1: Find a nonhamiltonian graph G with 10 vertices such that G - v is hamiltonian for every vertex v of G.

The answer is the Petersen Graph (it is the only answer, but this is slightly more difficult to show). You've already shown on a previous homework, that there is no 3-edge-coloring of the Petersen Graph. A Hamilton cycle in the Petersen Graph would yield a contradicting 3-edge-coloring of it by alternating 2 colors on the edges of that cycle and assigning the third color to the remaining pairwise non-incident edges. Thus, the Petersen Graph is not hamiltonian.

The Petersen Graph is vertex transitive, so it suffices to show that the deletion of vertex from it leaves a graph with a 9-cycle. To that end, suppose that the Petersen Graph is given by the two disjoint 5-cycles, 123451 and *abcdea*, with additional edges 1a, 2c, 3e, 4b and 5d. The deletion of vertex 1 leaves the 9-cycle ae32cd54ba.

2, Diestel 10.1: Show that every tournament contains a (directed) Hamilton path.

We prove this by induction on the number of vertices in the tournament. The result is true for tournaments having 1 or 2 vertices, so now assume that T is a tournament with n > 2 vertices and that the result is true for all tournaments having fewer than n vertices. Select a vertex v and obtain, by the induction hypothesis, a Hamilton path from v_1 to v_{n-1} in T - v.

If there is an arc from v to v_1 or an arc from v_{n-1} to v, then we have the desired path, so we assume that there is an arc from v_1 to v and an arc from v to v_{n-1} . In this case, there is a largest index j < n-1 such that there is an arc from v_j to v. The path from v_1 to v_j to v to v_{j+1} to v_{n-1} is then the desired path.

3: Let G have n > 1 vertices and m edges. Prove that G has a bipartite subgraph with at least

$$\frac{2\lfloor n^2/4\rfloor m}{n(n-1)}$$

edges. (You should consider a random bipartition... but don't allow just any bipartition.)

Consider a random bipartition A and B of G where the size of A and B differ by at most 1. There are $\lfloor n^2/4 \rfloor$ (a,b) pairs of vertices and each of these has probability $\frac{m}{\binom{n}{2}}$ to be an edge in G. Therefore:

$$E[\text{edges in the bipartite subgraph}] = \sum_{(a,b) \text{ pairs}} P((a,b) \text{ is an edge of } G)$$
$$= \sum_{(a,b) \text{ pairs}} \frac{m}{\binom{n}{2}}$$
$$= \frac{\lfloor n^2/4 \rfloor m}{\binom{n}{2}}$$
$$= \frac{2\lfloor n^2/4 \rfloor m}{n(n-1)}$$

Therefore at least one of the bipartite subgraphs has at least $\frac{2\lfloor n^2/4 \rfloor m}{n(n-1)}$ edges.

4, Diestel 11.6:

If $G \in G_{n,p}$ has properties \mathcal{P}_1 and \mathcal{P}_2 with high probability then $\lim_{n\to\infty} \mathbb{P}(G \notin \mathcal{P}_1) = 0$ and $\lim_{n\to\infty} \mathbb{P}(G \notin \mathcal{P}_2) = 0$. By the union bound, we know that

$$\mathbb{P}(G \notin \mathcal{P}_1 \cap \mathcal{P}_2) \leq \mathbb{P}(G \notin \mathcal{P}_1) + \mathbb{P}(G \notin \mathcal{P}_2) \\
\lim_{n \to \infty} \mathbb{P}(G \notin \mathcal{P}_1 \cap \mathcal{P}_2) \leq \lim_{n \to \infty} \mathbb{P}(G \notin \mathcal{P}_1) + \mathbb{P}(G \notin \mathcal{P}_2) \\
\lim_{n \to \infty} \mathbb{P}(G \notin \mathcal{P}_1 \cap \mathcal{P}_2) \leq 0$$

So the complimentary probability that $G \in \mathcal{P}_1 \cap \mathcal{P}_2$ goes to 1 as $n \to \infty$ so $G \in G_{n,p}$ is in $\mathcal{P}_1 \cap \mathcal{P}_2$ with high probability.

5, Diestel 11.8:

Consider a clique K. Let u, v be two vertices that are not in K. By $\mathcal{P}_{2,0}$, there exists y adjacent to u and v. By $\mathcal{P}_{2,1}$, there exists z adjacent to u and v but not to y. y and z cannot both be in K since they are not adjacent. Therefore any pair of vertices not in K are not separated and $G_{n,p}$ has no separating set which is a clique with high probability.

6, Diestel 11.10:

Let *H* be a graph with *k* vertices and *m* edges and p(n) be a function such that $p(n) \to 0$ as $n \to \infty$. Let $U \subseteq G$ be a subgraph of *G* with exactly *k* vertices. Denote ϕ as the probability that *H* is isomorphic to *U*. For *H* to be isomorphic to *U*, *H* must have exactly the same edges as *U*. As there are *k* vertices,

$$\phi \geq p(n)^m (1 - p(n))^{\binom{\kappa}{2} - m}$$

Partition G into $\lfloor \frac{n}{k} \rfloor$ sets $U_1, \ldots, U_{\lfloor \frac{n}{k} \rfloor}$ of size k with the last set having "leftover" vertices. As edges in these sets occur independently, the probability that G does not have H as an induced subgraph is bounded by

$$\mathbb{P}(\forall U.G[U] \neq H) \leq \mathbb{P}(i \leq \lfloor \frac{n}{k} \rfloor . G[U_i] \neq H)$$
$$\leq (1 - \phi)^{\lfloor \frac{n}{k} \rfloor}$$
$$< e^{-\phi \lfloor \frac{n}{k} \rfloor}$$

Thus it suffices to show that $e^{-\phi \lfloor \frac{n}{k} \rfloor} \to 0$ as $n \to \infty$. To do this we choose $p(n) = \frac{1}{\log(n+1)}$ and show that $\phi \lfloor \frac{n}{k} \rfloor \to \infty$.

$$\phi \lfloor \frac{n}{k} \rfloor = p(n)^m (1 - p(n))^{\binom{k}{2} - m} \lfloor \frac{n}{k} \rfloor$$

For sufficiently large n, we have that

$$\begin{split} \phi \lfloor \frac{n}{k} \rfloor &\geq (p(n)^2)^{\binom{k}{2}} \lfloor \frac{n}{k} \rfloor \\ &\geq \frac{n}{k(\log(n))^{k^2}} \to \infty \end{split}$$

So $e^{-\phi\lfloor \frac{n}{k}\rfloor} \to 0$ and we have that $\mathbb{P}(\exists U.G[U] \equiv H) \to 1$ as $n \to \infty$ and so G has H as an induced subgraph with high probability.