G. Show that the matrix
Ak = (a′ij)n×n displays, for all i, j ≤ n, the number a′ij of walks of length k from vi to vj in G.

The proof goes by induction on k.

We consider two bases cases.

When k = 0, we see Ak is the identity matrix. Fittingly, there is exactly one walk of length 0 from
any vertex to itself, and there are no walks of length zero to any other vertex.

When k = 1, aij is 1 exactly when vertices i and j are adjacent; that is, when there is a walk of length
1 from i to j.

Assume the claim holds for all j < k for some fixed k.

Consider Ak = Ak−1 ×A. Let B = (bij) = Ak−1. The i, j entry in Ak is, by definition,∑
k

bikakj .

By our induction hypothesis, bik is the number of walks from i to k. Then, if k is adjacent to i, there
are bik i–j walks with penultimate vertex k; otherwise, there are no such walks. The i, j entry of Ak,
then, is the sum across all k of the number of walks with penultimate vertex k. This completes the
proof.
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4: Let G be a connected graph whose edges have been assigned real numbers. As mentioned on page 14
of the text, G has at least one spanning tree. The weight of a spanning tree is the sum of the numbers
on its edges. The spectrum of a spanning tree is the list of the numbers on its edges (each number
listed as many times as it occurs on the edges of the tree) in non-decreasing order. Show that any two
spanning trees of minimum weight (among all spanning trees of G) must have the same spectrum.

We require a lemma:

Lemma 1: If T is a tree and u, v ∈ V (T ) such that {u, v} /∈ E(T ), then T ′ = T + {u, v} has a cycle
C = c0, c1, . . . , cm, c0. Furthermore, if T ′′ is the tree resulting from removing any edge e = {ci, ci+1}
from C, then T ′′ is a tree.

Proof: The first part of the lemma follows directly from Theorem 1.5.1 in Diestel. Thus all we must
show is T ′′ is a tree. Let x and y be vertices in T ′′. As V (T ′′) = V (T ) and T is a tree, x and y are
connected in T by a path P : x = p0, p1, . . . , p`−1, p` = y. If {pj−1, pj} 6= e (the edge we removed from
C) for any 1 ≤ j ≤ `, then P is a path in T ′′. Otherwise, suppose {pj−1, pj} = e. Then pj−1 = ci for
some i (and pj = ci+1) because the edge we removed was on the cycle. So

P ′ = x = p0, . . . , pj−1 = ci, ci−1, . . . , c0, cm, . . . , ci+1 = pj , pj+2, . . . , p` = y

is an x–y walk in T ′′. As every walk contains a path, we conclude x and y are connected in T ′′.

Furthermore, |V (T ′′)| = |V (T )| Corollary 1.5.3
= |E(T )| + 1 = |E(T ′′)| + 1, so by Corollary 1.5.3, T ′′ is a

tree.

Now we prove the theorem.

Let G be a graph such that there exist minimum weight spanning trees in G that have different spectra
(we will derive a contradiction from this fact). Let TX and TY be two minimum weight spanning trees
of G with different spectra such that (among all pairs of MSTs with different spectra):

• the lightest edge in which they differ has maximum weight

• and among all such pairs, there are as few differences in edges of that weight as possible.

TX and TY are well-defined because there are finitely many spanning trees of a finite graph G, and we
assumed there are spanning trees of different spectra. Differing in edge e means that one tree has e
while the other does not.

Let e be one such minimum weight edge in which TX and TY differ. WLOG e ∈ E(TX). By the
lemma, TY + e has some cycle C. Because TX is acyclic, there must be some other edge f ∈ C such
that f 6∈ TX . First, because TY is minimal, w(f) ≤ w(e), as otherwise TY + e − f is a spanning tree
of less weight than the minimum. Also, because e is the lightest edge in which TX and TY differ,
w(f) ≥ w(e) (because otherwise f would be the lightest edge where TX and TY differ). So,

w(e) = w(f),

and again by the lemma TZ = TY + e− f is a minimum weight spanning tree. But, TZ and TX either
no longer differ in edges of weight ≤ w(e) or now differ in fewer edges of that weight (since we removed
one pair of differing edges, and the rest stayed fixed, so we have derived a contradiction.
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5: An oriented complete graph is called a tournament. The outdegree of a vertex v, written od(v), is
the number of edges directed away from v. Let T be a tournament with n vertices. Find a formula for
the number of directed 3-cycles in T in terms of n and the outdegrees of the vertices of T .

Let T be a tournament with n vertices. A vertex v of T is contained, as a vertex of outdegree two,
in exactly

(
od(v)
2

)
3-vertex subtournaments which are not cycles. Each 3-vertex subtournament which

is not a cycle contains exactly one vertex of outdegree two (within the subtournament itself). Thus,
the number of 3-vertex subtournaments which are not cycles is

∑
v∈T

(
od(v)
2

)
. Hence, the number of

3-cycles in T is
(
n
3

)
−
∑

v∈T
(
od(v)
2

)
.
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6: Let G be a graph with vertices {v1, v2, . . . , vn}. Let the matrix M be defined by

mij =


d(vi) if i = j

−1 if vi is adjacent to vj

0 otherwise.

The Matrix Tree Theorem states that the number of spanning trees of G is equal to the value of
any cofactor of M . Use the matrix tree theorem to find the number of spanning trees in Kn,n.

[In is an n× n identity matrix. Jm,n is an m× n matrix with entry all one. 0m,n = 0Jm,n.]

For G = Kn,n (and n ≥ 2),

M =



n · · · 0 −1 · · · −1
...

. . .
...

...
...

0 · · · n −1 · · · −1
−1 · · · −1 n · · · 0
...

...
...

. . .
...

−1 · · · −1 0 · · · n


=



nIn −Jn,n−1

−Jn−1,n nIn−1


Add all of the rows except the first to the first (these are elementary row operations, and do not change
the determinant). The first row is now⌈

1 · · · 1 0 · · · 0
⌉

Adding the first row to each row of the bottom “half” gives

det(M) = det





1 1 · · · 1 0 · · · 0

0
... nIn−1 −Jn−1,n−1

0

0
... 0n−1,n nIn−1
0




This is upper-triangular, so we multiply the entries on the diagonal to get

det(M) = 1 · nn−1 · nn−1 = n2n−2.

We note that there is one spanning tree on K1,1, and so we have by the Matrix Tree Theorem that
there are n2n−2 spanning trees on Kn,n for all n.
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