1: Find a nonhamiltonian graph G with 10 vertices such that $G-v$ is hamiltonian for every vertex v of G.

The answer is the Petersen Graph (it is the only answer, but this is slightly more difficult to show). You've already shown on a previous homework, that there is no 3 -edge-coloring of the Petersen Graph. A Hamilton cycle in the Petersen Graph would yield a contradicting 3-edge-coloring of it by alternating 2 colors on the edges of that cycle and assigning the third color to the remaining pairwise non-incident edges. Thus, the Petersen Graph is not hamiltonian.

The Petersen Graph is vertex transitive, so it suffices to show that the deletion of vertex from it leaves a graph with a 9 -cycle. To that end, suppose that the Petersen Graph is given by the two disjoint 5 -cycles, 123451 and $a b c d e a$, with additional edges $1 a, 2 c, 3 e, 4 b$ and $5 d$. The deletion of vertex 1 leaves the 9-cycle ae32cd54ba.

2, Diestel 10.1: Show that every tournament contains a (directed) Hamilton path.
We prove this by induction on the number of vertices in the tournament. The result is true for tournaments having 1 or 2 vertices, so now assume that T is a tournament with $n>2$ vertices and that the result is true for all tournaments having fewer than n vertices. Select a vertex v and obtain, by the induction hypothesis, a Hamilton path from v_{1} to v_{n-1} in $T-v$.
If there is an arc from v to v_{1} or an arc from v_{n-1} to v, then we have the desired path, so we assume that there is an arc from v_{1} to v and an arc from v to v_{n-1}. In this case, there is a largest index $j<n-1$ such that there is an arc from v_{j} to v. The path from v_{1} to v_{j} to v to v_{j+1} to v_{n-1} is then the desired path.

3: Let G have $n>1$ vertices and m edges. Prove that G has a bipartite subgraph with at least

$$
\frac{2\left\lfloor n^{2} / 4\right\rfloor m}{n(n-1)}
$$

edges. (You should consider a random bipartition. . . but don't allow just any bipartition.)
Consider a random bipartition A and B of G where the size of A and B differ by at most 1 . There are $\left\lfloor n^{2} / 4\right\rfloor$ (a,b) pairs of vertices and each of these has probability $\frac{m}{\binom{n}{2}}$ to be an edge in G. Therefore:

$$
\begin{aligned}
E[\text { edges in the bipartite subgraph }] & =\sum_{(\mathrm{a}, \mathrm{~b}) \text { pairs }} P((\mathrm{a}, \mathrm{~b}) \text { is an edge of } G) \\
& =\sum_{(\mathrm{a}, \mathrm{~b}) \text { pairs }} \frac{m}{\binom{n}{2}} \\
& =\frac{\left\lfloor n^{2} / 4\right\rfloor m}{\binom{n}{2}} \\
& =\frac{2\left\lfloor n^{2} / 4\right\rfloor m}{n(n-1)}
\end{aligned}
$$

Therefore at least one of the bipartite subgraphs has at least $\frac{2\left\lfloor n^{2} / 4\right\rfloor m}{n(n-1)}$ edges.

4, Diestel 11.6:

If $G \in G_{n, p}$ has properties \mathcal{P}_{1} and \mathcal{P}_{2} with high probability then $\lim _{n \rightarrow \infty} \mathbb{P}\left(G \notin \mathcal{P}_{1}\right)=0$ and $\lim _{n \rightarrow \infty} \mathbb{P}\left(G \notin \mathcal{P}_{2}\right)=0$. By the union bound, we know that

$$
\begin{aligned}
\mathbb{P}\left(G \notin \mathcal{P}_{1} \cap \mathcal{P}_{2}\right) & \leq \mathbb{P}\left(G \notin \mathcal{P}_{1}\right)+\mathbb{P}\left(G \notin \mathcal{P}_{2}\right) \\
\lim _{n \rightarrow \infty} \mathbb{P}\left(G \notin \mathcal{P}_{1} \cap \mathcal{P}_{2}\right) & \leq \lim _{n \rightarrow \infty} \mathbb{P}\left(G \notin \mathcal{P}_{1}\right)+\mathbb{P}\left(G \notin \mathcal{P}_{2}\right) \\
\lim _{n \rightarrow \infty} \mathbb{P}\left(G \notin \mathcal{P}_{1} \cap \mathcal{P}_{2}\right) & \leq 0
\end{aligned}
$$

So the complimentary probability that $G \in \mathcal{P}_{1} \cap \mathcal{P}_{2}$ goes to 1 as $n \rightarrow \infty$ so $G \in G_{n, p}$ is in $\mathcal{P}_{1} \cap \mathcal{P}_{2}$ with high probability.

5, Diestel 11.8:

Consider a clique K. Let u, v be two vertices that are not in K. By $\mathcal{P}_{2,0}$, there exists y adjacent to u and v. By $\mathcal{P}_{2,1}$, there exists z adjacent to u and v but not to y. y and z cannot both be in K since they are not adjacent. Therefore any pair of vertices not in K are not separated and $G_{n, p}$ has no separating set which is a clique with high probability.

6, Diestel 11.10:

Let H be a graph with k vertices and m edges and $p(n)$ be a function such that $p(n) \rightarrow 0$ as $n \rightarrow \infty$. Let $U \subseteq G$ be a subgraph of G with exactly k vertices. Denote ϕ as the probability that H is isomorphic to U. For H to be isomorphic to U, H must have exactly the same edges as U. As there are k vertices,

$$
\phi \geq p(n)^{m}(1-p(n))^{\binom{k}{2}-m}
$$

Partition G into $\left\lfloor\frac{n}{k}\right\rfloor$ sets $U_{1}, \ldots, U_{\left\lfloor\frac{n}{k}\right\rfloor}$ of size k with the last set having "leftover" vertices. As edges in these sets occur independently, the probability that G does not have H as an induced subgraph is bounded by

$$
\begin{aligned}
\mathbb{P}(\forall U \cdot G[U] \not \equiv F H) & \leq \mathbb{P}\left(i \leq\left\lfloor\frac{n}{k}\right\rfloor \cdot G\left[U_{i}\right] \not \equiv H\right) \\
& \leq(1-\phi)\left\lfloor\frac{n}{k}\right\rfloor \\
& \leq e^{-\phi\left\lfloor\frac{n}{k}\right\rfloor}
\end{aligned}
$$

Thus it suffices to show that $e^{-\phi\left\lfloor\frac{n}{k}\right\rfloor} \rightarrow 0$ as $n \rightarrow \infty$. To do this we choose $p(n)=\frac{1}{\log (n+1)}$ and show that $\phi\left\lfloor\frac{n}{k}\right\rfloor \rightarrow \infty$.

$$
\phi\left\lfloor\frac{n}{k}\right\rfloor=p(n)^{m}(1-p(n))^{\binom{k}{2}-m}\left\lfloor\frac{n}{k}\right\rfloor
$$

For sufficiently large n, we have that

$$
\begin{aligned}
\phi\left\lfloor\frac{n}{k}\right\rfloor & \geq\left(p(n)^{2}\right)^{\binom{k}{2}}\left\lfloor\frac{n}{k}\right\rfloor \\
& \geq \frac{n}{k(\log (n))^{k^{2}}} \rightarrow \infty
\end{aligned}
$$

So $e^{-\phi\left\lfloor\frac{n}{k}\right\rfloor} \rightarrow 0$ and we have that $\mathbb{P}(\exists U \cdot G[U] \equiv H) \rightarrow 1$ as $n \rightarrow \infty$ and so G has H as an induced subgraph with high probability.

