HW2 21-484 Graph Theory SOLUTIONS (hbovick) - Q

1, Diestel 1.31: Prove or disprove that a graph is bipartite if and only if no two adjacent vertices
have the same distance from any other vertex.

Proposition 1.6.1 in Diestel states that a graph is bipartite if and only if it contains no odd cycle, so it
suffices to show that a graph has an odd cycle if and only if it has a pair of adjacent vertices that are
the same distance from another vertex.

(=) Let G be a graph with an odd cycle. Let C' = zox1 - - - 1,29 be a minimum odd cycle in G. (Note
that C has size m 4+ 1.) We prove a lemma that for z,y € C, dg(z,y) = dc(x,y). WLOG let x = xg
and let y = z; and ¢ < mTH (reindexing the cycle in the other direction handles the case where i is
larger). We know d¢(x,y) = i, so suppose dg(z,y) < i. Then there is an z—y path P of length less
than 4. Because P starts and ends in P, but is shorter than zgxy - - - z;, P contains a subpath P’ with
endpoints z; and xj, that is a C—path and is shorter than d¢(z;, z;). Consider two cycles:

Cl = xja;j+1 tee (L‘kP{Ej

and
Cy = 2jPrTpq1 - - Ty @01 - - - T4

Let [ be the length of P’. Then Cj has size k — j + [ and C5 has size (m + 1) — (k — j) + [. Because
l<(k—j)<i< mTH, C1 and Cs each have size strictly less than m. Adding the lengths of C7 and
Cy gives (m + 1) + 2l, which is odd because m + 1 is odd. Therefore, one of the cycles is odd (the
sum of two even things is even). So, we have found a smaller odd cycle, which is a contradiction. We
conclude that for z,y € C,

dG(‘T’ y) = dC(ajv y)
At this point, it suffices to take xg, 21, and x(;,41)/2 and observe that zg and 1 are adjacent and

m—1
da (21, T(my1)/2) = do(@1, Tmynyj2) = —5— = de(20, Zmi)/2) = d6 (20, Lm1)/2)-

(<) Let G be a graph with vertices z,y, z such that zy € E(G) and
d(x, z) = d(y, z).

We do not consider infinite distances to be equal, so these distances are finite. Let P; and P> be z—=2
and y—z paths of minimum length (respectively). Let m be the first vertex in P; that is also in P (such
a vertex exists because z is in both paths). We claim zPym and yP,m must have the same length. If
WLOG |zPim| < |yPam/| then |mP;z| > |[mPaz| and zPym +mPsz is a shorter x—z path than P;, and
this is a contradiction. We also know that x does not appear in P» and y does not appear in P; by a
similar argument: xP»z would be a shorter z—z path than P;, and yP;z would be a shorter y—z path
than P3, so m # x and m # y.

By our choice of m, zPym and yPQT(;L are disjoint and nontrivial, so C = xPymPsyyx is a cycle. We
know (where | P| denotes length):

|IC| = |zPim| + ImPoy| + 1 =2|zPim| + 1

so C'is an odd cycle.
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2, Diestel 1.35: Prove or disprove that every connected graph contains a walk that traverses each of
its edges exactly once in each direction.

Let G be an arbitrary connected graph. Given a walk, W, we will say that the walk has Property @ if
the walk does not traverse an edge more than once in the same direction. Take a maximum walk with
Property Q in G and call it W = xqxy - - - xp_12k. Also let u = zg and v = g,

W must be closed. If W is not closed, then we observe that at vertex v, there are deg(v) edges, and so
2deg(v) “ways” to traverse an edge incident with v (where a “way” is an edge plus a direction). Each
time that W traverses an edge to v, xv, the next edge must be from v: vy, with the obvious exception
of the last edge, xx_1xk. It follows that W has taken ¢ edges to v for some positive i, and i — 1 from v.
Therefore, there there is an edge that has not been taken from v, say vz, and we extend W by adding
z to the end of the sequence of vertices to form W', a walk with Property Q that is longer than W,
proving that W must be closed.

W must traverse each edge twice. Suppose some edge e is not traversed twice. Because G is connected,
there is an e~V (W) path (this is a path starting at a vertex of e, ending at a vertex of W, and internally
disjoint from e and W. If this is a trivial path, let = be the edge of e that is in W and let y be the
other edge of e. Otherwise, call the end of the path x and the penultimate vertex gy, and observe
that y is not in W so xy is not traversed in either direction by W. In either case, x is in W and xy
is not traversed in some direction by W. We reindex W by starting at x: since x = z; for some 1,
W' = xjwiiq - 221 -+ - 25125 is a walk with Property Q because W was a closed walk with Property
Q. If xy has not been taken from x to y, then adding xy to the end of W’ forms a walk longer than
W that still has property Q. Otherwise, xy has not been taken from y to x, so adding zy to the end
of W' forms a longer walk than W that still has property Q. In any case, we get a contradiction, so
we conclude that W traverses each edge twice, and by the definition of Property Q, this means W
traverses each edge once in each direction.
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3, Diestel 1.49: Let A = (a;j)nxn be the adjacency matrix of the graph G. Show that the matrix
Ak = (a;j)nxn displays, for all 7,7 < n, the number a;j of walks of length k from v; to v; in G.

The proof goes by induction on k.
We consider two bases cases.

When k = 0, we see AF is the identity matrix. Fittingly, there is exactly one walk of length 0 from
any vertex to itself, and there are no walks of length zero to any other vertex.

When k =1, a;j is 1 exactly when vertices ¢ and j are adjacent; that is, when there is a walk of length
1 from ¢ to j.

Assume the claim holds for all j < k for some fixed k.
Consider A* = A¥=1 x A. Let B = (b;;) = A¥"1. The i, j entry in A" is, by definition,

E bikakj.
k

By our induction hypothesis, b;; is the number of walks from ¢ to k. Then, if k is adjacent to 7, there
are b, i—j walks with penultimate vertex k; otherwise, there are no such walks. The i, j entry of A*,
then, is the sum across all k£ of the number of walks with penultimate vertex k. This completes the
proof.
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4: Let G be a connected graph whose edges have been assigned real numbers. As mentioned on page 14
of the text, G has at least one spanning tree. The weight of a spanning tree is the sum of the numbers
on its edges. The spectrum of a spanning tree is the list of the numbers on its edges (each number
listed as many times as it occurs on the edges of the tree) in non-decreasing order. Show that any two
spanning trees of minimum weight (among all spanning trees of G) must have the same spectrum.

We require a lemma:

Lemma 1: If T is a tree and w,v € V(T') such that {u,v} ¢ E(T), then 7" = T 4 {u,v} has a cycle
C = c¢p,C1,-..,Cm,co. Furthermore, if 7" is the tree resulting from removing any edge e = {¢;, ¢i+1}
from C, then T” is a tree.

Proof: The first part of the lemma follows directly from Theorem 1.5.1 in Diestel. Thus all we must
show is 7" is a tree. Let x and y be vertices in T”. As V(T") = V(T) and T is a tree, x and y are
connected in T by a path P : x = po,p1,...,pe—1,0¢ = y. If {pj—1,p;} # e (the edge we removed from
C) for any 1 < j < ¢, then P is a path in 7. Otherwise, suppose {p;—1,p;} = e. Then p;_1 = ¢; for
some 4 (and p; = c;41) because the edge we removed was on the cycle. So

/
P =T =DpP0y---,Pj—1 =¢Cij,Ci—15,---,€C0,Cmy---,Ci+1 = Pj,Pj+2,---, Pt =Y

is an z—y walk in 7. As every walk contains a path, we conclude x and y are connected in T"”.

Furthermore, [V(T")| = [V(T)| " 5% |B(T)| + 1 = |E(T")] + 1, so by Corollary 1.5.3, T" is a
tree.

Now we prove the theorem.

Let G be a graph such that there exist minimum weight spanning trees in GG that have different spectra
(we will derive a contradiction from this fact). Let Tx and Ty be two minimum weight spanning trees
of G with different spectra such that (among all pairs of MSTs with different spectra):

e the lightest edge in which they differ has maximum weight

e and among all such pairs, there are as few differences in edges of that weight as possible.

Tx and Ty are well-defined because there are finitely many spanning trees of a finite graph G, and we
assumed there are spanning trees of different spectra. Differing in edge e means that one tree has e
while the other does not.

Let e be one such minimum weight edge in which Tx and Ty differ. WLOG e € E(Tx). By the
lemma, Ty + e has some cycle C. Because Tx is acyclic, there must be some other edge f € C such
that f & Tx. First, because Ty is minimal, w(f) < w(e), as otherwise Ty + e — f is a spanning tree
of less weight than the minimum. Also, because e is the lightest edge in which Tx and Ty differ,
w(f) > w(e) (because otherwise f would be the lightest edge where Tx and Ty differ). So,

w(e) = w(f),

and again by the lemma 77 = Ty + e — f is a minimum weight spanning tree. But, Tz and T’x either
no longer differ in edges of weight < w(e) or now differ in fewer edges of that weight (since we removed
one pair of differing edges, and the rest stayed fixed, so we have derived a contradiction.
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5: An oriented complete graph is called a tournament. The outdegree of a vertex v, written od(v), is
the number of edges directed away from v. Let T be a tournament with n vertices. Find a formula for
the number of directed 3-cycles in T in terms of n and the outdegrees of the vertices of T'.

Let T be a tournament with n vertices. A vertex v of T' is contained, as a vertex of outdegree two,
in exactly (Odg’)) 3-vertex subtournaments which are not cycles. Each 3-vertex subtournament which
is not a cycle contains exactly one vertex of outdegree two (within the subtournament itself). Thus,

the number of 3-vertex subtournaments which are not cycles is > (OdQ(U)). Hence, the number of
3-cycles in T'is () — > e (Odév)).
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6: Let G be a graph with vertices {v1,va,...,v,}. Let the matrix M be defined by

mij = —1 if v; is adjacent to v;
0 otherwise.

The Matrix Tree Theorem states that the number of spanning trees of G is equal to the value of
any cofactor of M. Use the matrix tree theorem to find the number of spanning trees in K, ,,.

[I, is an n X n identity matrix. Jy,, is an m x n matrix with entry all one. Oy, 5, = 0Jp, p.]

For G = K,,,, (and n > 2),

[ n 0 -1 —1]
nly, —Jnn—1
0 n -1 -1
M= -1 -1 n 0
-1 -1 0 n —Jn—ln nln—1

Add all of the rows except the first to the first (these are elementary row operations, and do not change
the determinant). The first row is now

[1 e 10 --- 0]

Adding the first row to each row of the bottom “half” gives

11 110 0
nl,_1 —Jn—1n-1
det(M) = det 0
0
: On—1n nly—1
L 0 |

This is upper-triangular, so we multiply the entries on the diagonal to get
det(M) =1-n""1.pr=t = p2n=2,

We note that there is one spanning tree on K71, and so we have by the Matrix Tree Theorem that
there are n?"~2 spanning trees on K, for all n.



