Computer-Aided Mathematics and Satisfiability

Marijn J.H. Heule

Carnegie
 Mellon University

Mathematical Foundations for Computer Science September 20, 2019

40 Years of Successes in Computer-Aided Mathematics

1976 Four-Color Theorem

1998 Kepler conjecture

2010 "God's Number = 20": Optimal Rubik's cube strategy

2012 At least 17 clues for a solvable Sudoku puzzle

2014 Boolean Erdős discrepancy problem
2016 Boolean Pythagorean triples problem
2018 Schur Number Five

40 Years of Successes in Computer-Aided Mathematics

1976 Four-Color Theorem
1998 Kepler conjecture
2010 "God's Number = 20": Optimal Rubik's cube strategy
2012 At least 17 clues for a solvable Sudoku puzzle
2014 Boolean Erdős discrepancy problem (using a SAT solver)
2016 Boolean Pythagorean triples problem (using a SAT solver)
2018 Schur Number Five (using a SAT solver)

Breakthrough in SAT Solving in the Last 20 Years

Satisfiability (SAT) problem: Can a Boolean formula be satisfied? mid '90s: formulas solvable with thousands of variables and clauses now: formulas solvable with millions of variables and clauses

Edmund Clarke: "a key technology of the 21st century" [Biere, Heule, vanMaaren, and Walsh '09]

NEWLY AVAILABLE SECTION OF
THE CLASSIC WORK
The Art of Computer Programming

Satisfiability

DONALD E. KNUTH

Donald Knuth: "evidently a killer app, because it is key to the solution of so many other problems" [Knuth '15]

Schur's Theorem [Schur 1916]

Will any coloring of the positive integers with red and blue result in a monochromatic solution of $a+b=c$?

$$
\begin{array}{lll}
1+1=2 & 1+2=3 & 1+3=4 \\
1+4=5 & 2+2=4 & 2+3=5
\end{array}
$$

Schur's Theorem [Schur 1916]

Will any coloring of the positive integers with red and blue result in a monochromatic solution of $a+b=c$?

$$
\begin{array}{lll}
1+1=2 & 1+2=3 & 1+3=4 \\
1+4=5 & 2+2=4 & 2+3=5
\end{array}
$$

Schur's Theorem [Schur 1916]

Will any coloring of the positive integers with red and blue result in a monochromatic solution of $a+b=c$?

$$
\begin{array}{lll}
1+1=2 & 1+2=3 & 1+3=4 \\
1+4=5 & 2+2=4 & 2+3=5
\end{array}
$$

Schur's Theorem [Schur 1916]

Will any coloring of the positive integers with red and blue result in a monochromatic solution of $a+b=c$?

$$
\begin{array}{lll}
1+1=2 & 1+2=3 & 1+3=4 \\
1+4=5 & 2+2=4 & 2+3=5
\end{array}
$$

Schur's Theorem [Schur 1916]

Will any coloring of the positive integers with red and blue result in a monochromatic solution of $a+b=c$? Yes

$$
\begin{array}{lll}
1+1=2 & 1+2=3 & 1+3=4 \\
1+4=5 & 2+2=4 & 2+3=5
\end{array}
$$

Schur's Theorem [Schur 1916]

Will any coloring of the positive integers with red and blue result in a monochromatic solution of $a+b=c$? Yes

$$
\begin{array}{lll}
1+1=2 & 1+2=3 & 1+3=4 \\
1+4=5 & 2+2=4 & 2+3=5
\end{array}
$$

Theorem (Schur's Theorem)

For every positive integer k, there exists a number $S(k)$, such that $[1, S(k)]$ can be colored with k colors while avoiding a monochromatic solution of $a+b=c$ with $a, b, c \leq S(k)$, while this is impossible for $[1, S(k)+1]$.
$S(1)=1, S(2)=4, S(3)=13, S(4)=44$ [Baumert 1965].

Schur's Theorem [Schur 1916]

Will any coloring of the positive integers with red and blue result in a monochromatic solution of $a+b=c$? Yes

$$
\begin{array}{lll}
1+1=2 & 1+2=3 & 1+3=4 \\
1+4=5 & 2+2=4 & 2+3=5
\end{array}
$$

Theorem (Schur's Theorem)

For every positive integer k, there exists a number $S(k)$, such that $[1, S(k)]$ can be colored with k colors while avoiding a monochromatic solution of $a+b=c$ with $a, b, c \leq S(k)$, while this is impossible for $[1, S(k)+1]$.
$S(1)=1, S(2)=4, S(3)=13, S(4)=44$ [Baumert 1965].
We show that $S(5)=160$ [Heule 2018].

Schur's Theorem [Schur 1916]

Will any coloring of the positive integers with red and blue result in a monochromatic solution of $a+b=c$?

$$
\begin{array}{lll}
1+1=2 & 1+2=3 & 1+3=4 \\
1+4=5 & 2+2=4 & 2+3=5
\end{array}
$$

Theorem (Schur's Theorem)

For every positive integer k, there exists a number $S(k)$, such that $[1, S(k)]$ can be colored with k colors while avoiding a monochromatic solution of $a+b=c$ with $a, b, c \leq S(k)$, while this is impossible for $[1, S(k)+1]$.
$S(1)=1, S(2)=4, S(3)=13, S(4)=44$ [Baumert 1965].
We show that $S(5)=160$ [Heule 2018]. Proof: 2 petabytes

Pythagorean Triples Problem (I) [Ronald Graham, early 80's]

Will any coloring of the positive integers with red and blue result in a monochromatic Pythagorean Triple $a^{2}+b^{2}=c^{2}$?

$$
\begin{array}{rrrr}
3^{2}+4^{2}=5^{2} & 6^{2}+8^{2}=10^{2} & 5^{2}+12^{2}=13^{2} & 9^{2}+12^{2}=15^{2} \\
8^{2}+15^{2}=17^{2} & 12^{2}+16^{2}=20^{2} & 15^{2}+20^{2}=25^{2} & 7^{2}+24^{2}=25^{2} \\
10^{2}+24^{2}=26^{2} & 20^{2}+21^{2}=29^{2} & 18^{2}+24^{2}=30^{2} & 16^{2}+30^{2}=34^{2} \\
21^{2}+28^{2}=35^{2} & 12^{2}+35^{2}=37^{2} & 15^{2}+36^{2}=39^{2} & 24^{2}+32^{2}=40^{2}
\end{array}
$$

Pythagorean Triples Problem (I) [Ronald Graham, early 80's]

Will any coloring of the positive integers with red and blue result in a monochromatic Pythagorean Triple $a^{2}+b^{2}=c^{2}$?

$$
\begin{array}{rrrrr}
3^{2}+4^{2}=5^{2} & 6^{2}+8^{2}=10^{2} & 5^{2}+12^{2}=13^{2} & 9^{2}+12^{2}=15^{2} \\
8^{2}+15^{2}=17^{2} & 12^{2}+16^{2}=20^{2} & 15^{2}+20^{2}=25^{2} & 7^{2}+24^{2}=25^{2} \\
10^{2}+24^{2}=26^{2} & 20^{2}+21^{2}=29^{2} & 18^{2}+24^{2}=30^{2} & 16^{2}+30^{2}=34^{2} \\
21^{2}+28^{2}=35^{2} & 12^{2}+35^{2}=37^{2} & 15^{2}+36^{2}=39^{2} & 24^{2}+32^{2}=40^{2}
\end{array}
$$

Best lower bound: a bi-coloring of $[1,7664]$ s.t. there is no monochromatic Pythagorean Triple [Cooper \& Overstreet 2015].

Myers conjectures that the answer is No [PhD thesis, 2015].

Pythagorean Triples Problem (II) [Ronald Graham, early 80's]

Will any coloring of the positive integers with red and blue result in a monochromatic Pythagorean Triple $a^{2}+b^{2}=c^{2}$?

A bi-coloring of $[1, n]$ is encoded using Boolean variables x_{i} with $i \in\{1,2, \ldots, n\}$ such that $x_{i}=1(=0)$ means that i is colored red (blue). For each Pythagorean Triple $a^{2}+b^{2}=c^{2}$, two clauses are added: $\left(x_{a} \vee x_{b} \vee x_{c}\right)$ and $\left(\bar{x}_{a} \vee \bar{x}_{b} \vee \bar{x}_{c}\right)$.

Pythagorean Triples Problem (II) [Ronald Graham, early 80's]

Will any coloring of the positive integers with red and blue result in a monochromatic Pythagorean Triple $a^{2}+b^{2}=c^{2}$?

A bi-coloring of $[1, n]$ is encoded using Boolean variables x_{i} with $i \in\{1,2, \ldots, n\}$ such that $x_{i}=1(=0)$ means that i is colored red (blue). For each Pythagorean Triple $a^{2}+b^{2}=c^{2}$, two clauses are added: $\left(x_{a} \vee x_{b} \vee x_{c}\right)$ and $\left(\bar{x}_{a} \vee \bar{x}_{b} \vee \bar{x}_{c}\right)$.

Theorem ([Heule, Kullmann, and Marek (2016)])
[1,7824$]$ can be bi-colored s.t. there is no monochromatic Pythagorean Triple. This is impossible for $[1,7825]$.

Pythagorean Triples Problem (II) [Ronald Graham, early 80's]

Will any coloring of the positive integers with red and blue result in a monochromatic Pythagorean Triple $a^{2}+b^{2}=c^{2}$?

A bi-coloring of $[1, n]$ is encoded using Boolean variables x_{i} with $i \in\{1,2, \ldots, n\}$ such that $x_{i}=1(=0)$ means that i is colored red (blue). For each Pythagorean Triple $a^{2}+b^{2}=c^{2}$, two clauses are added: $\left(x_{a} \vee x_{b} \vee x_{c}\right)$ and $\left(\bar{x}_{a} \vee \bar{x}_{b} \vee \bar{x}_{c}\right)$.

Theorem ([Heule, Kullmann, and Marek (2016)])
[1,7824$]$ can be bi-colored s.t. there is no monochromatic Pythagorean Triple. This is impossible for $[1,7825]$.

4 CPU years computation, but 2 days on cluster (800 cores)

Pythagorean Triples Problem (II) [Ronald Graham, early 80's]

Will any coloring of the positive integers with red and blue result in a monochromatic Pythagorean Triple $a^{2}+b^{2}=c^{2}$?

A bi-coloring of $[1, n]$ is encoded using Boolean variables x_{i} with $i \in\{1,2, \ldots, n\}$ such that $x_{i}=1(=0)$ means that i is colored red (blue). For each Pythagorean Triple $a^{2}+b^{2}=c^{2}$, two clauses are added: $\left(x_{a} \vee x_{b} \vee x_{c}\right)$ and $\left(\bar{x}_{a} \vee \bar{x}_{b} \vee \bar{x}_{c}\right)$.

Theorem ([Heule, Kullmann, and Marek (2016)])
[1,7824$]$ can be bi-colored s.t. there is no monochromatic Pythagorean Triple. This is impossible for $[1,7825]$.

4 CPU years computation, but 2 days on cluster (800 cores) 200 terabytes proof, but validated with verified checker

Media: "The Largest Math Proof Ever"

engadget
the NEW REDDIT

tom'sHAŤDWWARE
 THE AUTHORITY ON TECH

6f Become a fan of Slashdot on Facebook

76 comments

Collqteral May 27, 2016 +2
200 Terabytes. Thats about 400 PS4s

Future of Computer-Aided Mathematics

Fields Medalist Timothy Gowers stated that mathematicians would like to use three kinds of technology [Big Proof 2017]:

- Proof Assistant Technology
- Prove any lemma that a graduate student can work out
- Proof Search Technology
- Automatically determine whether a conjecture holds
- Recent improvement: Linear speedups on thousands of cores
- Proof Checking Technology
- Mechanized validation of all details
- Recent improvement: Formally verified checking of huge proofs

Classic problems ready for mechanization:

- Chromatic number of the plane
- The most wanted Folkman graph
- Ramsey number five

