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2 flz)=a" —2° —6x+2 [0,3]. Since fisa polynomial, it is continuous and differentiable on I, so it is continuous on

[0, 3] and differentiable on (0,3). Also, f(0) =2 = f(3). fl(e) =0 = 3 —2—-6=0 =

c= 2=va+ 72 ";-’_72 = % + %\x 19 [=1.79 = —-112].s0ec= % + % +/ 19 satisfies the conclusion of Rolle’s Theorem.

8 f'(c) = ‘F(?: {(l} _ 1€ ; 06 _ é It appears that 4

f'(c) =43 whenc~ 32and6.1. TN
!_______...--

10. f(z) =2° —3x 42, [-2.2].  is continuous on [—2, 2] and differentiable on (—2, 2) since polynomials are continuous and

differentiable on R. f'(c) = w o 30-3=1 {3)__{{ (2_)2) = 41 o1 & 32=1 =

cﬁ=§ = c=i%,wmchmbothm{—2.,z).

12. f(zx) = ép [1,3]. f is continuous and differentiable on (—oc, 0) U (0, oo, so f is continous on [1, 3] and differentiable

_fW)-fl@) 1 _f@-f1)_3-1

1
r [ p—— 2: =
on (1,3). '(¢) — S=—35—T =35 =3 & =3 & ¢ ++/3, but only /3
isin (1,3).
2—(2x—1 if 20 —12>0 32 ifaxz>1 9 if 1
16. f(z) =2 — |22 — 1| = ( ) _ T = _ _f = fl(z)= ' m>§
2—[—(2z—-1)] if2zx—1<0 1+22 fzx<3 2 fz<g

Ff(3)—f0)=F(e)(3—0) = —-3—-1=F(c)-3 = F(c)=—% [not £ 2]. This does not contradict the Mean

Value Theorem since f is not differentiable at x = %

20. f(z) = =* + 4= + . Suppose that f(z) = 0 has three distinct real roots a, b, d where @ < b < d. Then
fla) = f(b) = f(d) = 0. By Rolle’s Theorem there are numbers ¢; and ¢z witha << ¢; < band b < 2 < d
and 0 = f'(e1) = f'(e2), so f'(x) = 0 must have at least two real solutions. However
0= f(z) =4a° +4=4(2" +1) = 4(z + 1)((2® — = + 1) has as its only real solution = = —1. Thus, f(z) can have at
most two real roots.

24. If 3 < f'(x) < 5 for all =, then by the Mean Value Theorem,_ f(8) — f(2) = f'(e) - (8 — 2) for some ¢ in [2, §].
(f is differentiable for all =, so, in particular, f is differentiable on (2, 8) and continuous on [2, §]. Thus, the hypotheses of the
Mean Value Theorem are satisfied.) Since f(8) — f(2) = 6f'(¢) and 3 < f'(e) < 5. it follows that

6-3<6f(c)<6-5 = 18 < f(8) — f(2) < 30.
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f(b) _f(_b) _ f’{Cj

28. f satisfies the conditions for the Mean Value Theorem, so we use this theorem on the interval [—b, b]:

b—(=b)
for some ¢ € (—b, b). But since f is odd, f(—b) = — f(b). Substituting this into the above equation, we get
b b b
£(b) + £(b) ];_bf{ ) =f'le) = —'fi} = f'(e).
34. Let v(t) be the velocity of the car ¢ hours after 2:00 PM. Then »(1/6) — »(0) = 50 — 30 = 120. By the Mean Value

1/6 —0 1/6
Theorem, there 1s a number e such that 0 < ¢ < % with v’(e) = 120. Since v'(¢) is the acceleration at time ¢, the acceleration
¢ hours after 2:00 PM is exactly 120 mi/h%.
2. (a) f 1s increasing on (0,1) and (3, 7). (b) f is decreasing on (1, 3).
(c) f is concave upward on (2, 4) and (5, 7). (d) f is concave downward on (0, 2) and (4, 5).
(&) The points of inflection are (2, 2), (4, 3), and (5, 4).
6. (a) f'(x) > 0 and f 1s increasing on (0, 1) and (3,5). f'(x) < 0 and f 15 decreasing on (1, 3) and (5, €).

(b) Since f'(x) = 0atx = 1 and x = 5 and f changes from positive to negative at both values, f changes from mcreasing to
decreasing and has local maxima at = 1 and x = 5. Since f'(x) = 0 at x = 3 and f' changes from negative to positive
there, f changes from decreasing to imncreasing and has a local minimum at = = 3.

10. (a) f(z) =42’ + 32" —6z+1 = f'(z) =122" + 6z — 6 =6(22> + 2 — 1) = 6(2z — 1)( + 1). Thus,
flz)>0 & w<—lorz>jandf(x) <0 & —1<z< 3. Sofisincreasingon (—oc,—1)and (3,00) and
f is decreasing on (—1, 1).
(b) f changes from increasing to decreasing at x = —1 and from decreasing to increasing at x = % Thus, f(—1) =61isa
local maximum value and f(3) = —3 1s a local minimum value.
@© f'(z) =24x+6=6(4z+1). f'(z)>0 & =z>-tandf'(z)<0 < =z < —% Thus, fisconcaveupward

on {—i, oo) and concave downward on (—oc, —%}. There 1s an inflection point at (—%., f(—%}} = (—%? %]
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14. (a) f(z) = cos’z — 2sinz, 0 <z < 27w, f'(z)= —2cosz sinx — 2cosx = —2cosx (1 + sinz). Note that
l+4+sinz >0 [sincesinz > —1], withequality & sinz=-1 & x= S'T'r [since 0 < z < 2] =
cosz=0.Thus, f'(z) >0 & cosz<0 & F<z<Tadf(z)<0 & coszx>0 & 0<z<3
or 32—“ < x < 2m. Thus, f is increasing on (% 377’) and f is decreasing on (ﬂ? %) and (ETT, 27r]_

(b) f changes from decreasing to increasing at x = % and from increasing to decreasing at x = 3—; Thus, f (%) =—21isa
local minimum value and f (ETT) = 215 a local maximum value.
(©) f'(z) = 2sinz (1 + sinz) — 2cos’ z = 2sinz + 2sin” = — 2(1 — sin” )
= 4sin” 2 + 2sinz — 2 = 2(2sinz — 1)(sinz + 1)
so f'(z) >0 <= sinax }% & <z ETW,andf”(:r) <0 < snz< % andsina # -1 <
5=

0<x< For ET“ < < 3717 or 3—217 < z < 2. Thus, f is concave upward on [%? T) and concave downward on ((], %},
(37, 3%). and (‘%‘,Ew]_ There are inflection points at (%, —3) and (3F, —3).

16. (a) f(x) =a2’Inz = f'(z) =2(1/z) + (Inz)(2x) = = + 2z Inz = z(1 + 2Inz). The domain of f is (0, oc), s0
the sign of f' is determined solely by the factor 1 + 2Inz. f'(z) >0 < Iz >-1 & z>¢ '/? [=061]
and f'(z) <0 < 0<az<e /% So fisincreasing on (e ~'/?, o0) and f is decreasing on (0, e /).

(b) f changes from decreasing to increasing at x = e~ /2. Thus, f(e~'/?) = (e ¥/2)? In(e /%) = e~ 1(—1/2) = —1/(2¢)
[= —0.18] i1s a local mumimum value.

© fi(z) ==2(1+2Inz) = f'(z)==2(2/x)+(1+2hz)-1=24+14+2lnhx=3+2mh=z. f'(z)>0 =
34+2nz>0 < lnz>-3/2 < z>e /% [=0.22] Thus, fis concave upward on (e %/ oc) and f is

concave downward on (0,e3/2). f(e™¥?) = (e7¥?)?Ine~¥? = e7%(—3/2) = —3/(2¢%) [= —0.07]. Thereisa

point of inflection at (6—3/'211:(8—3]2)) = (6_3"21 —3/‘(233))_
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20. f(z) =

26.

32.

z* ' z(m—lj{h)—mz{l]zx2—2zr=$(w—2]
— = f@ (@ —1)° G-I @1t

x
First Derivative Test: f'(z) >0 = =z <0orz>2and f'(z) <0 = 0<z<lorl <z <2 Since f changes
from positive to negative at = = 0, f(0) = 0 is a local maximum value; and since f' changes from negative to positive at
x =2, f(2) = 4 is a local minimum value.

Second Derivative Test:

(x —1)%(22 — 2) — (2 — 22)2(x — 1) _2(=—1[(=— 1)? — (2 — 22)] _ 2
[(x —1)°]? (z—1)* (z—1)%

frr{x) —

fllz)=0 = 2=0,2 f"(0)=-2<0 = £(0)=01salocal maximum value. f'(2) =2>0 = f(2)=4isa
local minimum value.

Freference: Since calculating the second dermvative 1s farrly difficult, the First Derrvative Test 1s easter to use for this

function.

fi(1)=f(—1)=0 = horizontal tangents at x = +1. ¥

fllz) <0if|z| <1 = fisdecreasingon (—1,1).

fllz) >0if1 < |»| <2 = fisincreasingon(—2, —1)and (1,2). \/\{‘/\
fllz)=—1if|x| >2 = the praph of f has constant slope —1 on (—co, —2) LR o

and (2, o).

f'z) <0if—2< 2 <0 = fisconcave downward on (—2,0). The point (0, 1) is an inflection point.

(a) f is increasing where f' is positive, on (1, €) and (8, oc), and decreasing where ' is negative, on (0, 1) and (€, 8).

(b) f has a local maximum where f' changes from positive to negative, at = = 6, and local minima where f' changes from
negative to positive, atx = l and at =z = 8.

(c) f is concave upward where ' is increasing, that 1s, on (0, 2), (3, 5), and (7, oc), and concave downward where f” is
decreasing, that is, on (2, 3) and (5, 7).

(d) There are points of inflection where f changes its (e) ¥y
direction of concavity, at z = 2, x = 3, x = 5 and

r=T.
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34. (a) f(z) =362 +32" —22° = f(z)=36+6xr—6x’=—6(x’—2—6)=—6z+2)(z—3). fllz)>0 <

—2<z<3and f'(z) <0 < =x< —2orz >3 So fisimncreasing on (—2,3) and f 1s decreasing on (—oc, —2)

and (3, co).

(b) f changes from increasing to decreasing at x = 3, so f(3) = 81 is a local maximum value. f changes from decreasing to

mereasing at x = —2, so f(—2) = —44 is a local minimum value.

© f'(®)=6-120. f'(x)=0 & ==4. f'()>00n(-o0,3) @

3
and f"(x) < 0on (3,00). So fis CUon (—oo, 3) and f 1s CD on

(3. 00). There is an inflection point at (3, 37).

38. (a) h(zx) = ba® — 3a°

(3, 81)

-2

(=2, —44)

= RK'(z) =162 —15z* = 152°(1 —2?) = 1522 (1 + 2)(1 — ). K(z) >0 =

—1<z<0and0 < = < 1 [note that h'(0) =0] andh'(z) <0 < =z < —lorz > 1 Sohisincreasingon(—1,1)

and h is decreasing on (—oo, —1) and (1, o).

(b) h changes from decreasing to increasing at « = —1, so h(—1) = —2 is a local minimum value. h changes from increasing

to decreasing at z = 1, so h(1) = 2 is a local maximum value.

(©) h"(z) = 30z — 602° = 302(1 — 22%). A"(z)=0 < =z=0or
1-22"=0 & z=00rz==x1/v2 h"(z)>00n(—oc,—1/+/2) and
(0,1/v2),and A”(z) < 0 on (—1/v/2,0) and (1/v/2,c). So his CU on
(=00, —1/+/2) and (0,1/+/2), and h is CD on (—1/+/2,0) and (1/v'2, 00).
There are inflection points at (—1/v/2, —7/(4v/2)), (0,0), and (1/v/2,7/(4v2)).

(d

(1, 2}

i=1,=2)
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x

u.f{.ﬂ:]iemhasdomain{:.c|l—cm?é[)}={:n|c°"%1}={m|m?é[]}_
e” ¥ [e” 1 1 .
li = lim — 1~ = 1 = =1 = —lisaHA
@ tim = = im oy T A e o1 T e S0y B
li 0 0 soy—o0isaHA lim ——— — —ocand lim ——— — o0,s02 — 0isa VA
st l—er 1-0 Y7 Ll T O T T T '
1 — e%)e® — % —e* =[] — g% x = . .
)] f'{.rjz( e(ie_ew;( ) _¢ [((1 _ecm);c | = {l_eﬂm)z' f'(z) = 0for x £ 0, so f is increasing on

(—oo,0) and (0, cc).

(c) There is no local maximum or MIiNIMNT.

@ 7= L A I © ,
— (1—e")e”[(1 —e”) + 2¢7] _ e“(e® +1)
(I —e=)? (1—e=)3 _ :
f'l@)>0 & (1-e)?>0 & <1 & z<0ad EAT S
F'(z) <0 & >0 SojfisCUon (—oo,0)and fisCD on (0,00). ’

There 15 no mflection pomt.

54. y = f(x) = «° — 3a’x + 2a°, a > 0. The y-intercept is f(0) = 2a°. 3’ = 32 —3a® = 3(z? — a®) =3(z + a)(z — a).
The critical numbers are —a anda. ' < 0 on (—e,a), so f is decreasing on (—a, a) and f is increasing on (—oo, —a) and
(@, o0). f(—a) = 4a® is a local maximum value and f(a) = 0 is a local minimum value. Since f(a) = 0, a is an z-intercept,
and = — a is a factor of £ Synthetically dividing y = «* — 3z + 2a% by = — a gives us the following result-

y=2a° —3a’z + 2a° = (z — a)(x® + az — 2a®) = (z — a)(z — a)(z + 2a) = (z — a)*(= + 2a), which tells us

that the only z-intercepts are —2a anda. 3’ = 32” — 32> = y”" =6z, s0y” >0 3 ¥
on (0, oc) and " < 0 on (—oo, 0). This tells us that £ 1s CU on (0, oc) and CD on ) (0-111;3)
(—o0, 0). There is an inflection point at (0, 2a”). The graph illustrates these features. \
What the curves in the family have in common is that they are all CD on (—oc, 0), 2l o o -
CU on (0, oc), and have the same basic shape. But as a increases, the four key points

shown in the fipure move further away from the origin.
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70. The original equation can be written as (z* + b)y + az = 0. Call this (1). Since (2,2.5) is on this curve, we have
(4+8) (%) + 2a = 0, or 20 + 55 + 4a = 0. Let’s rewrite that as 4a + 56 = —20 and call 1t (A). Differentiating (1) gives
(after regrouping) (z® + b)y’ = —(2xy + a). Call this (2). Differentiating again gives (x> + b)y” + (2x)y = —2xy’ — 2y,
or (z? + b)y” + 4y’ + 2y = 0. Call this (3). At (2,2.5), equations (2) and (3) say that (4 + b)y’ = —(10 + a) and
(4+b)y" +8y +5 =0 If (2,2.5) is an inflection point, then ¢ = 0 there, so the second condition becomes 8y’ + 5 =0,
ory' = —%. Substituting in the first condition, we get —(4 + b)§ = —(10 + a), or 20 + 5b = 80 + Sa, which simplifies to
—8a + 5b = €0. Call this (B). Subtracting (B) from (A) yields 12a = —80,s0a = —%. Substituting that value in (A) gives
—20 4+ 5b = —20 = —%, s05b = & and b = 3. Thus far we've shown that IF the curve has an inflection pomt at (2, 2.5).
then e = —";—“ and b = %_

To prove the converse, suppose thata = — % and b = %_ Then by (1), (2), and (3), our curve satisfies

(=* +3)y=F= )
(=* +3)v'
and (:1:2 + %)y" +4dxy’ +2y=0. (6)

Il

|

| ]
]
L~
+
w2
Pl
)

Multiply (6) by (=® + 3 ) and substitute from (4) and (5) to obtain (= + %)2 Y +4a(—2zy+2) +2(Lz) =0, 0r

(z* + %]2 y" — 8z’y + 40z = 0. Now multiply by (x=” + b) again and substitute from the first equation to obtain

(2® + £)7 " — 827 (La) + 402 (2? + 2) = 0, or (2 + £) " — 2(2® — 42) — 0. The coefficient of " is positive, so
the sign of "' is the same as the sign of 3 («® — 4x), which is a positive multiple of z(x + 2)(x — 2). It is clear from this
expression that 4" changes sign at z = 0, = —2_ and « = 2_ so the curve changes its direction of concavity at those values
of =. By (4), the corresponding y-values are 0, —2.5, and 2.5, respectively. Thus when a = —2—3? and b = %; the curve has
inflection points, not only at (2, 2.5), but also at (0,0) and (—2, —2.5).

4. (a) lim [f()]*'® is an indeterminate form of type 0°.

b Ify = [_}‘(:17]]1'(m)P then Iny = p(z) In f(z). When = is near a. p(z) — oo and In f(x) — —oo, s0lny — —oo.

Therefore, lim [f(z)]""™ = lim y = lim e™¥ = 0, provided £ is defined.

T—a E—a E—+o

(©) lim [h(z)]*" is an indeterminate form of type 1°°.
(d) lim [p(z)]*** is an indeterminate form of type oc”.

e)Ify = [p{m)]“ﬂ, then Iny = g(x) In p(z). When « is near a, g(x) — oo and Inp(x) — oo, s0 Iny — oo. Therefore,

lim [p{m]]q(”) = lim y = lim ™Y = oo
T—a T T—a

() lim *%)/p(z) = lim [p(2)]**"* is an indeterminate form of type oc®.

T—+a
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6. From the praphs of f and g, we see that lim flz) = 0 and lim g(z) = 0, so 'Hospital’s Rule applies.

fl@) . fx) Mm@ ey 15 3
gw) +Bgle) lImg@ g@ 1 2

o 6z’ +52—4 = 1220+5  6+5 11
10. This limit has the form & lim —————— X = ==
: S e % + 162 -0  .—1/282+16 4416 20

Note: Alternatively, we could factor and simplify.

2
14, This limit has the form 2. lim ——— Z Iim 22 fm—2 _ —2_o
z—0] —cosx =—0sinx =z—0 (sinx 1
x
) 1
o 1 sInx o
20. This limit has the form 2.  lim —%— = lim 2—— 2 lim = 2% — lim — =0
o r—oo X2 r—oo a2 T—00 2z z—oo da?
96. This limit has the form & lim sinhx — x H o coshxz — 1 H i sinh x H . cosh = _ l
0 z—si :1’:3 w—s 3w2 z—0 6x x—sl G
32. This limit has the form $.
- . ] a2
COSMT —COSNT H ., —msinmr+nsinnax B ., —m cosmx +n Cosne 1/ 2 3

hm—2=11m = Iim =§{n —m]

a—si) a w=—0 2x x—s0 2
42. This lumit has the form oo - 0. We’ll change it to the form =.

1_-1/2
. —=/2 _ 7 x i . ke _ 1 _
n:llonolo \/EB zli»n;c\ .5"7.;2 :z:llt-c-:h %gxfg zli»n;c\ T B“‘flz 0
@b a
58. vy = (l-i——) = lny:b:rln(l+—)=so
T x
()
bin(1 1 2 b
lim Iny = lim 220Fe/®) B Ate/e)} 227 _eb
x—o0 x—00 ]_’f:];‘ o oo —]_‘l‘:r m—tacl+ﬂ[‘1‘
. ay b + In ab

lim (l—l——) = lim e®*¥Y =¢

®—o0 ™ x—oo
62. y = (& +m]1‘f= = Iny = —In(e” +z),

1 1 x x
so0 lim Iny = n{:ﬂ +w)£ e+ L) c = e_=1 =
r—oo T 0o T z—oo e + xz—oo % 4 r—oo £%
lim (e 4+2)/" = lim e®Y =¢' =¢
Z—oo LoD
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82. Let the radius of the circle be ». We see that A(#) is the area of the whole fipure (a sector of the circle with radius 1), minus
the area of AOPR. But the area of the sector of the circle 15 %‘rzﬂ (see Reference Page 1), and the area of the triangle 1s

37 |PQ| = 2r(rsin@) = 27’ sin 6. So we have A(f) = 3r°0 — 2r°sin@ = (¢ — sin 8). Now by elementary

trigonometry, B(8) = 3 |QR||PQ| = 3(r — |0Q|) |PQ| = 3(r — rcos8)(rsinf) = 3r*(1 — cos @) sin .

So the linuit we want 1s

A(B) o %TE{H —sin 5) H .. 1 —cosé

= = lim
oot B(#) e—o+ 3r2(1 —cosf)sinf e—ot (1 —cos@)cosf + sinf (sinf)

i 1—cos@ E o sin @
9—0+ cos 6 — cos? +sin’6 4o+ —sinf — 2 cos @ (—sinf) + 2sin @ (cos )

sin @ 1 1 1

g—o+ —sinf® + 4sind cos @ =0t —1+4cos@ —1+4+4cos0 3

Page 9




