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A REDUCTION OF KELLER’S CONJECTURE

S. SZABO (Budapest)

Abstract

A family of translates of a cloged n-dimensional cube is called a cube tiling if the
union of the cubes is the whole n-space and their interiors are disjoint. According to a
fumous unsolved conjecture of O. H. Keller, two of the cubes in an n-dimensional cube
tiling must share a complete (n — 1)-dimensional face. In this paper we shall prove that
to solve Keller’s conjecture it is sufficient to examine certain factorizations of direct
sum of finitely many cyclic group of order four.

L

About fifty years ago O. H. Keller conjectured that in a family of the
translates of an n-dimensional closed cube whose union is the whole n-di-
mensional space and whose interiors are disjoint some two cubes must have
a common (n — 1)-dimensional face.

In [2] G. Hajés formulated this conjecture by means of factorizations
of finite abelian groups. If @ is an abelian group written additively and
H, A, ...,A, are its subsets and each % in H is uniquely expressible in the
form

h=a+...4a, a,€4,,...,0a,€4,

and each sum @; + ...+ @, is in H, then we write H=A4,+4+ ...+ 4,
and call this equation a factorization of H by the subsets 4,,...,4,. If a
subset of an abelian group has the form {0, g, 2¢, . . ., (¢ — 1)g} and it differs
from {0}, then we shall denote it by [g],. Throughout this paper we shall
assume that ¢ is not greater than the order of g. G. Hajés reduced Keller’s
conjecture to the following statement.

If @ is a finite abelian group and

G=K+[g1]ql+"'+[gn]
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is one of its factorizations, then there exists ¢ such that 1 <i<n and
99, €K — K, where K — K = {k—k': k, ¥ ¢ K}.

But this problem has been remaining unsolved in general case. In [5]
K. Seitz has obtained a solution for case when @ is a cyclic group of a prime
power order and in [4] A. D. Sands proved the above statement for case when
G is a cyclic group whose order is a product of two prime powers.

In this paper we give a new formulation of Keller’s conjecture, which
allows us to verify the criterion of Hajés’ type for more special groups:

THEOREM. Keller's conjecture is equivalent to the following statement :
If G is an internal direct sum of cyclic groups generated by the elements
G Go - - Gops respectively, each of them is of order 4, and if

GZK’!‘i[gl]z"*-"'_{'—[gm]Z

is a factorization, then always there exists a generator g, (1<i<m) such
that

29, €K — K ={k—F: kk €K}

‘ The proof will be an improvement of the way of Hajés. It is based on
Propositions 1, 2 which unable us to transform a cube tiling, giving counter-
example for Keller’s conjecture, onto such another cube tiling with periodic
structure. Later on we specialize this periodicity to get groups mentioned in
the theorem.

1I.

Let 87, R and Z denote the n-dimensional euclidean space, the real
number field and the integer number ring, respectively. Translations of &"
belong to the n-dimensional vector space E” over the real number field R.
Elements of E" form an abelian group with respect to the addition of vectors
80 we can spea,k about factorizations of a subset of E".

_ Let H be a subset of an abelian group and let g be a nonzero element
of this abelian group. If H = H + g, then H is said to be a periodic set with
period g. Let e, ..., e, be a fixed orthonormed basis in E" and denote by
@, that n-dimensional closed unit cube whose center is P and whose edges
are parallel to the coordinate unit vectorse,, ..., e,.

Obviously, cubes €, and €, have a common (n — 1)-dimensional face
~ if and only if either Fé = e; Or 17(} = — e, for some ¢, 1 < ¢ < n. Since nota-
tions P and @ can be interchanged we may always restrict our investigations

to case P_é =e,
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The section of interiors of cubes €, and €, is nonempty if and only if
lay <1,...,]a,] <1 hold, where 13@ = a4, + ...+ a,e,. The interior of
a set o C &" is denoted by int oA.

Let O be a fixed point of &". If L is a subset of E", then the set of cubes
{Cp: OP ¢ L} we shall shortly denote by (@, L). The cubesystem (Cy, L) is
called a tiling if the union of its point sets, denoted by U (&, L), is 8" and
the interiors of the cubes are disjoint. Obviously the set {P: 0P ¢ L} has not
any accumulation points, if (€,, L) forms a tiling.

The subset L of E" is called a lattice if L is a nonzero subgroup of E"
and the point set {P: OP ¢ L} has not any accumulation points. Clearly, if
1, ..., 1, are linearly independent vectors in E", then the vector set

{ey + .. bkt 2, ..., 2, €2}

is a lattice. In this case we shall say that this lattice is spanned by the vectors
L,..., L.

L.

If L is a subset of E" and ¢ is a given number 1 < ¢ < n, then the elements
of L can be divided into disjoint subsets X{, in the following way: if the
integer part and the fractional part of the i-th coordinate of 1€ L are u and
v, respectively, then let 1€ Xff‘)v. (For example, the integer parts and the
fractional parts of 3,2 and —5,1 are 3, 0,2 and -6, 0,9, respectively.)

ProposrrioN 1. If (Cp, L) is tiling, then, for any fized v (0 < v < 1),
U (@, XP) = U (Co, X, + (u — 1)e))

holds for each u,r € Z and 1,1 < ¢ < n. Saying in words, the point set, constituting
the cubes in (Co, L) whose i-th coordinate has a fized fractional part v, is mapped
onto itself by arbitrary integer translation in direction e,. ‘

Proor. For simplicity we assume that ¢ = 1. We shall prove induction
by n. Since the section of an n-dimensional cube and an (n — 1)-dimeénsional
plane, which is parallel to one of the (n — 1)-dimensional faces of.the cube,
is an (r — 1)-dimensional cube, it seems to be a good idea to consider the
intersection of (C,, L) and an (n — 1)-dimensional plane. Obviously, the
union of (n — 1)-dimensional cubes obtained in this intersection will be the
whole (n — 1)-dimensional plane. But these (n — 1)-dimensional cubes could
have nonempty common interiors. Thus we have to use a finer method
than this.

Let 8 be any (» — 1)-dimensional planes which are perpendicular to e,.
The hyperplane 8 divides &" into two half spaces. One of them contains the
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ending point of e, when its starting point is in 8. Denote by & this half space.
We state

@5, L) = {Cp: G5 =€, N8, € Nint F = 4, OP ¢ L}
is a tiling in 8.
Indeed, assume the contrary, i.e. that int @ N int Cg = #. If

PQ 2

s¢2

then here each |a,| < 1. Since PQ=PP + PJ 1+ QQ and PP = pey QO = ve,,
where from €, Nint é’f;éﬂa,nd@Q Nint & = 4 we have —1/2 < p, v<{1/2,

PQ = (u— vje, + 3 age,

s=1
S#£2

Now |u — v| < 1and |a| < 1,s0int @, N int @Q =< @ which is a contradiction.

It has remained only to prove that if § €8, then S is a point of some
Cp. Let & be a bounded point set in int & which has the only accumulation
point S. Since (€, L) is a tiling, so the set & is contained in finitely many cubes
of system (C,, L), hence there exists a ©, € (€, L) such that €, has infinitely
many elements of the set §. Obviously, €, N int & >« @. Since the point § is
the accumulation point of each infinite subset of § and since ©, is a compact
set, hence S € €.

Now the induction follows. The statement of Proposition 1 is trivial in
case n = 1. Assume that n > 1 and the statement holds in » — 1 dimensions.
Consider the tilings (C,,L) and (€4, L) as above for any hyperplane § per-
pendicular to e,. Divide the elements of L into disjoint subsets X{) in the
following way; if the integer part and the fractional part of the first coordinate
of 1 € L are u and v, respectively, then let T € X{). By the inductive assumption
for any fixed v (0 < v < 1)

U (@ XD = U (@ X) + (u — 1)ey)
holds (u, r € Z) and note that
@5, X)) = (@5: @ =C, NS, € Nint & = 6, OP ¢ XY}
So finally we conclude that
U (€0, X)) = U (U @, X)) = U (U @6, X + (r — uley) =
$= U (o, XI) + (r s* u)e;)
where U denotes the union of the point sets in § considered, if § runs over

the set of hyperplanes perpendicular to e,. Thls completes the proof.
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ProrosiTioN 2. If (Cy, L) i3 a tiling, then
U (€, UX®) = U, U X®, + ze))
u

for each 1 < i < nanda€R.

The PROOF is carried out analogously to the proof of the preceding propo-
sition. We say: the point set constituting all cubes in (€,, L) with any fixed
i-th fractional part » (0 < v < 1) is mapped onto itself by any translation of
direction e;. This assertion is due to Hajés [1].

PRrOPOSITION 3. If there is a counter-example (Cy, L) for Keller’s con-
jecture, then there is a counter-example (Cp,L') such that L’ is a periodic set
with persods 2e,, . . ., 2e

n*

Proor. Divide the elements of L into disjoint subsets X{!) in the previous
way and consider the set L, given by

L, = U (U (X} U X + 2ue,).

uczZ

We shall prove that the system (€, L,) is a tiling and in it no two cubes have
a common (n — 1)-dimensional face. Using the fact

U (@, X(‘L) = U (&, X(‘) + ue,)
by Proposition 1, we have
& =UEC,L =U(E,,UU Xf,‘},) =U U U(&,, Xf,’},) =
u v v v

=[U U U@ XTULU U U XP)]=

2lu v 2{u v
=[U U U (€ X + ue)] ULU U U (€, XY + uey)] =
2la v 2 v

= U U U@, (X§) UXD) + 2ue,) =

= U (@, U U (X)) UX) + 2ue,) = U (o, X))

Assume the contrary, i.e. that int €, N int Gy, 5= @ for &, O € (Cp, Ly).

In other words assume that O_I” @EL and |ay| <1, ..., |a,| <1,
where PQ = a.e;, + ... . Let OP¢ X{ + 2re; and 0Q € Xyz, + 2se,.
Hence

PQ ¢ (X{) — X) + 2(s — r)ey,
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where ¢, j € {0, 1}. Since ;
U (o, Xf'% + 2rey) = U (@O”.x(21r)+i,1))’ U (Co, X}‘& + 2se)) = U (&, X(215)+j,w)

and -
[int U (GO’ X(er)-l-i,v) n int U (@0, X(zl.g)+j,w)] - ﬂ
if v 5= w, moreover, €p € (Cp, X{) + 2re)), C, € (Co, X§), + 2se,), from the

assumption it follows v = w. Then from a, = (j — %) + (w — v) + 2(s — 1)
and 4,4 € {0,1}, r, 5 € Z, |a,] <1 we conclude that s = r and therefore

PQeXl) —XPcL-L
which violates the fact (C,, L) was a tiling. Thus (©,, L,) is a tiling.-
Now assume the contrary, i.e., that (@, L ) has two cubes @P, A sharmg

a complete (n — 1)-dimensional face. Let PQ = e, and OP ¢ Xf‘g -+ 2re;,
0Q € X§), + 2se,, where i, j € {0, 1} so

PQ = e, € X{), — (X + 2(r — s)ey).
In case ts=1, from 0=(j —14)+ (w—v)+2(s—7r) and ¢j€{0,1},
r,8€Z, |lw— v| <1 wehavev = wand r = s, that is
. PQ=eeX{) —X()cL—L

which is a contradiction since (C,, L) was a counter-example for Keller’s con-
jecture. In case t = 1, from 1 = (j — 4) + (w — v) + 2(s — r) and ¢, j € {0, 1}
r,8€Z, lw— v| <1 we have v = w and either r = sors =r 4 1.
Therefore, either

PQ=e (X)X cL-L
or

PQ = e, € (X — (X + 2ey),
that is '
—e € XD -XD)cL-L

are contradictions, respectively. .
The set L, is periodic with perlod 2e, beca,use

L, = U (U (XE) UX)) + 2ue,) = U U X U XY) + 2 + 1)e,) =
‘_‘,’[U (U (Xg}, U Xﬁg) -+ 2ue1)]-+ 2e; = Ly + 2e;.

Divide elements of L, into disjoint subsets X in the prev‘ious’ wa
and consider the set L, deflned by '

L, = U (U (X§) U XE) +.2ue,).
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We can check analogously that the system (Cp, L,) is a tiling in which no two
cubes have a common (n — 1)-dimensional face and L, is a periodic set with
period 2e,. Now we shall prove that L, is a periodic set with 2e, as well. From -
UUXP, =L; =L, 4 2, = U Ux<2> + 2e,;
u v
and from that the second coordinates of vectors of X?) and of X@) + 2e, are
the same, respectively, we conclude that X{) is a periodic set with period 2e,
that is X@) = X 4 2e,. Using this fact we have

L,= U [U (XP UXR) + 2ue,] = U [U (XP + 2, UXE + 2e,) + 2ue,]=
= U [U X UXD) + 2ue,] 4 2e; = L, + 2e,.

Divide the elements of L, into disjoint subsets X{) as earlier and con-
struct the set

= U [U (X§) X{%) + 2ue,].

The system (C,, Ly) will be a tiling in which no two cubes having a common
(n — 1)-dimensional face. Step by step we can prove that L, is a periodic set
with periods 2e;, 2e, and 2e,. Continuing this process we finally have a system
(€o,L,) = (€5, L’) which is a counter-example for Keller’s conjecture and
L, = L'’ is a periodic set with periods 2e,, . . ., 2e,.

ProrosiTioN 4. If there is a counter-example for Keller's conjecture
(Co, L), then there is a counter-example for Keller's conjecture (Cp, L) such that
L’, is a periodic set with periods 2e,, . . ., 2e, and every vector of L’ has rational
coordinates such that each of their denominators is a power of two.

Proor. According to the preceding proposition we may assume L to
be a periodic set with periods 2e,, . . ., 2e,. Let I be the lattice spanned by
the vectors 2e,, . . ., 2e, and let us define the “‘cube”

C={ce,+...Fce,: 0<¢c <2 1<i<n}.
Since each a, ¢ R is uniquely expressible in the form a;, = 2b, + ¢;, where
b;€Z and 0<¢; <2, hence each 1 =ae, + ...+ a.e E L is unlquely
expressible in the form 1=1 —|—l where l” € L ﬂ C and lE L. Thus L =

=@LNC) + L is a factorization.
Divide the vectors of L into disjoint subsets X{) in the usual way. Now
v runs over finitely many distinet values, since L N C has finitely many ele-
ments, because L has not any accumulation point.
Consider now a new set L, defined by

N
L, = U UXY + «e,
v u
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where (x{" + »)’s are distinct rational numbers such that 0 < ol + v <1
and their denominators are power of two.

We shall prove that the system (Cp, L;) is a counter example for Keller’s
conjecture. Using the fact that for any fixed v

U (& U X,‘},%) = U (&, U X.‘}L + xe,)
u
holds for each « € R (see Proposition 2), we can easily prove, as earlier, that
(€o, L,) is a tiling .

= U U (€ UXD, + ale) = U (@o, U UXD + alle,) = U (€, Ly).
v u v u

Assume the contrary, i.e. that
int €, Nint @Q = @ for €,, 8, € (_@0’ L)).
This means that 0_13, Jé €L, and |a,| < 1,..., s, <1, where 1_’6 = ae, +
+ ...+ a.e,. Let
| OP € X0, + e, 0Q € X3 + ade,
Since '

U (@, U X0) = U (&, U X0 + aVe )
U@, U X“L) = U (&, U X0 + “e,)

and

[int U (€, U X{)] N [int U (&, U XW,)] =9

for v =% w, moreover,
Cp € (Cp, U X(‘) + alley)
@Q E (801 Xﬁll,?,v + “S)eﬂ,
u

from the assumption it follows that » = w. Then from
ay = (r —u) + (w + &) — (v + )

and from |a,| < 1 we have u = r hence PQ € (X{), — X)) c L — L which is
a contradiction since (Cy, L) is a tiling. Consequently, (&, L,) is a tiling.

Now assume the contrary, i.e. (,, L;) has two cubes Cp, €, having a
common complete (n — 1)-dimensional face. Let PQ = e, and

OP € X, + ole;, 0 € X8, + aDe,.
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From these we conclude that the first coordinate of 13_Q., which is an integer
number, is

(r—w) + (w+ o) — (v + )

and therefore we have v = w and «{’ = «{l). Thus

PQe(UXD) — (UX{) cL— L
u u
which violates the fact (C,, L) was a counter-example for Keller’s conjecture.
Thus (€, L,) is a counter-example for Keller’s conjecture and it is obvious
that L, is periodic with periods 2e,, . . ., 2e,.
Divide the elements of L, into disjoint subsets X{) in the usual way
and consider the new set L, given by

L, = U [UX3 4 «{Pe,].
v u

where the ({2 | v)’s are distinct rational numbers such that 0 < «{? + v < 1
and their denominators are powers of two. The system (C,, L,) will be a counter-
example for Keller’s conjecture. Continuing this process, we finally have the
system (€, L)) = (€,, L) which is a counter-example for Keller's conjecture.
We can verify that each vector in L, =L’ has rational coordinates whose
denominators are powers of two and L, = L’ is a periodic set with periods
2ey, ..., 2e,.

ProrositionN 5. If there is a counter-example for Keller's conjecture, then
there exists a finite abelian group G and its factorization.

G=K+ gl + ..+ [gnl:
such that 2g; § K — K for each 1,1 < i < m.

Proor. Let (€, L) be a counter-example for Keller’s conjecture. We may
assume that L is a periodic set with periods 2e,, ..., 2e, and each vector in
L has rational coordinates whose denominators are powers of two.

Denote L the lattice spanned by 2e,, . . ., 2e, and introduce

C={ce; + ... +ce,: 0<e;, <2 1< < n}

as previously. We have already known that the equation L = (L N C) + L is
a factorization. Since L N € is a finite set, there exists a power of two,
say ¢, which is the common multiple of denominators of coordinates of vectors
of L N C. Denote L the lattice spanned by the vectors (1/ge,, . . ., (1/g)e,.
Since (Cp, L) is a tiling and L < L

L=[(1ge,], + - - - + [(Ugle,], + L
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is a factorization. Using the fact L = (L N C) -+ Lis a factorization we conclude
that

L= K+ (g, + - - + [y, + L

is a factorization, where K = L N C. The sets L and L are abelian groups and
L is a subgroup of I so we can consider the factor group L/L = G. Obviously,
@ has (2g)" elements. Denote g, the coset of L/L containing the element (1/g)e;.
From the factorization of I, we have the following factorization:

A=K+ g, + ...+ [9,]

Now we shall prove that ¢g,¢ K — K for each i, 1 < i < n. Indeed,
g9; € K — K had held, we would have had

e,+11€(K+12)“(K+13),

where 1, i,, i; € L. Since L = K + I and L is a lattice from the assumption
e; € L — L would follow which is a contradiction.

Note that if ¢ = rs, where r,s€Z and r > 1,8 > 1, then [g,],=
= [g], + [rg.], is a factorization of [g,],,. If rg, € K — K held, in other words,
if rg, = k, — k, held, where k,, k, € K, then we would have rg, - k, =k,
and therefore the element %, € G could be expressed in two distinct forms

by +0+4+...40, k€K, 0€[g1)---,0€[g,],

and

ky+rgy+0+...40, k€K, 7’916[91](;, OE[gz]qa-"’ 0¢€[g,],

which would violate the above factorization. We have already proved srg; =
=gg, ¢ K — K. Continuing this way, since ¢ is a power of two, we finally
have a factorization

G=K+ gl + ...+ [gnls
where 2g; ¢ K — K, for each 4, 1 <{ i <{ m. This completes the proof.

PROPOSITION 6. If there is a counter-example for Keller's conjecture, then
there exists a group G which is the internal direct sum of cyclic groups generated
by the elements g,, . .. , g,, of order four and it has a factorization

G=K +[gi]o + - - + [gnls
such that 29, ¢ K' — K’ for each 3, 1 < ¢ < m.

Proor. We shall use the next simple lemma due to 8. K. Stein (see [6],
p. 545) which enables us to lift a factoring from a group G* to any group G
of which G* is a homomorphic image.
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Lemma. If G, G* are abelian groups, G* = A* - B* is a factorization,
@: G — G* is a homomorphism from G onto G* and there is a subset A of G such
that the restriction of @ to A is a bijection between A and A*, then G = A-}- B* ¢~1
8 a factorization.

Now, we assume that there is a counter-example for Keller’s conjecture,
then we may assume that there is an abelian group G and a factorization

G=K+ [g1la+ .-+ [gm]e
such that 2¢; ¢ K — K for each ¢, 1 < ¢ < m (Proposition 5).
Let G* be the abelian group generated by the elements gi, ..., g, and

let K* = K NG*. The above factorization of G is equivalent to that @ is
disjoint union of the sets k& + [gi]l, + ... -+ [g,,].» Where k£ € K. Since from
k+[g1)s + ...+ [g,,]s < @* it follows that k € G*, hence

G*=K*+[gils + .- + lgmle

is a factorization as well.

Denote L the lattice spanned by the vectors (1/2)e,, ..., (1/2)e, and
let ¢: L — G* be the mapping given by

((z/2)e; + . .. + (2,/2)e,)0 = 2997 + - -+ 2090 200 -+ -5 2 €Z.

Since G* is generated by gj, . . . , g, the reader can readily verify that ¢ isa
homomorphism from I, onto G*. Obviously, the restriction of ¢ to the set

[(1/2)e;], + . . . + [(1/2)e,],

is a bijection between this set and the set

[911e + - - - + [gr]a

hence by Stein’s lemma there exists a factorization
L = [(1/2)e;], + ... + [(1/2)e,], + L,

where L=K*p~1. Thus the system (G, L) is a tiling in 8. The system (C,, L)
has not any two cubes having a common (m — 1)-dimensional face. Indeed,
from e, ¢ L — L we would have

21 =ep€Lp —Lp=K*— K*Cc K— K

which is a contradiction.

Applying the method of Proposition 3 to this system (C,, L), we conclude:
there exists a counter-example of Keller’s conjecture (€, L’) such that L'
is a periodic set with periods 2e,, . . ., 2e,, and note L’ c L. Thus there exists
a factorization '

L =[(1/2)e], + - .. + [(}/2)e,,], + L.
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If 1. is the lattice spanned by the vectors 2e,, . . ., 2e, and
C={ce; +...+ecpe,: 0<¢; <2 1< i m},

then L' = (L' N €) + L is a factorization. Thus finally there exists a fac-
torization

L =K +[12)e], + ... + [(1/2)e,]; + L,
where K’ = L' N C.

The factor group L/f, = @ is the internal direct sum of cyclic groups, of
order four, generated by g,’s, each of which is the coset of the factor group
containing (1/2)e;. The equation

G=K" 4 [g.1a+ ...+ [9n]2

is a factorization of G and since (G, L’) is a counter-example for Keller’s
conjecture, 2¢9’' ¢ K'— K’ for each ¢, 1 <{ ¢ < m. This completes the proof.

The next proposition presents a contrast to the previous one.

ProPOSITION 7. Let G be the internal direct sum of cyclic groups of order
four generated by elements g,, . . . , g,,. If there is a factorization

G:K'+[91]2+---+[gm]2

such that 2g; ¢ K' — K' for each i, 1 < ¢ < m, then there is a counter-example
for Keller’s conjecture.

ProoF. Let L be the lattice spanned by the vectors (1/2)e,, . .., (1/2)e,,
and let ¢: L — G the homomorphism from L onto G given by

((zy/2)e; + ... + (/e )p =291+ . ..+ 20 ms 21+ -, 2 €EZ.
Obviously, the restriction of ¢ to the set
[(1/2)e,) + - . . + [(1/2)ep] = L
is a bijection between this set and the set
g+ -+ lgmla €@
hence by Stein’s lemma there exists a factorization
L=[(1/2)e ]+ - .. + [(12)en], + L,

where L = K'¢~1. This means that the system (C,, L) is a tiling in ™. This
system is a counter-example for Keller's conjecture because from e, € L — L
we would have that 29, = e,p €Lp — Lp = K’ — K'.

*®
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