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Fast polynomial-space algorithms using Möbius
inversion: Improving on Steiner Tree and related

problems ?

Jesper Nederlof

Department of Informatics, University of Bergen, N-5020 Bergen, Norway.
jesper.nederlof@ii.uib.no

Abstract. Given a graph with n vertices, k terminals and bounded in-
teger weights on the edges, we compute the minimum Steiner Tree
in O∗(2k) time and polynomial space, where the O∗ notation omits
poly(n, k) factors. Among our results are also polynomial-space O∗(2n)
algorithms for several NP-complete spanning tree and partition prob-
lems.

The previous fastest known algorithms for these problems use the tech-
nique of dynamic programming among subsets, and require exponen-
tial space. We introduce the concept of branching walks and extend the
Inclusion-Exclusion algorithm of Karp for counting Hamiltonian paths.
Moreover, we show that our algorithms can also be obtained by applying
Möbius inversion on the recurrences used for the dynamic programming
algorithms.

1 Introduction

One of the most widely used techniques for achieving moderately exponential
time algorithms for NP-hard problems is dynamic programming among subsets,
but unfortunately an exponential storage requirement seems to be inherent to
this technique. As mentioned by Woeginger [20] this requirement makes them
useless in practice. Therefore polynomial-space exact algorithms have already
been studied for several NP-hard problems [6, 7, 11, 16, 17, 20]. Hence, from both
a theoretical and a practical perspective it is desirable to identify those dynamic
programming algorithms that can be improved to require polynomial space,
preferably maintaining the best known upper bound on the running time. In
this paper we improve several algorithms in this way.

In 2006, Björklund et al. [6] drew new attention to the principle of Inclusion-
Exclusion: they gave O∗(2n)-time algorithms1 for several set partition problems,
the most prominent one being k-Coloring. They also mention a simple adjust-
ment to their algorithm to achieve an O∗(2.24n)-time algorithm with polynomial
space for k-Coloring. Also related to this are theO∗(2n)-time polynomial-space
algorithms for #Hamiltonian path by Karp [16] and (implicitly) Kohn et al.
[17], and for #Perfect Matching by Björklund and Husfeldt [2].

? This work is supported by the Research Council of Norway.
1 The O∗ notation omits polynomial factors, and n denotes the number of nodes of

the graph.



Problem References

O∗(2k) Steiner tree∗2 [3, 9, 11, 12]

O∗(2n)



Degree constrained spanning tree∗ [13]
Max internal spanning tree∗ [10]
#c-Spanning forests∗ [4, 15]
Cover polynomial∗ [4]
#Hamiltonian path [16, 17]
#Perfect matching [2]

O∗(2.24n) k-Coloring [6, 7]

Table 1. An overview of problems that can be solved using polynomial space and with
the given time bound using Inclusion-Exclusion. For the problems indicated with a *,
we provide the first polynomial-space algorithm with the given running time.

We show that some dynamic programming algorithms can be improved to
obtain polynomial-space algorithms with the same worst-case running time. Our
algorithms heavily rely on the work of Björklund et al. [2–6]. The results can
be read from Table 1: we add five problems to the list of polynomial space
Inclusion-Exclusion algorithms (note that this list is not exhaustive).

Steiner Tree is one of the most well-studied NP-complete problems. The
Dreyfus-Wagner [9] dynamic programming algorithm has been the fastest ex-
act algorithm for over 30 years. However, recently Björklund et al. [3] gave an
O∗(2k)-time algorithm2 for the variant with bounded integer weights, and Fuchs
et al. [12] gave an O∗(ck)-time algorithm for the general case, for any c > 2. Both
algorithms useΩ(2k) space. In [11], Fomin et al. initiated the study of polynomial
space algorithms for Steiner Tree. They gave polynomial space algorithms
with running time bounded by O(5.96knO(log k)) and O(1.60n) where n is the
number of nodes in the graph. They pose the question whether Steiner Tree
is fixed parameter tractable with respect to k when there is a polynomial space
restriction. We answer this question affirmatively by providing an algorithm that
runs in O∗(2k) time and meets the restriction. Using the techniques of [11], this
also leads to a polynomial-space O∗(1.3533n)-time algorithm.

The Max Internal Spanning Tree (MIST) and Degree Constrained
Spanning Tree (DCST, also called Min-Max Degree Spanning Tree)
problems are natural generalizations of Hamiltonian path. In [10], Fernau et
al. ask if there exists an O∗(2n)-time algorithm to solve MIST. In [13], Gaspers
et al. ask if there exists an O∗(2n)-time algorithm solving DCST. We answer
both questions by giving polynomial-space algorithms with this running time.

The Cover polynomial of a directed graph introduced by Graham and
Chung [8] generalizes all problems that can be solved using two operations named
deletion and contraction of edges, and is designed to be the directed analogue of
the Tutte polynomial. We improve the O∗(3n)-time polynomial-space algorithm
of Björklund et al. [4] to an O∗(2n)-time polynomial-space algorithm. We also
give the same improvement for #c-Spanning forests, which is one particular
case of the Tutte polynomial. For more information about the Tutte polynomial
we refer to [4].

The paper is organised as follows: in Section 2 we recall the principle of
Inclusion-Exclusion and the well-known Hamiltonian path algorithm. After this
we provide a natural extension by introducing the concept of branching walks
2 k stands for the number of terminals.



and give the resulting algorithms. In the next section we show how the Inclusion-
Exclusion algorithms can be obtained from dynamic programming algorithms
by taking the zeta transform of the associated recurrences. After this, we give a
more structural approach to the subset products introduced in [3] and provide
applications.

We use the following definitions: for any set S, 2S is the power set of S, i.e.
the set consisting of all subsets of S. For a boolean expression b, [b] stands for
1 if b is true, and for 0 if b is false. Let G = (V,E) be a (directed) graph.
Throughout the paper, we use |V | = n. The graph induced by X, where X ⊆ V ,
is the graph G[X] with nodeset X and all edges in E only adjacent to nodes in
X. For v ∈ V , N(V ) are all nodes adjacent to v. A walk of length k in G is a
tuple W = (v1, . . . , vk+1) ∈ V k+1 such that (vi, vi+1) ∈ E for each 0 ≤ i ≤ k.
W is from v if v1 = v, and W is cyclic if v1 = vk+1. Let G′ = (V ′, E′) also be
a graph, a homomorphism from G to G′ is a function φ : V → V ′ such that
(u, v) ∈ E implies (φ(u), φ(v)) ∈ E′.

2 Inclusion-Exclusion formulations

Let us start this section by stating the principle of Inclusion-Exclusion. The
following theorem can be found in many textbooks on discrete mathematics. For
a proof see for example Bax [1].

Theorem 1 (Folklore). Let U be a set and A1, . . . , An ⊆ U . With the conven-
tion

⋂
i∈∅Ai = U , the following holds:∣∣ ⋂

i∈{1,...,n}

Ai

∣∣ =
∑

X⊆{1,...,n}

(−1)|X|
∣∣ ⋂

i∈X

Ai

∣∣ (1)

In this paper, we call any application of the above theorem an IE-formulation.
In this context we will refer to the set U as the universe, and to A1, . . . , An as the
requirements. Moreover, we call the task of computing |

⋂
i∈X Ai| for an arbitrary

X ⊆ {1, . . . , n} the simplified problem. Note that if the simplified problem can
be computed in polynomial time, there exists an O∗(2n)-time polynomial-space
algorithm that evaluates Equation 1.

We mention that it is also possible to break Theorem 1 down into smaller
steps, i.e. we choose a subset of {1, . . . , n} and apply the theorem. This has
recently been used for a faster exact algorithm for Dominating Set in van
Rooij et al. [19]; see also Bax [1]. Other methods to speed up IE-formulations
are given by Björklund et al. [2, 5] and are surveyed in [18].

We continue this section by giving some IE-formulations. The first one is
well-known, but illustrative and it will be extended in the next subsections.

2.1 Hamiltonian Paths

Given a graph G = (V,E), a Hamiltonian path is a walk that contains each
node exactly once3. The #Hamiltonian Path problem is to count the number
3 This is slightly different from the usual definition, since a path corresponds to two

walks in both directions.



of Hamiltonian paths. The following IE-formulation is due to Karp [16]: define
the universe U as all walks of length n − 1 in G, and define Av as all walks of
length n − 1 that contain node v, for each v ∈ V . With these definitions, the
left-hand side of Equation 1, |

⋂
v∈V Av|, is the number of Hamiltonian paths in

G. Now it remains to show how to solve the simplified problem: given R ⊆ V
and s ∈ R, let wk(s,R) be the number of walks from s of length k in G[R]. Then
wk(s,R) admits the following recurrence:

wk(s,R) =


1 if k = 0∑
t∈N(s)∩R

wk−1(t, R) otherwise (2)

Notice that wk(s,R) is O(nn), hence the number of bits needed to represent
this value is polynomially bounded, and that

|
⋂

v∈X

Av| =
∑

s∈V \X

wn−1(s, V \X)

Hence, the simplified problem can be solved in polynomial time using dynamic
programming on Equation 2 (the parameter R is fixed but is added for clearness).
Thus it takes O∗(2n) time and polynomial space to evaluate Equation 1.

2.2 Steiner tree

Now we are ready for our first new result. Assume a graph G = (V,E) and
weight function w : E → Z+ are given. The Steiner Tree problem is the
following: given a set of terminals K ⊆ V and an integer c, does there exist
a subtree T = (V ′, E′) of G such that K ⊆ V ′ and

∑
e∈E′ w(e) ≤ c. In this

section we will give an extension of the results in the previous section to obtain
a new IE-formulation for Steiner Tree with unit weights, meaning w(e) = 1
for every edge e ∈ E. We introduce the following definition:

Definition 2. A branching walk B in G = (V,E) is a pair (TB , φ) where TB =
(VB , EB) is an ordered tree and φ : VB → V is a homomorphism from TB to G.
The length of B, denoted with |B|, is |EB |. For a node s ∈ V , B is from s if
the root of TB is mapped to s by φ. If a branching walk is said to be unordered,
TB is an unordered tree.

We will use φ(VB) = {φ(u)|u ∈ VB} and φ(EB) = {(φ(u), φ(v))|(u, v) ∈ EB},
hence φ(VB) ⊆ V and φ(EB) ⊆ EB . A branching walk is a natural generalization
of a walk: notice that a branching walk is a walk if TB is a path. The definition
is particularly useful in combination with the following lemma:

Lemma 3. Let s ∈ K. There exists a subtree T = (V ′, E′) of G such that
K ⊆ V ′ and |E′| ≤ c if and only if there exists a branching walk B = (TB =
(VB , EB), φ) from s such that K ⊆ φ(VB) and |B| ≤ c.

Proof. For the first part, choose TB = T and φ : VB → V ′ = VB to be the
identity function. For the second part, we can take T to be a spanning tree of
the graph (φ(VB), φ(EB)), and it has the required properties. ut



Consider the following IE-formulation: let s ∈ K be an arbitrarily chosen termi-
nal, and define the universe U as all branching walks from s of length c. For each
v ∈ K, define a requirement Av that consists of all elements of U that contain
terminal v (i.e. v ∈ φ(VB)). It follows that the left-hand side of Equation 1,
|
⋂

v∈X Av|, is the number of branching walks that contain all terminals. Using
Lemma 3 this is larger than 0 if and only if the instance of Steiner Tree is a
yes-instance.

It remains to show how the simplified problem can be solved. For R ⊆ K, let
R′ = (V \K) ∪R, and define bRj (s) as the number of branching walks from s of
length j in G[R′], where s ∈ R′. Note that the simplified problem is to compute

|
⋂

v∈X

Av| = bK\Xc (s)

for a given set X ⊆ K of terminals. Now bRc (s) can be computed in polynomial
time using the following lemma:

Lemma 4. Let R ⊆ K and s ∈ R′, then

bRj (s) =


1 if j = 0 (3a)∑
t∈N(s)∩R′

∑
j1+j2=j−1

bRj1(t) bRj2(s) otherwise (3b)

Proof. There is one branching walk of length 0, B = (TB , φ), from s with TB

being a single node and φ mapping this single node to s, hence Case 3a. If the
length j = |EB | is larger than 0, take the first child c1 of the root of TB . Notice
that (s, φ(c1)) has to be in E; therefore, t ∈ N(s)∩R′. Now any tree TB consists
of an edge from the root r to c1, and two trees rooted at r and c1. Hence, B
also consists a two branching walks, one from t and one from s. The lengths
of these branching walks have to sum up to j − 1 since the edge (r, c1) already
contributes 1 to the length of B. Now it remains to sum over all possibilities of
distributions of the length, and hence Case 3b also holds. ut

From Equation 3 it follows that for each j > 0 and s ∈ R′, bRj (s) is O((nj)j).
Hence, the number of bits needed to represent bRj (s) is polynomially bounded.

Theorem 5. The Steiner tree problem with unit weights can be solved in
O∗(2k) time and polynomial space, where k is the number of terminals.

Proof. Due to Lemma 3 the considered IE-formulation solves Steiner Tree,
and we can use dynamic programming on Equation 3b to compute the simplified
problem in polynomial time. ut

The following result is a direct consequence of Theorem 5 and the consider-
ations of Section 4 in [11]:

Corollary 6. Steiner Tree with unit weights can be solved in O∗(1.3533n)
time using polynomial space.



2.3 Further IE-formulations

In this section we give IE-formulations for two problems that lead to algorithms
running in O∗(2n)-time and using polynomial space. In the following assume we
are given a graph G = (V,E) and an integer c. In both IE-formulations we define
Av, for each v ∈ V , to be all elements of U that contain node v. The universe U
itself will be more tailor-made for both problems.

Degree constrained spanning tree The Degree Constrained Spanning
Tree problem, also called Min-Max Degree Spanning Tree, asks whether
G has a spanning tree with maximum degree at most c. Define U as all branching
walks (TB , φ) of length n− 1 such that TB has maximum degree at most c. For
R ⊆ V , define dR

j (g, s) as the number of branching walks (TB , φ) from s of length
j in G[R] such that the degree of the root of TB is at most g. The simplified
problem is to compute

|
⋂

v∈X

Av| =
∑

s∈V \X

d
V \X
n−1 (c, s)

and it can be computed in polynomial time with dynamic programming using:

dR
j (g, s) =


[g ≥ 0] if j = 0∑
t∈N(s)∩R

∑
j1+j2=j−1

dR
j1(c− 1, t) dR

j2(g − 1, s) otherwise

To see that the equation holds, notice that dR
0 (g, s) = [g ≥ 0] by definition and

if j > 0, we count combinations of two branching walks: in the branching walk
from t we are allowed to choose c − 1 neighbors, and in the one from s we are
allowed to use one neighbor less than before.

Max internal spanning tree The Max Internal Spanning Tree asks
whether G has a spanning tree with at least c internal nodes (i.e. nodes with
degree at least 2). Define the universe U as all branching walks (TB , φ) of length
n − 1 such that TB has at most n − (c + 1) leaves. For R ⊆ V , define mR

g,j(s)
as the number of branching walks in G[R] of length j from s having at most g
leaves.

mR
g,j(s) =


[g ≤ 1] if j = 0∑
t∈N(s)∩R

∑
g1+g2=g

∑
j1+j2=j−1

mR
g1,j1(t)mR

g2,j2(s) otherwise

In the equation we count all possible distributions of the length and the number
of leaves in the branching walks from s and t. Now the simplified problem is
to compute

∑
s∈V \X m

V \X
n−(c+1),j(s). To see that the IE-formulation solves the

problem, note there exists B ∈
⋂

v∈V Av if and only if there exists (TB , φ) ∈⋂
v∈V Av such that the root of TB has degree 1. And in TB , the number of

internal nodes is the number of non-leaves minus 1.



Theorem 7. Degree Constrained Spanning Tree and Max Internal
Spanning Tree can be solved in O∗(2n) time and polynomial space.

Proof. The discussed IE-formulations solve the problems due to Lemma 3 and
the above considerations, and the simplified problems can be solved in polyno-
mial time with dynamic programming on the stated recurrences. ut

3 Möbius inversion

In this section we study an algebraic equivalent of Inclusion-Exclusion, called
Möbius inversion. Basically, it consists of the following two transforms:

Definition 8. Given a function f : 2V → Z+ and Y ⊆ V , the zeta transform
ζf(Y ) and the Möbius transform µf(Y ), are defined as:

ζf(Y ) =
∑

X⊆Y

f(X) µf(Y ) =
∑

X⊆Y

(−1)|Y \X|f(X)

Now the principle of Möbius inversion can be formulated as the following theorem
(this is already folklore, but we make the equivalence relation more clear with a
proof):

Theorem 9 (Folklore). The Möbius transform is the inverse of the zeta trans-
form; that is, for every Y ⊆ V , f(Y ) = µζf(Y ).

Proof. Define U and Av ⊆ U for v ∈ V such that for X ⊆ V we have:

f(X) = |
⋂

v∈X

Av \
⋃

v∈V \X

Av|

This can be done by defining U = {eX
i |X ⊆ V, 1 ≤ i ≤ f(X)} such that eX

i ∈ Av

if and only if v ∈ X. Now ζf(Y ) = |
⋂

i∈V \Y Ai|, and hence µζf(Y ) is equal
to the right-hand of Equation 1. Since f(Y ) is equal to the left-hand side of
Equation 1, the result follows from Theorem 1. ut

So intuitively, using the terminology of the previous section, any IE-formulation
is equivalent to applying Möbius inversion and the simplified problem is to com-
pute ζf(V \X). Now we will reobtain the IE-formulation of Karp [16] discussed
in Subsection 2.1 by applying Möbius inversion to the classical dynamic pro-
gramming approach.

Hamiltonian path revisited Let us again consider #Hamiltonian Path.
Let h(s,R) be the number of Hamiltonian paths from s in G[R ∪ s]. Recall the
dynamic programming algorithm of Held and Karp [14]:

h(s,R) =


1 if R = ∅∑
t∈N(s)∩R

h(t, R \ t) otherwise



We start by adding a parameter k, which is the length of the Hamiltonian paths
we are counting. Although this seems superfluous because we know that each
Hamiltonian path in G[R ∪ s] has length |R|, it gives us some needed flexibility.

hk(s,R) =


[R = ∅] if k = 0∑
t∈N(s)∩R

hk−1(t, R \ t) otherwise

Now hn−1(s, V \ s) is the number of Hamiltonian paths from s. Consider the
following slightly different function

h′k(s,R) =


[R = ∅] if k=0 (4a)∑
t∈N(s)∩R

h′k−1(t, R \ t) + h′k−1(t, R) otherwise (4b)

Notice that h′|R|(s,R) = h|R|(s, |R|), since the term h′k−1(t, R) added in Case
4b is 0 if k ≤ |R|. As a next step, we take the zeta transform on both sides of
Equation 4. For Case 4a, we have ζh′0(s,R) = 1, and for Case 4b:

ζh′k(s,R) =
∑

X⊆R

∑
t∈N(s)∩X

h′k−1(t,X \ t) + h′k−1(t,X)

=
∑

t∈N(s)∩R

∑
t∈X⊆R

h′k−1(t,X \ t) + h′k−1(t,X)

=
∑

t∈N(s)∩R

ζh′k−1(t, R)

It is immediate that ζh′k(t, R) = wk(s,R), and we obtained the IE-formulation
of Subsection 2.1.

3.1 Subset products

An application for which Möbius inversion is particularly suited is the computa-
tion of subset products, introduced by Björklund et al. We will use the following:

Definition 10 ([3]). Given two functions f, g : 2V → Z+, the cover product
(f ∗c g)(Y ), for Y ⊆ V is defined as:

(f ∗c g)(Y ) =
∑

A∪B=Y

f(A)g(B)

Assuming f and g can be evaluated in polynomial time, the naive way to compute
(f ∗c g)(Y ) would take O∗(3n) time. In [3], Björklund et al. implicitly use the
following theorem in order to obtain an O∗(2n) algorithm:

Theorem 11 ([3]). Given two functions f, g : 2V → Z+, the following holds
for Y ⊆ V :

ζ(f ∗c g)(Y ) = (ζf(Y )) (ζg(Y ))



Proof. Consider the following rewriting:

ζ(f ∗c g)(Y ) =
∑

X⊆Y

∑
A∪B=X

f(A)g(B) =
( ∑

A⊆Y

f(A)
)( ∑

B⊆Y

g(B)
)

The first equality follows by definition. For the second equality notice that for
each A,B ⊆ Y , there exists exactly one X ⊆ Y such that A ∪ B = X, hence
we can sum over each combination of two subsets A and B. Now the theorem
follows from the definition of zeta transform. ut

Steiner Tree revisited Let us again consider Steiner Tree. Recall we denote
R′ for (V \ K) ∪ R. Our starting point is an adjusted version of the famous
Dreyfus-Wagner recurrence [3, 9]: for R ⊆ K, integer c and t ∈ V we are going to
define sc(t, R) such that it will be larger than 0 if and only if there exists a subtree
T = (V ′, E′) of the graph G[R′ ∪ t] such that R ∪ t ⊆ V ′ and

∑
e∈E′ w(e) ≤ c.

For c ≤ 0, we have sc(t, R) = [c = 0 ∧R = ∅], and for c > 0 define:

sc(t, R) =
∑

u∈N(t)∩R′

gc−w(t,u)(t, u,R \ u)

gc(t, u,R) =
∑

c1+c2=c

∑
A∪B=R

sc1(u,A) sc2(t, B)

We use a slightly different variant s′c of sc. Define s′0(t, R) to be s0(t, R), and for
c > 0:

s′c(t, R) =
∑

u∈N(t)\K

g(R) +
∑

u∈N(t)∩R

g(R) + g(R \ u)

where we shorthand g′c−w(t,u)(t, u,R) with g(R), and the definition of g′ is ob-
tained by replacing s with s′ in the definition of g (hence s′ does not depend on
s). Note that s′c(t, R) > 0 if and only if sc(t, R) > 0, since 0 ≤ g(R) ≤ g(R \ u).
Now we take the zeta transform of both s′c and g′c:

ζs′c(t, R) =
∑

X⊆R

( ∑
u∈N(t)\K

g(X) +
∑

u∈N(t)∩X

g(X) + g(X \ u)
)

=
∑

u∈N(t)\K

ζg(R) +
∑

u∈N(t)∩R

∑
u∈X⊆R

g(X) + g(X \ u)

=
∑

u∈N(t)\K

ζg(R) +
∑

u∈N(t)∩R

ζg(R)

=
∑

u∈N(t)∩R′

ζg(R)

ζg′c(t, u,R) =
∑

X⊆R

∑
c1+c2=c

∑
A∪B=X

s′c1
(u,A) s′c2

(t, B)

=
∑

c1+c2=c

ζ(s′c1
(u) ∗c s′c2

(t))(R)

=
∑

c1+c2=c

ζs′c1
(u,R) ζs′c2

(t, R)



Combining both derivations gives us

ζs′c(t, R) =
∑

u∈N(t)∩R′

∑
c1+c2=c−w(t,u)

ζs′c1
(u,R) ζs′c2

(t, R)

comparing this with Equation 3, we see that ζs′c(t, R) = bRc (t) in the special case
of unit weights. And the following result also follows:

Theorem 12. The Steiner Tree problem with bounded integer weights can
be solved in O∗(2k) and polynomial space.

3.2 Further applications

In this subsection we give some other applications of the methods considered in
the previous subsection, continuing the work of Björklund et al. [3, 4].

Cover Polynomial We use xi for the falling factorial x!
(x−i)! . A Hamiltonian

cycle of a graph is a cyclic walk that contains all nodes exactly once. The cover
polynomial of a directed graph D = (V,A) can be defined as (see also [4, 8]):∑

i,j

CV (i, j)xiyj

where CV (i, j) can be interpreted as the number of ways to partition V into i
directed paths and j directed cycles of D. Since paths and cycles with l edges
contain l + 1 and l nodes respectively, the sum of the lengths of the paths and
cycles in such a partition will be n− i. Moreover, if V is covered, the path and
cycles are disjoint because of this size restriction. This allows us to define CY

using the cover product, such that CV matches the above interpretation:

CY (i, j) =
1
i!j!

∑
l1+...li+j=n−i

(hl1 ∗c . . . ∗c hli ∗c cli+1 ∗c . . . ∗c cli+j )(Y )

where hl(Y ) and cl(Y ) are the number of Hamiltonian paths and Hamiltonian
cycles of length l in D[Y ], respectively (note that like before we use the redu-
dant parameter l, for obtaining the efficient computable zeta transform). Recall
Equation 4 and note we can replace hl(Y ) with h′l(Y ) =

∑
s∈V h

′
l(s, Y ), and

ζh′l(Y ) is the number of walks of length l in D[Y ]. We mention that one can in a
analogue way replace ct(Y ) with c′t(Y ) such that ζc′l(Y ) is the number of cyclic
walks of length l in D[Y ]. Now we apply Theorem 11 on the cover products and
obtain:

ζCY (i, j) =
1
i!j!

∑
l1+...li+j=n−i

( i∏
t=1

ζh′lt(Y )
) ( i+j∏

t=i+1

ζc′lt(Y )
)

which can be computed in polynomial using standard dynamic programming,
since ζh′l(Y ) =

∑
s∈Y wk(s, Y ) and ζc′l(Y ) also can.



#c-Spanning forests A c-spanning forest of G = (V,E) is an acyclic subgraph
of G with exactly c connected components. Denote τ(c) for the number of c-
spanning forests of G. Assume an ordering ≺ on the nodeset V is given. For Y ⊆
V , define b̂l(Y ) as the number of unordered branching walks (TB = (VB , EB), φ)
in G such that Y ⊆ φ(VB) and φ(r) is minimum among φ(VB), where r is the
root of TB (recall from Subsection 2.2 that φ(VB) = {φ(u)|u ∈ VB}). Now we
can write τ(c) as follows:
Lemma 13.

τ(c) =
1
c!

∑
l1+...+lc=n−c

(b̂l1 ∗c . . . ∗c b̂lc)(V ) (5)

Proof. A set of c branching walks of total length n − c can only cover V if it
induces a c-spanning forest. Every tree in this spanning forest corresponds to one
unordered branching walk from the minimum node it contains. Hence obtain the
equality. ut
Now we can use Möbius inversion and Theorem 11 on Equation 5 to obtain

τ(c) = µ
( 1
c!

∑
l1+...+lc=n−c

c∏
i=1

(ζb̂l1)(V )
)

and it remains to show how to compute ζb̂l1(R) for R ⊆ V . For s ∈ R, define
b̂Rj,q(s) as the number of unordered branching walks (TB , φ) from s of length j
in G[R] such that no child of the root of TB is mapped to one of the first q − 1
neighbors of s in G[R] with respect to the ordering ≺. Notice that:

b̂Rj,q(s) =


0 if q > |N(s) ∩R|
1 else if j = 0
bRj,q+1(s) +

∑
j1+j2=j−1

b̂Rj1,1(Ns
q ) b̂Rj2,q+1(s) otherwise

where Ns
q is the qth-first element of the set N(s)∩R with respect to the ordering

≺. Now b̂l(R) =
∑

s∈R b
Rs

l,1 (s), where Rs stands for the set of all elements e in R
such that s ≺ e.
Theorem 14. Cover Polynomial and #c-Spanning forests can be solved
in O∗(2n) time and polynomial space.

Conclusion

We studied applications where the zeta transform is computable in polynomial
time. As mentioned in the introduction, our algorithms considerably improve on
dynamic programming in practice: in addition to improving the space require-
ment, our algorithms can potentially be made faster in practice when combined
with techniques from [1, 19]. We want to mention that applying Möbius inversion
to a problem is not straightforward: first one has to come up with a function
with the wanted properties, in order to succesfully apply Möbius inversion.

To support finding more applications, it is interesting whether more subset
products with similar nice properties can be found, for some examples, we also
refer to [3].
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