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A R E D U C T I O N  O F  K E L L E R ' S  C O N J E C T U R E  

S. S Z A B 6  ( B u d a p e s t )  

Abstract 

A fami ly  of  t r ans l a t e s  of  a closed n - d i m e n s i o n a l  cube  is called a cube  t i l ing i f  t he  
u n i o n  of  the  cubes  is the  whole  n -space  a n d  the i r  in te r io r s  are  d is jo in t .  Accord ing  to a 
f amous  unso lved  con jec tu re  of  O. H.  Kel ler ,  two of  the  cubes  in  a n  n -d imens iona l  cube  
t i l ing  m u s t  sha re  a comple t e  (n --  1 ) -d imens iona l  face. I n  th is  p a p e r  we shal l  p rove  t h a t  
to solve Kel le r ' s  con j ec tu re  i t  is suf f ic ien t  to e x a m i n e  ce r t a in  fac to r iza t ions  of  d i r ec t  
s u m  of  f in i t e ly  m a n y  cyclic g roup  of  o rder  four.  

I .  

About  f i f t y  years  ago O. H.  Kel ler  conjec tured  t h a t  in a fami ly  of  the  
t rans la tes  of  an n-dimensional  closed cube whose union is the whole n-di- 
mensional  space and  whose interiors are dis joint  some two cubes must  have  
a common  (n - -  1)-dimensional face. 

In  [2] G. Haj6s  fo rmula ted  this conjec ture  by  means of  factor izat ions  
of  f ini te  abel ian groups. I f  G is an abelian group wr i t t en  addi t ive ly  and  
H, A 1 . . . .  , ,4 n are its subsets and each h in H is uniquely  expressible in the  
form 

h = a 1 ~ . . . -f- a n, a 1 E A I  . . . . .  an  E An 

and  each sum al  A- • • • A- an is in H ,  t hen  we wri te  H----- A 1 + . . .  A-An 
and  call this  equa t ion  a fac tor iza t ion  of  H b y  the  subsets A1 . . . .  , A n. I f  a 
subset  of  an abel ian group has the  form {0, g,  2 g  . . . . .  (q ~ 1)g} and  i t  differs 
f rom {0}, t hen  we shall denote  i t  b y  [g]q. Th ro u g h o u t  this paper  we shall 
assume t ha t  q is not  grea ter  t han  the order  of  g. G. Haj6s  reduced Kel ler ' s  
conjec ture  to  the  following s ta tement .  

I f  G is a f in i te  abelian group and  

G = K + [gl]q, A- . . .  + [gnJq,, 
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is one of  i ts  fac tor izat ions ,  t hen  there  exists  i such t h a t  1 _~ i ~ n and  
q i g i E K - - K ,  w h e r e K - - K =  { k - - k ' :  k, / c ' E K } .  

B u t  this  p rob lem has been  remain ing  unsolved in general  case. I n  [5] 
K .  Seitz has  ob ta ined  a solut ion ior  case when  G is a cyclic group of  a p r ime  
power  order  and  in [4] A. D. Sands p r o v e d  the  above  s t a t e m e n t  for case when  
G is a cyclic group  whose order  is a p roduc t  of  two  pr ime  powers.  

I n  this  p a p e r  we give a new formula t ion  of  Kel le r ' s  conjecture ,  which  
allows us to  ver i fy  the  cr i ter ion of  HajSs '  t y p e  for more  special  groups:  

THEOREm. Keller's conjecture is equivalent to the following statement." 
I f  G is an internal direct sum of cyclic groups generated by the elements 

gl, g~ . . . .  gin, respectively, each of them is of order 4, and if 

G = K -~ [gl]2 ÷ ' ' "  Jr [g~]2 

is a factorization, then always there exists a generator gt (1 ~ i ~ m) such 
that 

2giE K - -  K = { k - - I t ' :  k,k' E K}.  

The  p roo f  will be  an i m p r o v e m e n t  of  the  w a y  of  Haj6s .  I t  is based  on 
Propos i t ions  1, 2 which unable  us to t r ans fo rm a cube tiling, giving counter -  
example  for Kel le r ' s  conjecture ,  on to  such ano the r  cube t i l ing wi th  per iodic  
s t ruc ture .  L a t e r  on we specialize this  per iodic i ty  to  get groups  men t ioned  in 
the  theorem.  

I I .  

L e t  Sn, R and  Z denote  the  n-dimensional  eucl idean space,  the  real  
n u m b e r  f ield and  the  in teger  n u m b e r  ring, respect ively .  Trans la t ions  of  sn 
belong to the  n-dimensionM vec tor  space E n over  the  real n u m b e r  f ie ld R.  
E lemen t s  of  E n fo rm an  abel ian  group  wi th  respect  to  the  addi t ion  of  vec tors  
so we can speak  a b o u t  fac tor iza t ions  of  a subset  of  E n. 

L e t  H be a subse t  of  an  abel ian  g roup  and  let  g be a nonzero e l emen t  
of  this abel ian  group. I f  H - -  H -~ g, t hen  H is said to  be  a periodic set  wi th  
per iod g. L e t  e 1, . . . , e n be  a f ixed  o r t h o n o r m e d  basis  in E" and  deno te  b y  
Ep t h a t  n -d imens iona l  closed un i t  cube whose center  is P and  whose edges 
are paral lel  to  the  coordinate  un i t  vec tors  e 1, . . . ,  e n. 

Obvious ly ,  cubes  ~p and  ~o  have  a c o m m o n  (n 1)-dimensional  face  

if  and  only  if  e i ther  PQ = e i or  PQ = - e i for some i, 1 _~ i ~ n. Since no ta -  
t ions P and  Q can be in t e rchanged  we m a y  a lways  res t r ic t  our  inves t iga t ions  

t o  c a s e  P-Q ~ e i. 
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The section of interiors of cubes ~ v a n d  ~Q is nonempty  i f  and only i f  

la~[ < 1 . . . . .  [%1 < 1 hold, where PQ = a~e~ q- . . .  q- an%. The interior of 
a set d t  _ $" is denoted  by  in t  ag. 

Le t  0 be a f ixed point  of $,. I f  L is a subset of  E n, then  the set of cubes 

{~v: O--fi 6 L} we shall shor t ly  denote by  (~o, L). The cube system (C o, L) is 
called a tiling if  the union of its point  sets, denoted by  U (~o, L), is 8 n and 

the interiors of the cubes are disjoint. Obviously the set {P: OP E L} has not  
a n y  accumulat ion points, i f  (C 0, L) forms a tiling. 

The subset L of  E n is called a latt ice if  L is a nonzero subgroup of En 

and  the  point  set {P: OP 6 L} has not  any  accumulat ion points. Clearly, if  
11 . . . . .  l~ are l inearly independent  vectors in E n, then  the vector set 

{Zll 1@ . . . 2cZsls: Z 1 . . . . .  Z s 6 Z} 

is a lattice. In  this case we shall say t h a t  this latt ice is spanned by the vectors 

11 . . . . .  I r 

III.  

I f  L is a subset of E n and i is a given number  1 < i S n, then  the elements 
of L can be divided into disjoint  subsets X(~!v in the following way: if  the 
integer par t  and the fractional par t  of the i-th coordinate of I E L are u and 
v, respectively, then let ! E (") X,.~. (For example, the integer parts  and the 
fractional  parts  of 3.2 and 5.1 are 3, 0.2 ~nd --6, 0,9, respectively.) 

PROPOSITION 1. I f  (~0, L) is tiling, then, for any fixed v (0 ~ v < 1), 

U (Co, (i) Xu,v) -- U (Co, x(O ± (u r)%.) r~V 

holds for each u, r 6 Z and i, 1 ~ i < n. Saying in words, the point set, constituting 
the cubes iu (~o, L) whose i-th coordinate has a fixed fractional part v, is mapped 
onto itself by arbitrary inteqer translation in direction %. 

PROOF. For  simplici ty we assume tha t  i -= 1. We shall prove induct ion 
by n. Since the section of an n-dimensionM cube and  an (n 1)-dimensionM 
plane, which is parallel to one of the (n 1)-dimensional faces o f  the cube, 
is an (n -- 1)-dimensional cube. i t  seems to be a good idea to consider the 
intersection of (C o, L) and an ( n -  1)-dimensional plane. Obviously, the 
union of (n --  1)-dimensionM cubes obtained in this intersection will be the 
whole (n 1)-dimensional plane. But  these ( n -  1)-dimensional cubes could 
have nonempty  common interiors. Thus we have to use a finer method  
than  this. 

Le t  $ be any  (n 1)-dimensionM planes which are perpendicular to %. 
The hyperplane $ divides 8n into two hal f  spaces. One of them contains the 
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ending point of e 2 when its starting point is in $. Denote by ~ this half space. 
We state 

(~0, L ) =  { ~ :  ~ - - - - e v  N$, ~v [ T i n t ~ = ~ 0 ,  O P 6 L }  

is a tiling in $. 
Indeed, assume the contrary, i.e. that  int ~ N int ~ ~: O. If  

;2 

PQ = 2  ses, 
8----1 
s¢2 

then  here each [asl < 1. S ince  = + + and  = = 
where from ~p rl int  ~ ~ ~ and ~Q N int ~ ~- ~ we have -- 1/2 < #, r < 1/2, 

?1 

PQ : (# --  v)e 2 -{-- . ~  ases. 
s=l 
8~2 

Now I# -- ~1 < 1 and [a~] < 1, so int ~v N int ~q :~ ~ which is a contradiction. 
I t  has remained only to prove that  if S 6 $, then S is a point of some 

ev. Let  ~ be a bounded point set in int ~ which has the only accumulation 
point S. Since (Co, L) is a tiling, so the set $ is contained in finitely many cubes 
of system (~o, L), hence there exists a ~p 6 (Co, L) such that  ~ ,  has infinitely 
many elements of the set $. Obviously, ev f7 int ~ ~ 0. Since the point S is 
the accumulation point of each infinite subset of g and since Cv is a compact 
set, hence S 6 ~v. 

Now the induction follows. The statement of Proposition 1 is trivial in 
case n = 1. Assume that  n > 1 and the statement holds in n -- 1 dimensions. 
Consider the tilings (e o, L) and (~o, ~) as above for any hyperplane $ per- 
pendicular to e~. Divide the elements of T~ into disjoint subsets ~o)  in the 
following way; if the integer part  and the fractional part  of the first coordinate 
ofi ( E are u and v, respectively, then let ] 6 ~o)  By the inductive assumption [/ ,V"  

for any fixed v (0 ~ v < 1) 

holds (u, r 6 Z) and note tha t  

(~0, X(1)~ {~,p: ~_,~ ---- ~p r] $, @p r ] i n t  ~ v~ 0, O--P 6 X 0)1 

So finally we conclude that  

U (¢o ,x ( l ) ]  --~ U (U (~0, X(l)~ ~- U (U (~o, ~(l)-d~.rv -~- (r - -  U)el) ) = 
$ $ 

- -  U (~o,  xO)  H- (r - -  u)e~) - -  F~V 

where U denotes the union of the point sets in $ considered, if $ runs over 
$ 

the set of hyperplanes perpendicular to e~. This completes the proof. 
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PROPOSITION 2. I f  (20, L) is a tiling, then 

U (2o, U X(°~ U (20, U v(tL + ae t) 
U 

for each I ~ i ~ ~ and o~ ( R. 

The  PROOF is carr ied ou t  analogously to  the  proof  of  the  preceding propo-  
sition. We say: the  poin t  set cons t i tu t ing  all cubes in (2 o, L) wi th  an y  f ixed  
i - th  f ract ional  pa r t  v (0 ~ v ~ 1) is mapped  onto  i tself  b y  any  t rans la t ion  of  
direct ion e c This asser t ion is due  to  Haj6s  [1]. 

PROPOSITION 3. I f  there is a counter-example (2 o, L) for Keller's con- 
jecture, then there is a counter-examTle (2 o, L') such that L'  is a periodic set 
with periods 2el, . . . , 2%. 

PROOF. Divide the e lements  of  L into disjoint  subsets X (l) in the  previous  
way  and  consider the  set L 1 given b y  

L 1 = U (U (X(0'))v U Xi',~) + 2uel). 
u£Z 

We shall prove  t ha t  the  sys tem (2 o, L1) is a tiling and in i t  no two cubes have  
a common  (n --  1)-dimensional face. Using the  fac t  

U (2 o, xO)i U (20, r e )  -F uel) - - U , V !  = " ~ O ) v  

by  Propos i t ion  1, we have  

Sn U ( 2  0 , L ) :  U ( 2  0 , U UX°)~  U U U ( 2  0 , X  0 ) ~ :  : U)~)P : g)~gP 

[U U U(2o, o) --- x.,~)] U [U U U (20, xO)n.,., 
2lu v 2~u v 

= [U U U (20,  X~l) v -~- ~el) ] U [U U U (20)X~I  ) --~ u, el) ] = 
21 a v 2lu v 

: u u u (20, (x~,,), u xi',,>) + 2,~e~) = 

---- U (20, U U (X~I,) U X! 1)~,,v, -1i- 2'~'el) = U (e  O, Xl). 
U 

Assume the  cont ra ry ,  i.e. t h a t  int  2v D int 2Q ~ 0 for  2p, CQ ( (2o, L1). 

In  o the r  words assume t h a t O P ,  O Q ( L  1 and  l a l ]  < 1 . . . . .  l an[ < 1, 

where P---Q ale I + . . . ane n. L e t  O-P E X O) - ' *  : i,v -b 2tel and OQ ( X ~  + 25e I. 
Hence  

ffQ E (Xl~b - "t,,,v°)~ + 20 - r)ev 
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where i, j E { O, 1 }. Since 

U(~o,  x ( ) ) + 2 r e l ) ' =  U t~ X(1) ~ U(Co, X O) , ,v ~ 0 '  2r+i ,v] '  j ,w -F 2sel) = U (~o, x(1)2s+j,w' 

and 

[int U (~o, Xg) " X O) i3 = ,~+i,~) D int U (~o, 2s+j,w~J 

t~ X 0) 2sel), f rom the  i f v # w ,  moreover,  C v E ( ~ o , x ~ l ) +  2re1), ~QE~ o, ) , w +  
assumpt ion it  follows v = w. Then from a 1 = (~ --  i) ÷ (w - - v )  + 2 ( s -  r )  
and i,: ~ C {0, 1}, r, s E Z, [all < 1 we conclude tha t  s = r and therefore  

xi?  L - L 

Which vi01ates the  fact  (C o, L) was a tiling. Thus (e o, L1) is  a t i l ing.  
NoW :assume ~he contrary,  i.e., t ha t  (~o, L1) has two cubes__ ~v, CQ sharing 

a complete  ( n -  1)-dimensional face. Le t  P--Q e t and O P  E X(J ) + : 2 r e  1, / j r  

o ~  Ex~l)~ + 2~e~, where ~, ~ e (0, 1} so 

P-Q = et E Xil~ - -  (Xl I) + 2(r - -  s)el). 

In  case t ~ l ,  from O - - - - ( ~ - - i ) - 4 - ( w - - v ) + 2 ( s  r) and i , j ~ { 0 , 1 } ,  
r, s E Z ,  ] w - - v [ < l w e h a v e v = w a n d r = s ,  t h a t i s  

PQ = et E X(1)~ X())c,.. L --  L 

which is a contradict ion since (~o, L) was a counter-example for Keller 's  con- 
jecture.  In  case t = 1, from 1 = (~ i) + (w --  v) + 2(s - -  r) and i, ~ E {0, 1} 
r, s E Z ,  [ w - - v  I < l w e h a v e v = w a n d e i t h e r r = s o r s = r - 4 - 1 .  
Therefore, ei ther 

--~ (X()) XOh P Q  = el  E , ~,, - -  i.~ c L - -  L 

or 

tha t  is 
iX() ) _ iX(J) + 2e i ) ,  PQ = el  ~ ~ j ,v  x t,v 

- -  e l  E t X O )  X (!h j , , - -  i , , I c L - - L  

are contradictions,  resPect ively ..... 
The set  L 1 is periodic wi th  period 2e 1 because 

L 1 = U (U ~tX(!)0,v X(l)~l,vJ q-- 2ue i )  : U (. U (X~l,) U X (1)~±1,v/T 2(~ -~- 1)el) = 
U V U ~) 

• . - . I n  (u (X(o')~ u xi'~ )1 + 2ue~)].+ ~el = L1 + 2 e ~  . . . .  

U ~) 

Divide e lements  o f  L 1 into disjoint  subsets  X ¢2) i n  the  previous w a y  . U ~  

and consider the  set  L 2 defined b y  . . . .  : 
i 

L~ = U (U (x~) U XT,. )) + ~ e , ) ,  
U V " ":  
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We can  check ana logous ly  t h a t  t h e  s y s t e m  (~0, L2) is a t i l ing in which no two  
cubes  have  a c o m m o n  (n - -  1)-dimensional  face and  L 2 is a per iodic  set  wi th  
per iod  2e 2. N o w  we shall  p rove  t h a t  L 2 is a periodic set  wi th  2e 1 as well. F r o m  . 

U U X(2)u,v ~- L1 - -  L 1 -]- 2e I - -  U U X (2)u,v --k 2% 
U t) U 

and  f rom t h a t  the  second coordinates  of  vec tors  of  X ¢2) and  of  X (2) -k 2% are 
/ / j r  U,f) 

the  same,  respect ive ly ,  we conclude t h a t  X (2) is a per iodic  set  wi th  p e r i o d  2e 1 
t h a t  is X (2) X (2) u,v - -  u,~ ~- 2e r  Using this  fac t  we have  

L., - -  U [U ~/X(2)O,v U X (2hi,v/ -~ 2ue2] - -  U [U (X(02.v), ~- 2e 1 U X (2)l,v ~- 2%) ~- 2ue2]-- 
U ~) l /  V 

- u [ u  u ,,el 4- 2Ue2] -~- 261 ~ L2 -F 2el. 
u v 

Div ide  the  e lements  of  L 2 in to  dis joint  subsets  X (3) as earl ier  and  con- 
s t r uc t  the  set  

U [U X!3)  --  , , . ,  -{- 2ue3]. 
u 

The  s y s t e m  (Co, L3) will be a t i l ing in which no two  cubes hav ing  a c o m m o n  
(n - -  1)-dimensional  face. S tep  b y  s tep  we can p rove  t h a t  L 3 is a periodic set  
wi th  per iods  2e3, 2% and  2e 1. Cont inuing  this  process we f inal ly  have  a sy s t em 
(Co, L ~) - - ( e o ,  L '  ) which is a coun te r - example  for Kel le r ' s  conjec ture  and  
L n : L '  is a per iodic  set  wi th  per iods 2% . . . . .  2e z. 

PROPOmTmZe 4. I f  there is a counter-example /or Keller's conjecture 
(C o, L), then there is a counter-example/or Keller's conjecture (~o, L ')  such that 
L' ,  is a periodic set with periods 2% . . . . .  2% and every vector of L'  has rational 
coordinates such that each of their denominators is a power of two. 

PROOF. According to the  preceding  propos i t ion  we m a y  assume L to  
be a per iodic  set  wi th  per iods  2e 1 . . . . .  2%. L e t  I,  be the  la t t ice  spanned  b y  
the  vec tors  2ez, . . . , 2% and  let  us def ine  the  " c u b e "  

C = {ele I ~ . . . ~- Cnen: 0 ~ C i ~ 2, 1 ~ i ~ n}. 

Since each  a i E R is un ique ly  express ible  in the  fo rm a i ~ 2b i q- c i, where 
b i E Z  a n d  O ~ c  i ~ 2 ,  hence each l - - - a z e  1 - } - . . . - k a n e n E L  is un ique ly  

express ib le  in the  fo rm l - -  l '  q- "l, where  l '  E L N C and  I E/~. Thus  L - -  

- -  (L N C) ÷ L is a fac tor iza t ion .  

Div ide  the  vec tors  of  L in to  d is jo in t  subsets  X ¢1) in the  usual  way.  Now 
v runs  ove r  f in i te ly  m a n y  d is t inc t  values,  since L N C has f in i te ly  m a n y  ele- 
ments ,  because  L has not  a n y  accumula t ion  point .  

Consider  now a new set Lz def ined  b y  

L I = U U X°)~+,,,~ ~(~I)e I, 
'V U 
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where (~(x) ÷ v)'s are distinct rational numbers such that 0 ~ a 0) ÷ v ~ 1 
and their denominators are power of  two. 

We shall prove that the system (2 o, L1) is a counter example for Keller's 
conjecture. Using the fact that for any f ixed v 

U (2  0 , U V(1) x(l) ÷ ~Cl) A.,.) = U (20, U ,,,~ 
U 

holds for each a ( R  (see Proposition 2), we can easily prove, as earlier, that 
(~o, L1) is a tiling 

Y n =  U ( 2  0 ,L)---- U ( 2  0 , U  UX0)~u,v,= U U ( 2  0 , UAu)v )~0)  _-- 
u ~) V 

v(D ÷ a0)el ) U (2 o, L1). - U U (20, U X °) + ~())el)= U (20, U U A.,~ = 
- -  U ) ' ~  

t) U t) /~ 

Assume the contrary' i.e. that 

int 2p D int 2Q--~ ~ for 2p, ~Q E (20, L1). 

This means that OP, OQ E L1 and [al[ ~ 1 , . . . ,  lanl ~ 1, where PQ = ale 1 ÷ 
÷ . . . ÷ a n e  n.Let  

0--P ( X (1) ÷ ~(1)e 1, 0---Q E X(1) ÷ ~(l)e u,v r,v ~ w  1 • 

Since 

U (2  0 , U X (1)1 U (2 0 , U X (l) ÷ ~(l)el) u)))!  ~ u)~) 
u u 

U (2 0, U X (1)~ U (2o, U X (1) ÷ ~ ) e l )  U)W! ~ U~W 
t$ U 

and 

l int  U (2 o, 

for v ~a w, moreover, 

U X 0 ) i l  N [int U (2 0 , U (1) Xu,~)] = s I.Zj~ I . I  
U U 

ep ( (Co, U X (~) + ~(,~)e~) U))) 
U 

O) e eQ ( (20, u x (I).,~ ÷ ~ I), 
U 

from the assumption it follows that v = w. Then from 

ai = (r = u) + (w + ~ ) )  (v + ~())) 

and from lalt ~ I we have u ---- r hence PQ (~X°) - -  X 0) ~ c L L which is 
a contradiction since (2 o, L ) i s  a tiling. Consequently, (2 o, L1) is a tiling. 

N o w  assume the contrary, i.e. (2o, LI) has two cubes ~v, 2Q having a ======~ 
common complete  (n - -  1)-dimensional face. Let  PQ = e t and 

o-P ( xo> + 4%, 65 ( x(/,>. + -O)e 
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F r o m  these we conclude t h a t  the  f irs t  coordinate  of  PQ, which is an integer  
number ,  is 

(r - -  u) + (w + ~ ) )  - -  (v + ~(i)) 

and therefore  we have v ---- w and  ao) ___ a~). Thus  

PQ E (U X°)~ --  (U X(~)~ c L -- L 
tg u 

which violates the  fac t  (~o, L) was a counter -example  for Kel ler ' s  conjecture.  
Thus  (~o, L1) is a counter -example  for Kel ler ' s  conjecture  and  i t  is obvious 
t h a t  L 1 is periodic wi th  periods 2el . . . . .  2%. 

Divide the elements  of  L 1 into disjoint  subsets X (2) in the usual way  u,v 
and consider the new set L 2 given by  

L 2 --~ U [ U  X (2) -~- ~(2)e2] .  t/~v 
v u 

where the (a(2) + v)'s arc dis t inct  ra t ional  numbers  such t h a t  0 ~ ~2) _~_ v < 1 
and their  denomina tors  are powers of two. The sys tem (~o, L2) will be a counter-  
example  for Kel ler ' s  conjecture.  Continuing this process, we f inal ly  have the 
sys tem (C o, L.)  = (~o, L') which is a counter -example  for Keller 's  conjecture.  
We can ver i fy  t ha t  each vector  in L~----L' has rat ional  coordinates whose 
denominators  are powers of two and L n = L' is a periodic set with periods 
2 e l ,  . . . , 2 e , .  

PROPOSITION 5. If there is a counter-example for Keller's conjecture, then 
there exists a finite abelian group G and its factorization. 

G = K + [g~]2 + . - "  + [g~,]2 

such that 2g~ ~ K --  K for each i, 1 ~ i ~ m. 

PROOF. L e t  (~o, L) be a counter -example  for Kel ler ' s  conjecture.  We m a y  
assume t h a t  L is a periodic set with periods 2e 1 . . . . .  2% and each vec tor  in 
L has ra t ional  coordinates  whose denominators  are powers of  two. 

Denote  ~ the  lat t ice spanned by  2e 1 . . . . .  2% a n d  in t roduce  

C :  {cle 1 + . . .  +Cnen: 0 ~ c ~ 2 ,  l ~ i ~ n }  

as previously.  We have  a l ready known t h a t  the  equat ion  L : (L N C) + L is 
a factor izat ion.  Since L N C is a f ini te  set, there  exists a power of  two,  
say  q, which is the  common mult iple of  denomina tors  of  coordinates of  vectors  
of  L N C. Denote  t the  lat t ice spanned by  the  vectors  (1/q)e I . . . . .  (1/q)e n. 
Since (~o, L) is a ti l ing and  L c L 

]-J = [ ( 1 / ~ ) e l ] q  + . . .  -Ju [(l[g)en]q -}- L 
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is a factorization. Using the fact L ---- (L n c) ~- L is a factorization we conclude 
tha t  

t ---- K + [(1/q)el] q ÷ . . .  ÷ [(1/q)%]q ÷ l-, 

is a factorization, where K ---- L n c. The sets L and L are abelian groups and 
t is a subgroup of L so we can consider the factor group L/L ---- G. Obviously, 
G has (2q)" elements. Denote gz" the coset of L/L containing the element (1/q)%. 
From the factorization of L we have the following factorization: 

G : K ÷ [gl]q ÷ . . .  ÷ [gn]q" 

Now we shall prove tha t  q g i q K - - K  for each i, l ~ i _ ~ n .  Indeed, if 
qgi E K - -  K had held, we would have had 

e~ ÷ il E (K ÷ i2) - -  (K ÷ i3), 

where |1, |2, ia E I,. Since L -~ K ÷ L and L is a lattice from the assumption 
% E L -- L would follow which is a contradiction. 

Note that  if q : r s ,  where r, s E Z  and r > l , s ~ l ,  then [gl]rs---- 
---- [gl]r ÷ [rgl]s is a factorization of [gl]~. I f  rg 1 E K - -  K held, in other words, 
if rg I : k 1 - -  k 2 held, where kl, k 2 E K, then we would have rg I ÷ k 2 : IQ 

and therefore the element kl E G could be expressed in two distinct forms 

k~ ÷ 0 ÷ . . ,  ÷ O, k 1 E K ,  0 E [glJq . . . . .  0 E [gn]q 

and 

k 2 ÷ rg 1 ÷ 0 ÷ . . . ÷ O, k 2 E K ,  rg 1 E [gl]q, 0 ~ [g2]q . . . . .  0 ~ [gnJq 

which would violate the above factorization. We have already proved srg 1 

: qgl ~ K - -  K .  Continuing this way, since q is a power of two, we finally 
have a factorization 

G : K ÷ [g~]2 ÷ . . .  ÷ [g~,]2, 

where 2g; ¢ K -- K, for each i, 1 ~ i ~ m. This completes the proof. 

PROPOSITION 6. I f  there is a counter-example for Kel ler 's  conjecture, then 

there exists a group G which is the internal  direct s u m  of cyclic groups generated 

by the elements gl  . . . . .  gm of order four and  it has a factorization 

G : K '  ÷ [gl]2 ÷ . . .  ÷ [gm]2 

such that 2g i ~ K '  - -  K '  for each i, 1 ~ i ~ m.  

PROOF. We shall use the next simple lemma due to S. K. Stein (see [6], 
p. 545) which enables us to lift a factoring from a group G* to any group 
of which G* is a homomorphic image. 
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LEM~S_A. I f  G, G* are abelian groups,  G* : A *  -Jr- B *  is a factorization, 

qJ: G --~ G* is a h o m o m o r p h i s m  f rom G onto G* and  there is a subset A of (~ such 

that the restriction of q~ to A is a bijection between A and  A *, then G ~ A ~ B*  q~-1 

is a factorization. 

Now, we assume t h a t  there  is a coun te r -example  for Keller 's  conjecture,  
t hen  we m a y  assume tha t  there  is an abelian group G and a factor izat ion 

G : g ~- [g'112 -~ . . .  -]- [g~,]2 

such t h a t  2g~ ¢ K --  K for each i, 1 ~ i ~ m (Proposi t ion 5). 
# 

L e t  G* be the  abel ian group genera ted  by  the elements  g'l . . . . .  gm and  
let  K* --~ K f~ G*. The above  fac tor iza t ion of  G is equivalent  to  t ha t  G is 
disjoint  union of  the sets k -V [g'112 -P • • • -P [g~,]2, where k ~ K. Since f rom 
#c -t- [g~]2 -t- • • • ~- [g~,]2 c G* i t  follows t ha t  k E G*, hence 

G* i_ K*  -~ [g'l]2 ~- . . .  -t- [g~]2 

is a fac tor iza t ion as well. 
Denote  L the  lat t ice spanned by  the  vectors  (1/2)e 1 . . . . .  (1/2)e m and  

let  ~: L ~ G* be the  mapping  given by  

# 

((z1/2)el -~- • • • -t- (Zm/2)em)q 9 : Zlg'l -P- • • • -~ Zmgm, Z l ,  • " • , Z m  ~ Z ,  

Since G* is genera ted  by  g'l . . . . .  g~, the  reader  can readi ly  ver i fy  t h a t  ~ is a 
homomorph i sm f r o m / ,  on to  G*. Obviously,  the  res t r ic t ion of  ~o to the set 

[(1/2)el]2 + . . .  + [( l /2)e,,h 

is a bi ject ion between this set  and  the  set  

[g ]2 + ; . .  + [g;,h, 
hence by  Stein 's  l emma there  exists a fac tor iza t ion 

L = [ ( l / 2 ) e l ]  2 -Jr- . . .  --k [ ( l / 2 ) e m ] 2  -]-  L, 

where L----K*~-L Thus  tho sys t em (e  o, L) is a t i l ing in $% Tho sys tem (e o, L) 
has not  any  two cubes hav ing  a common  (m --  1)-dimensional face. I n d e e d ,  
f r o m  e i ~ L - -  L W0 would have  

2g'l ---- %.~ E L ~  - -  L ~  ~ K *  - -  K *  c K - -  K 

which is a contradic t ion.  
Applying  the  me thod  of  Proposi t ion  3 to  this sys tem (~o, L), we conclude: 

there  exists a counter -example  of  Kel ler ' s  conjecture  (~o,L ' )  such t ha t  L'  
is a periodic set wi th  periods 2% . . . .  ,2ern and  note  L' c L. Thus  there  exists 
a fac tor iza t ion  

L ---- [ ( I12)%]  2 -£ . . .  + [(]12)em] 2 -l- L ' .  
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I f  L is the  lat t ice spanned b y  the  vectors  2% . . . . .  2e m and  

E---- {cle l + . . . + c m e m :  0 ~ c  i ~ 2 ,  l ~ i ~ m } ,  

t h e n  L~-~ (L ' f~ £ ) +  ~ is a factor izat ion.  Thus  f ina l ly  there  exists a fae- 
tor izat ion 

][, = K '  + [ ( l / 2 ) e l ]  2 -~- . . .  ~-  [ ( 1 / 2 ) e m ]  2 -F- L ,  

where K '  : L'  N E. 

The fac tor  group i,/f. : G is the in ternal  d i rect  sum of  cyclic groups, of 
order  four, genera ted  by  g/s ,  each of  which is the  coset of  the  fac tor  group 
containing (1/2)e/. The  equa t ion  

G = K '  + [gl]2 -1- - . .  + [gin]2 

is a fac tor iza t ion of G and since (e o, L') is a counter -example  for Kel ler ' s  
conjecture,  2g' ~ K '  -- K '  for  each i, i ~ i ~ m. This completes  the  proof.  

The  ne x t  proposi t ion presents  a cont ras t  to  the  previous  one. 

PROPOSITION 7. Let G be the internal direct sum of cyclic groups of order 
four generated by elements gl . . . . .  gin" I f  there is a factorization 

G = K '  + [gl]2 + . . .  + [gin]2 

such that 2g i ~ K '  --  K '  for each i, 1 ~ i ~ m, then there is a counter-example 
for Keller's conjecture. 

PROOF. Le t  i~ be the  lat t ice spanned by  the  vectors  (1/2)% . . . . .  (1/2)e m 
and let  ~: L ~ G the  homomorph i sm f rom ~ on to  G given b y  

((zl/2)el -~- • • • ~- (Zm/2)em)q~ = Zlgl + • • • -F Zrngrn, Zl . . . .  , Zrn E Z. 

Obviously,  the  res t r ic t ion of  ~ to  the  set 

[(1/2)el]2 + - . .  -F [(1/2)em]2 c 

is a bi ject ion be tween this set and the  set  

[gl]~ + . . .  + [g~]2 c G 

hence b y  Stein 's  l emma there  exists a factor izat ion 

1L _--- [ (112)e~]~ -t- • .  • "-t" [ (112)e~]2  + L ,  

where L = K ' ~  -1. This means  t h a t  the  sys tem (~o, L) is a ti l ing in $% This 
sys tem is a counter -example  for Kel ler ' s  conjecture  because f rom e i E L --  L 
we would have  t h a t  2g; = ei~ E Lq0 --  L~ = K'  -- K' .  



SZAB6: A REDUCTION OF KELZER'S CONJECTURE 277 

ACKNOWLEDGEMENT. The author would like to thank the referee, Prof. 
E .  I~OLN.~R, for his valuable suggestions. 

R E F E R E N C E S  

[1] G. HAJ6S, ~ b e r  einfachc und mehrfache Bedeckung des n-dimensionalen Raumes 
mit  einem Wiirfelgitter, Math. Z. 47 (1941), 427--467. MR 3, 302 

[2] G. HAJ6S, Sur la factorisation des groupes abdliens, ~asopis P~st. Mat. Fys. 74 
(1949), 157--162. M R  18, 623 

[3] O. H. KELLER, ~ b e r  die liickenlose Erftillung des Raumes mit  Wiirfeln, J.  Reine 
Angew. Math. 163 (1930), 231--248. 

[4] A. D. SANDS, On Keller's conjecture for certain cyclic groups, Proc. Edinburgh Math. 
Soe. 22 (1979), 17--2].  M R  81c: 20013 

[5] K. Sv, ITz, Investigations in the HajSs--Rddei theory o/]inite abelian groups, K. Marx 
Universi ty of Economics, Dept. Math., DM 75--6, Budapest, 1975. M R  53:655 

[6J S. K. STEIN, A symmetric star body that  tiles bu t  not as a lattice, Proc. Amer. Math. 
Soc. 36 (1972), 543--548. M R  47:7604 

[7] S. S z ~ 6 ,  A new solution of a problem about  a generalization of Keller's conjecture, 
Notes on Algebraic Systems, I l l ,  K. Marx University of Economics, Dept. Math., 
DM 81--3, Budapest, 1981; 83--91. M R  83m: 52022 

(Received February 11, 1985) 

BUDAPESTI M~SZAKI EGYETEM 
]~P][T(SM]~RNSKI KAR 
MATEMATIKAI TANSZ]~K 
H-- 1521 BUDAPEST 
HUNGARY 


