Proofs in Diestel for Midterm 1 - We covered the following proofs in class, so you should review them.

Proposition 1.2.1. The number of vertices of odd degree in a graph is always even.

Proposition 1.3.1. Every graph G has a path of length $\delta(G)$ and a cycle of length at least $\delta(G) + 1$ (given that $\delta(G) \ge 2$).

Proposition 1.3.2. Every graph *G* containing a cycle satisfies $g(G) \le 2 \operatorname{diam}(G) + 1$.

Proposition 1.4.2. If *G* is non-trivial, then

 $\kappa(G) \leq \lambda(G) \leq \delta(G).$

Corollary 1.5.3. A connected graph with *n* vertices is a tree if and only if it has n - 1 edges.

Proposition 1.6.1. A graph is bipartite if and only if it contains no odd cycle.

Theorem 1.8.1. (Euler 1736) A connected graph is Eulerian (i.e. has an Eulerian tour) if and only if all of its vertices have even degree.

Theorem 2.1.1. (König 1931) The maximum cardinality of a matching in a bipartite graph G is equal to the minimum cardinality of a vertex cover of its edges.

Theorem 2.1.2. (Hall 1935) A bipartite graph *G* with bipartition $\{A, B\}$ has a matching of *A* if and only if $|N(S)| \ge |S|$ for all $S \subseteq A$.

Corollary 2.1.3. Every *k*-regular bipartite graph ($k \ge 1$) has a 1-factor.

Corollary 2.1.5. (**Petersen 1891**) Every regular graph of positive even degree has a 2-factor.

Theorem 2.2.1. (Tutte 1947) A graph *G* has a 1-factor if and only if $q(G - S) \leq |S|$ for all $S \subseteq V(G)$.

Corollary 2.2.2. (Petersen 1891) Every bridgeless cubic graph (i.e. 3-regular graph) has a 1-factor.

Proposition 3.1.1. A graph is 2-connected if and only if it can be constructed from a cycle by successively adding *H*-paths to graphs *H* already constructed.

Lemma 3.1.2. Let G be any graph.

- Any cycle of G is contained in a single block of G.
- Any bond of G is contained in a single block of G.