
Computer Assisted Mathematical Discovery

John Mackey

CMUMC Colloquium

Carnegie Mellon University April 17, 2024

1 / 26

50 Years of Success in Computer-Assisted Mathematics

1976 Four-Color Theorem

1998 Kepler’s Conjecture

2010 Largest number of moves to solve a Rubik’s Cube is 20

2014 Erdős discrepancy problem (C = 2)

2016 2-Color Pythagorean triples problem

2018 Computation of Schur’s fifth number

2019 Keller’s Conjecture

2022 The Packing Number of the Infinite Square Grid is 15

2023 There is an Empty Hexagon in Every 30 Points

2 / 26

50 Years of Success in Computer-Assisted Mathematics

1976 Four-Color Theorem

1998 Kepler’s Conjecture

2010 Largest number of moves to solve a Rubik’s Cube is 20

2014 Erdős discrepancy problem (C = 2) SAT

2016 2-Color Pythagorean triples problem SAT

2018 Computation of Schur’s fifth number SAT

2019 Keller’s Conjecture SAT

2022 The Packing Number of the Infinite Square Grid is 15 SAT

2023 There is an Empty Hexagon in Every 30 Points SAT

2 / 26

What is SAT ?

SAT is the problem of determining whether the
variables of a propositional formula can be assigned
values in {TRUE, FALSE} in such a way to make
the formula evaluate to TRUE.

If such an assignment exists, then the formula is
said to be satisfiable. Otherwise, the formula is said
to be unsatisfiable.

Consider, for example,

G := (p ∨¬q)∧ (q ∨ r)∧ (¬r ∨¬p).

How about H := (¬v ∧ (v ∨ w))∧ (¬w) ?

3 / 26

What is SAT ?

SAT is the problem of determining whether the
variables of a propositional formula can be assigned
values in {TRUE, FALSE} in such a way to make
the formula evaluate to TRUE.

If such an assignment exists, then the formula is
said to be satisfiable. Otherwise, the formula is said
to be unsatisfiable.

Consider, for example,

G := (p ∨¬q)∧ (q ∨ r)∧ (¬r ∨¬p).

How about H := (¬v ∧ (v ∨ w))∧ (¬w) ?

3 / 26

What is SAT ?

SAT is the problem of determining whether the
variables of a propositional formula can be assigned
values in {TRUE, FALSE} in such a way to make
the formula evaluate to TRUE.

If such an assignment exists, then the formula is
said to be satisfiable. Otherwise, the formula is said
to be unsatisfiable.

Consider, for example,

G := (p ∨¬q)∧ (q ∨ r)∧ (¬r ∨¬p).

How about H := (¬v ∧ (v ∨ w))∧ (¬w) ?

3 / 26

What is SAT ?

SAT is the problem of determining whether the
variables of a propositional formula can be assigned
values in {TRUE, FALSE} in such a way to make
the formula evaluate to TRUE.

If such an assignment exists, then the formula is
said to be satisfiable. Otherwise, the formula is said
to be unsatisfiable.

Consider, for example,

G := (p ∨¬q)∧ (q ∨ r)∧ (¬r ∨¬p).

How about H := (¬v ∧ (v ∨ w))∧ (¬w) ?

3 / 26

What is SAT ?

SAT is the problem of determining whether the
variables of a propositional formula can be assigned
values in {TRUE, FALSE} in such a way to make
the formula evaluate to TRUE.

If such an assignment exists, then the formula is
said to be satisfiable. Otherwise, the formula is said
to be unsatisfiable.

Consider, for example,

G := (p ∨¬q)∧ (q ∨ r)∧ (¬r ∨¬p).

How about H := (¬v ∧ (v ∨ w))∧ (¬w) ?
3 / 26

Naive SAT Solving via Truth Table

Recall G := (p ∨¬q)∧ (q ∨ r)∧ (¬r ∨¬p).

p q r falsifies evaluation

F F F (q ∨ r) F
F F T none T
F T F (p ∨¬q) F
F T T (p ∨¬q) F
T F F (q ∨ r) F
T F T (¬r ∨¬p) F
T T F none T
T T T (¬r ∨¬p) F

4 / 26

Naive SAT Solving via Truth Table

Recall G := (p ∨¬q)∧ (q ∨ r)∧ (¬r ∨¬p).

p q r falsifies evaluation

F F F (q ∨ r) F
F F T none T
F T F (p ∨¬q) F
F T T (p ∨¬q) F
T F F (q ∨ r) F
T F T (¬r ∨¬p) F
T T F none T
T T T (¬r ∨¬p) F

4 / 26

Naive SAT Solving via Truth Table

Recall G := (p ∨¬q)∧ (q ∨ r)∧ (¬r ∨¬p).

p q r falsifies evaluation

F F F (q ∨ r) F
F F T none T
F T F (p ∨¬q) F
F T T (p ∨¬q) F
T F F (q ∨ r) F
T F T (¬r ∨¬p) F
T T F none T
T T T (¬r ∨¬p) F

4 / 26

Doing better than Truth Tables

Given a propositional formula, we first express it in
Conjunctive Normal Form (ANDs of ORs)
as in the following example:

(p⇒ q)⇒ r

≡ (¬p ∨ q)⇒ r

≡ ¬(¬p ∨ q)∨ r

≡ (¬¬p ∧¬q)∨ r

≡ (p ∧¬q)∨ r

≡ (p ∨ r)∧ (¬q ∨ r)

5 / 26

Doing better than Truth Tables

Given a propositional formula, we first express it in
Conjunctive Normal Form (ANDs of ORs)
as in the following example:

(p⇒ q)⇒ r

≡ (¬p ∨ q)⇒ r

≡ ¬(¬p ∨ q)∨ r

≡ (¬¬p ∧¬q)∨ r

≡ (p ∧¬q)∨ r

≡ (p ∨ r)∧ (¬q ∨ r)

5 / 26

Doing better than Truth Tables

Given a propositional formula, we first express it in
Conjunctive Normal Form (ANDs of ORs)
as in the following example:

(p⇒ q)⇒ r

≡ (¬p ∨ q)⇒ r

≡ ¬(¬p ∨ q)∨ r

≡ (¬¬p ∧¬q)∨ r

≡ (p ∧¬q)∨ r

≡ (p ∨ r)∧ (¬q ∨ r)

5 / 26

Doing better than Truth Tables

Given a propositional formula, we first express it in
Conjunctive Normal Form (ANDs of ORs)
as in the following example:

(p⇒ q)⇒ r

≡ (¬p ∨ q)⇒ r

≡ ¬(¬p ∨ q)∨ r

≡ (¬¬p ∧¬q)∨ r

≡ (p ∧¬q)∨ r

≡ (p ∨ r)∧ (¬q ∨ r)

5 / 26

Doing better than Truth Tables

Given a propositional formula, we first express it in
Conjunctive Normal Form (ANDs of ORs)
as in the following example:

(p⇒ q)⇒ r

≡ (¬p ∨ q)⇒ r

≡ ¬(¬p ∨ q)∨ r

≡ (¬¬p ∧¬q)∨ r

≡ (p ∧¬q)∨ r

≡ (p ∨ r)∧ (¬q ∨ r)

5 / 26

Doing better than Truth Tables

Given a propositional formula, we first express it in
Conjunctive Normal Form (ANDs of ORs)
as in the following example:

(p⇒ q)⇒ r

≡ (¬p ∨ q)⇒ r

≡ ¬(¬p ∨ q)∨ r

≡ (¬¬p ∧¬q)∨ r

≡ (p ∧¬q)∨ r

≡ (p ∨ r)∧ (¬q ∨ r)

5 / 26

Doing better than Truth Tables

Given a propositional formula, we first express it in
Conjunctive Normal Form (ANDs of ORs)
as in the following example:

(p⇒ q)⇒ r

≡ (¬p ∨ q)⇒ r

≡ ¬(¬p ∨ q)∨ r

≡ (¬¬p ∧¬q)∨ r

≡ (p ∧¬q)∨ r

≡ (p ∨ r)∧ (¬q ∨ r)

5 / 26

Doing better than Truth Tables

Given a propositional formula, we first express it in
Conjunctive Normal Form (ANDs of ORs)
as in the following example:

(p⇒ q)⇒ r

≡ (¬p ∨ q)⇒ r

≡ ¬(¬p ∨ q)∨ r

≡ (¬¬p ∧¬q)∨ r

≡ (p ∧¬q)∨ r

≡ (p ∨ r)∧ (¬q ∨ r)

5 / 26

Learning Clauses with Resolution Rules

Here is an example of a resolution rule:

(p ∨ C1)∧ (¬p ∨ C2) ⇒ C1 ∨ C2

We say that C1 ∨ C2 is the resolvent
of (p ∨ C1) and (¬p ∨ C2) over p.

Davis-Putnam Algorithm: Given a Conjunctive
Normal Form (CNF) formula, repeatedly select a
variable, add all resolvents over that variable, and
then delete all clauses containing that variable. If
you derive a contradiction, then the original formula
is unsatisfiable, otherwise a satisfying assignment
can be found.

6 / 26

Learning Clauses with Resolution Rules

Here is an example of a resolution rule:

(p ∨ C1)∧ (¬p ∨ C2) ⇒ C1 ∨ C2

We say that C1 ∨ C2 is the resolvent
of (p ∨ C1) and (¬p ∨ C2) over p.

Davis-Putnam Algorithm: Given a Conjunctive
Normal Form (CNF) formula, repeatedly select a
variable, add all resolvents over that variable, and
then delete all clauses containing that variable. If
you derive a contradiction, then the original formula
is unsatisfiable, otherwise a satisfying assignment
can be found.

6 / 26

Learning Clauses with Resolution Rules

Here is an example of a resolution rule:

(p ∨ C1)∧ (¬p ∨ C2) ⇒ C1 ∨ C2

We say that C1 ∨ C2 is the resolvent
of (p ∨ C1) and (¬p ∨ C2) over p.

Davis-Putnam Algorithm: Given a Conjunctive
Normal Form (CNF) formula, repeatedly select a
variable, add all resolvents over that variable, and
then delete all clauses containing that variable. If
you derive a contradiction, then the original formula
is unsatisfiable, otherwise a satisfying assignment
can be found.

6 / 26

Learning Clauses with Resolution Rules

Here is an example of a resolution rule:

(p ∨ C1)∧ (¬p ∨ C2) ⇒ C1 ∨ C2

We say that C1 ∨ C2 is the resolvent
of (p ∨ C1) and (¬p ∨ C2) over p.

Davis-Putnam Algorithm: Given a Conjunctive
Normal Form (CNF) formula, repeatedly select a
variable, add all resolvents over that variable, and
then delete all clauses containing that variable. If
you derive a contradiction, then the original formula
is unsatisfiable, otherwise a satisfying assignment
can be found. 6 / 26

An example of the Davis-Putnam Algorithm

Consider the following CNF formula (here overline means negation):

(x1 ∨ x2 ∨ x3)∧ (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x4)∧ (x1 ∨ x2 ∨ x3)∧
(x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)

Resolving over the variable x1 yields:

(x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧
(x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)

Resolving over the variable x2 yields:

(x3 ∨ x4)∧ (x3 ∨ x4)∧ (x3 ∨ x4)∧ (x3 ∨ x4)

Resolving over the variable x3 yields:

x4 ∧ x4

Thus, the original formula is unsatisfiable.

7 / 26

An example of the Davis-Putnam Algorithm

Consider the following CNF formula (here overline means negation):

(x1 ∨ x2 ∨ x3)∧ (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x4)∧ (x1 ∨ x2 ∨ x3)∧
(x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)

Resolving over the variable x1 yields:

(x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧
(x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)

Resolving over the variable x2 yields:

(x3 ∨ x4)∧ (x3 ∨ x4)∧ (x3 ∨ x4)∧ (x3 ∨ x4)

Resolving over the variable x3 yields:

x4 ∧ x4

Thus, the original formula is unsatisfiable.

7 / 26

An example of the Davis-Putnam Algorithm

Consider the following CNF formula (here overline means negation):

(x1 ∨ x2 ∨ x3)∧ (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x4)∧ (x1 ∨ x2 ∨ x3)∧
(x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)

Resolving over the variable x1 yields:

(x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧
(x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)

Resolving over the variable x2 yields:

(x3 ∨ x4)∧ (x3 ∨ x4)∧ (x3 ∨ x4)∧ (x3 ∨ x4)

Resolving over the variable x3 yields:

x4 ∧ x4

Thus, the original formula is unsatisfiable.

7 / 26

An example of the Davis-Putnam Algorithm

Consider the following CNF formula (here overline means negation):

(x1 ∨ x2 ∨ x3)∧ (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x4)∧ (x1 ∨ x2 ∨ x3)∧
(x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)

Resolving over the variable x1 yields:

(x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧
(x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)

Resolving over the variable x2 yields:

(x3 ∨ x4)∧ (x3 ∨ x4)∧ (x3 ∨ x4)∧ (x3 ∨ x4)

Resolving over the variable x3 yields:

x4 ∧ x4

Thus, the original formula is unsatisfiable.

7 / 26

An example of the Davis-Putnam Algorithm

Consider the following CNF formula (here overline means negation):

(x1 ∨ x2 ∨ x3)∧ (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x4)∧ (x1 ∨ x2 ∨ x3)∧
(x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)

Resolving over the variable x1 yields:

(x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧
(x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)

Resolving over the variable x2 yields:

(x3 ∨ x4)∧ (x3 ∨ x4)∧ (x3 ∨ x4)∧ (x3 ∨ x4)

Resolving over the variable x3 yields:

x4 ∧ x4

Thus, the original formula is unsatisfiable.

7 / 26

An example of the Davis-Putnam Algorithm

Consider the following CNF formula (here overline means negation):

(x1 ∨ x2 ∨ x3)∧ (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x4)∧ (x1 ∨ x2 ∨ x3)∧
(x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)

Resolving over the variable x1 yields:

(x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧
(x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)

Resolving over the variable x2 yields:

(x3 ∨ x4)∧ (x3 ∨ x4)∧ (x3 ∨ x4)∧ (x3 ∨ x4)

Resolving over the variable x3 yields:

x4 ∧ x4

Thus, the original formula is unsatisfiable.

7 / 26

Breakthrough in SAT Solving in the Last 25 Years

Mid ’90s: Formulas with thousands of variables and clauses were solvable.
Now: Formulas with millions of variables and clauses are solvable.

Edmund Clarke: “a key
technology of the 21st century”
[Biere, Heule, vanMaaren, and Walsh ’09]

Donald Knuth: “evidently a killer app,
because it is key to the solution of so

many other problems” [Knuth ’15]

8 / 26

Breakthrough in SAT Solving in the Last 25 Years

Mid ’90s: Formulas with thousands of variables and clauses were solvable.

Now: Formulas with millions of variables and clauses are solvable.

Edmund Clarke: “a key
technology of the 21st century”
[Biere, Heule, vanMaaren, and Walsh ’09]

Donald Knuth: “evidently a killer app,
because it is key to the solution of so

many other problems” [Knuth ’15]

8 / 26

Breakthrough in SAT Solving in the Last 25 Years

Mid ’90s: Formulas with thousands of variables and clauses were solvable.
Now: Formulas with millions of variables and clauses are solvable.

Edmund Clarke: “a key
technology of the 21st century”
[Biere, Heule, vanMaaren, and Walsh ’09]

Donald Knuth: “evidently a killer app,
because it is key to the solution of so

many other problems” [Knuth ’15]

8 / 26

Breakthrough in SAT Solving in the Last 25 Years

Mid ’90s: Formulas with thousands of variables and clauses were solvable.
Now: Formulas with millions of variables and clauses are solvable.

Edmund Clarke: “a key
technology of the 21st century”
[Biere, Heule, vanMaaren, and Walsh ’09]

Donald Knuth: “evidently a killer app,
because it is key to the solution of so

many other problems” [Knuth ’15]

8 / 26

Breakthrough in SAT Solving in the Last 25 Years

Mid ’90s: Formulas with thousands of variables and clauses were solvable.
Now: Formulas with millions of variables and clauses are solvable.

Edmund Clarke: “a key
technology of the 21st century”
[Biere, Heule, vanMaaren, and Walsh ’09]

Donald Knuth: “evidently a killer app,
because it is key to the solution of so

many other problems” [Knuth ’15]

8 / 26

A Combinatorial Problem of Schur

Is it possible to color the integers from 1 to n using colors
from {red, blue, green, orange} so that whenever a + b = c,
the integers a, b and c don’t all have the same color?

For small values of n it is possible. Consider, for example,
{1, 2, 3, 4, 5, 6} which doesn’t even use orange.

We can list all solutions of a + b = c with
a, b, c ∈ {1, 2, 3, 4, 5, 6} and verify that each
solution uses at least two colors.

1 + 1 = 2 1 + 2 = 3 1 + 3 = 4
1 + 4 = 5 1 + 5 = 6 2 + 2 = 4
2 + 3 = 5 2 + 4 = 6 3 + 3 = 6

As n gets larger, such colorings will become more difficult to
produce; eventually we will need to use orange, and for
sufficiently large n such colorings will be impossible to
produce. This is a consequence of Schur’s Theorem.

9 / 26

A Combinatorial Problem of Schur

Is it possible to color the integers from 1 to n using colors
from {red, blue, green, orange} so that whenever a + b = c,
the integers a, b and c don’t all have the same color?

For small values of n it is possible. Consider, for example,
{1, 2, 3, 4, 5, 6} which doesn’t even use orange.

We can list all solutions of a + b = c with
a, b, c ∈ {1, 2, 3, 4, 5, 6} and verify that each
solution uses at least two colors.

1 + 1 = 2 1 + 2 = 3 1 + 3 = 4
1 + 4 = 5 1 + 5 = 6 2 + 2 = 4
2 + 3 = 5 2 + 4 = 6 3 + 3 = 6

As n gets larger, such colorings will become more difficult to
produce; eventually we will need to use orange, and for
sufficiently large n such colorings will be impossible to
produce. This is a consequence of Schur’s Theorem.

9 / 26

A Combinatorial Problem of Schur

Is it possible to color the integers from 1 to n using colors
from {red, blue, green, orange} so that whenever a + b = c,
the integers a, b and c don’t all have the same color?

For small values of n it is possible. Consider, for example,
{1, 2, 3, 4, 5, 6} which doesn’t even use orange.

We can list all solutions of a + b = c with
a, b, c ∈ {1, 2, 3, 4, 5, 6} and verify that each
solution uses at least two colors.

1 + 1 = 2 1 + 2 = 3 1 + 3 = 4
1 + 4 = 5 1 + 5 = 6 2 + 2 = 4
2 + 3 = 5 2 + 4 = 6 3 + 3 = 6

As n gets larger, such colorings will become more difficult to
produce; eventually we will need to use orange, and for
sufficiently large n such colorings will be impossible to
produce. This is a consequence of Schur’s Theorem.

9 / 26

A Combinatorial Problem of Schur

Is it possible to color the integers from 1 to n using colors
from {red, blue, green, orange} so that whenever a + b = c,
the integers a, b and c don’t all have the same color?

For small values of n it is possible. Consider, for example,
{1, 2, 3, 4, 5, 6} which doesn’t even use orange.

We can list all solutions of a + b = c with
a, b, c ∈ {1, 2, 3, 4, 5, 6} and verify that each
solution uses at least two colors.

1 + 1 = 2 1 + 2 = 3 1 + 3 = 4
1 + 4 = 5 1 + 5 = 6 2 + 2 = 4
2 + 3 = 5 2 + 4 = 6 3 + 3 = 6

As n gets larger, such colorings will become more difficult to
produce; eventually we will need to use orange, and for
sufficiently large n such colorings will be impossible to
produce. This is a consequence of Schur’s Theorem.

9 / 26

A Combinatorial Problem of Schur

Is it possible to color the integers from 1 to n using colors
from {red, blue, green, orange} so that whenever a + b = c,
the integers a, b and c don’t all have the same color?

For small values of n it is possible. Consider, for example,
{1, 2, 3, 4, 5, 6} which doesn’t even use orange.

We can list all solutions of a + b = c with
a, b, c ∈ {1, 2, 3, 4, 5, 6} and verify that each
solution uses at least two colors.

1 + 1 = 2 1 + 2 = 3 1 + 3 = 4
1 + 4 = 5 1 + 5 = 6 2 + 2 = 4
2 + 3 = 5 2 + 4 = 6 3 + 3 = 6

As n gets larger, such colorings will become more difficult to
produce; eventually we will need to use orange, and for
sufficiently large n such colorings will be impossible to
produce. This is a consequence of Schur’s Theorem.

9 / 26

A Combinatorial Problem of Schur

Is it possible to color the integers from 1 to n using colors
from {red, blue, green, orange} so that whenever a + b = c,
the integers a, b and c don’t all have the same color?

For small values of n it is possible. Consider, for example,
{1, 2, 3, 4, 5, 6} which doesn’t even use orange.

We can list all solutions of a + b = c with
a, b, c ∈ {1, 2, 3, 4, 5, 6} and verify that each
solution uses at least two colors.

1 + 1 = 2 1 + 2 = 3 1 + 3 = 4
1 + 4 = 5 1 + 5 = 6 2 + 2 = 4
2 + 3 = 5 2 + 4 = 6 3 + 3 = 6

As n gets larger, such colorings will become more difficult to
produce; eventually we will need to use orange, and for
sufficiently large n such colorings will be impossible to
produce. This is a consequence of Schur’s Theorem. 9 / 26

Solving a Combinatorial Problem of Schur using SAT

We will use SAT to find the smallest value of n for which such
colorings using four colors do not exist. We introduce variables
x1, x2, . . . , x4n where x4k is true iff k, x4k−1 is true iff k,
x4k−2 is true iff k, and x4k−3 is true iff k.

For each k = 1, 2, . . . n we ensure that k has at least one
color with the following clause: x4k ∨ x4k−1 ∨ x4k−2 ∨ x4k−3.

For each k = 1, 2, . . . n we ensure that k has at most one
color with the following six clauses:

¬x4k ∨¬x4k−1 ¬x4k ∨¬x4k−2 ¬x4k ∨¬x4k−3
¬x4k−1 ∨¬x4k−2 ¬x4k−1 ∨¬x4k−3 ¬x4k−2 ∨¬x4k−3.

For each solution of a + b = c with a, b, c ∈ {1, . . . n} we
ensure that a, b, and c don’t all have the same color
with the following four clauses:

¬x4a ∨¬x4b ∨¬x4c ¬x4a−1 ∨¬x4b−1 ∨¬x4c−1
¬x4a−2 ∨¬x4b−2 ∨¬x4c−2 ¬x4a−3 ∨¬x4b−3 ∨¬x4c−3.

10 / 26

Solving a Combinatorial Problem of Schur using SAT
We will use SAT to find the smallest value of n for which such
colorings using four colors do not exist.

We introduce variables
x1, x2, . . . , x4n where x4k is true iff k, x4k−1 is true iff k,
x4k−2 is true iff k, and x4k−3 is true iff k.

For each k = 1, 2, . . . n we ensure that k has at least one
color with the following clause: x4k ∨ x4k−1 ∨ x4k−2 ∨ x4k−3.

For each k = 1, 2, . . . n we ensure that k has at most one
color with the following six clauses:

¬x4k ∨¬x4k−1 ¬x4k ∨¬x4k−2 ¬x4k ∨¬x4k−3
¬x4k−1 ∨¬x4k−2 ¬x4k−1 ∨¬x4k−3 ¬x4k−2 ∨¬x4k−3.

For each solution of a + b = c with a, b, c ∈ {1, . . . n} we
ensure that a, b, and c don’t all have the same color
with the following four clauses:

¬x4a ∨¬x4b ∨¬x4c ¬x4a−1 ∨¬x4b−1 ∨¬x4c−1
¬x4a−2 ∨¬x4b−2 ∨¬x4c−2 ¬x4a−3 ∨¬x4b−3 ∨¬x4c−3.

10 / 26

Solving a Combinatorial Problem of Schur using SAT
We will use SAT to find the smallest value of n for which such
colorings using four colors do not exist. We introduce variables
x1, x2, . . . , x4n where

x4k is true iff k, x4k−1 is true iff k,
x4k−2 is true iff k, and x4k−3 is true iff k.

For each k = 1, 2, . . . n we ensure that k has at least one
color with the following clause: x4k ∨ x4k−1 ∨ x4k−2 ∨ x4k−3.

For each k = 1, 2, . . . n we ensure that k has at most one
color with the following six clauses:

¬x4k ∨¬x4k−1 ¬x4k ∨¬x4k−2 ¬x4k ∨¬x4k−3
¬x4k−1 ∨¬x4k−2 ¬x4k−1 ∨¬x4k−3 ¬x4k−2 ∨¬x4k−3.

For each solution of a + b = c with a, b, c ∈ {1, . . . n} we
ensure that a, b, and c don’t all have the same color
with the following four clauses:

¬x4a ∨¬x4b ∨¬x4c ¬x4a−1 ∨¬x4b−1 ∨¬x4c−1
¬x4a−2 ∨¬x4b−2 ∨¬x4c−2 ¬x4a−3 ∨¬x4b−3 ∨¬x4c−3.

10 / 26

Solving a Combinatorial Problem of Schur using SAT
We will use SAT to find the smallest value of n for which such
colorings using four colors do not exist. We introduce variables
x1, x2, . . . , x4n where x4k is true iff k,

x4k−1 is true iff k,
x4k−2 is true iff k, and x4k−3 is true iff k.

For each k = 1, 2, . . . n we ensure that k has at least one
color with the following clause: x4k ∨ x4k−1 ∨ x4k−2 ∨ x4k−3.

For each k = 1, 2, . . . n we ensure that k has at most one
color with the following six clauses:

¬x4k ∨¬x4k−1 ¬x4k ∨¬x4k−2 ¬x4k ∨¬x4k−3
¬x4k−1 ∨¬x4k−2 ¬x4k−1 ∨¬x4k−3 ¬x4k−2 ∨¬x4k−3.

For each solution of a + b = c with a, b, c ∈ {1, . . . n} we
ensure that a, b, and c don’t all have the same color
with the following four clauses:

¬x4a ∨¬x4b ∨¬x4c ¬x4a−1 ∨¬x4b−1 ∨¬x4c−1
¬x4a−2 ∨¬x4b−2 ∨¬x4c−2 ¬x4a−3 ∨¬x4b−3 ∨¬x4c−3.

10 / 26

Solving a Combinatorial Problem of Schur using SAT
We will use SAT to find the smallest value of n for which such
colorings using four colors do not exist. We introduce variables
x1, x2, . . . , x4n where x4k is true iff k, x4k−1 is true iff k,

x4k−2 is true iff k, and x4k−3 is true iff k.

For each k = 1, 2, . . . n we ensure that k has at least one
color with the following clause: x4k ∨ x4k−1 ∨ x4k−2 ∨ x4k−3.

For each k = 1, 2, . . . n we ensure that k has at most one
color with the following six clauses:

¬x4k ∨¬x4k−1 ¬x4k ∨¬x4k−2 ¬x4k ∨¬x4k−3
¬x4k−1 ∨¬x4k−2 ¬x4k−1 ∨¬x4k−3 ¬x4k−2 ∨¬x4k−3.

For each solution of a + b = c with a, b, c ∈ {1, . . . n} we
ensure that a, b, and c don’t all have the same color
with the following four clauses:

¬x4a ∨¬x4b ∨¬x4c ¬x4a−1 ∨¬x4b−1 ∨¬x4c−1
¬x4a−2 ∨¬x4b−2 ∨¬x4c−2 ¬x4a−3 ∨¬x4b−3 ∨¬x4c−3.

10 / 26

Solving a Combinatorial Problem of Schur using SAT
We will use SAT to find the smallest value of n for which such
colorings using four colors do not exist. We introduce variables
x1, x2, . . . , x4n where x4k is true iff k, x4k−1 is true iff k,
x4k−2 is true iff k,

and x4k−3 is true iff k.

For each k = 1, 2, . . . n we ensure that k has at least one
color with the following clause: x4k ∨ x4k−1 ∨ x4k−2 ∨ x4k−3.

For each k = 1, 2, . . . n we ensure that k has at most one
color with the following six clauses:

¬x4k ∨¬x4k−1 ¬x4k ∨¬x4k−2 ¬x4k ∨¬x4k−3
¬x4k−1 ∨¬x4k−2 ¬x4k−1 ∨¬x4k−3 ¬x4k−2 ∨¬x4k−3.

For each solution of a + b = c with a, b, c ∈ {1, . . . n} we
ensure that a, b, and c don’t all have the same color
with the following four clauses:

¬x4a ∨¬x4b ∨¬x4c ¬x4a−1 ∨¬x4b−1 ∨¬x4c−1
¬x4a−2 ∨¬x4b−2 ∨¬x4c−2 ¬x4a−3 ∨¬x4b−3 ∨¬x4c−3.

10 / 26

Solving a Combinatorial Problem of Schur using SAT
We will use SAT to find the smallest value of n for which such
colorings using four colors do not exist. We introduce variables
x1, x2, . . . , x4n where x4k is true iff k, x4k−1 is true iff k,
x4k−2 is true iff k, and x4k−3 is true iff k.

For each k = 1, 2, . . . n we ensure that k has at least one
color with the following clause: x4k ∨ x4k−1 ∨ x4k−2 ∨ x4k−3.

For each k = 1, 2, . . . n we ensure that k has at most one
color with the following six clauses:

¬x4k ∨¬x4k−1 ¬x4k ∨¬x4k−2 ¬x4k ∨¬x4k−3
¬x4k−1 ∨¬x4k−2 ¬x4k−1 ∨¬x4k−3 ¬x4k−2 ∨¬x4k−3.

For each solution of a + b = c with a, b, c ∈ {1, . . . n} we
ensure that a, b, and c don’t all have the same color
with the following four clauses:

¬x4a ∨¬x4b ∨¬x4c ¬x4a−1 ∨¬x4b−1 ∨¬x4c−1
¬x4a−2 ∨¬x4b−2 ∨¬x4c−2 ¬x4a−3 ∨¬x4b−3 ∨¬x4c−3.

10 / 26

Solving a Combinatorial Problem of Schur using SAT
We will use SAT to find the smallest value of n for which such
colorings using four colors do not exist. We introduce variables
x1, x2, . . . , x4n where x4k is true iff k, x4k−1 is true iff k,
x4k−2 is true iff k, and x4k−3 is true iff k.

For each k = 1, 2, . . . n we ensure that k has at least one
color with the following clause: x4k ∨ x4k−1 ∨ x4k−2 ∨ x4k−3.

For each k = 1, 2, . . . n we ensure that k has at most one
color with the following six clauses:

¬x4k ∨¬x4k−1 ¬x4k ∨¬x4k−2 ¬x4k ∨¬x4k−3
¬x4k−1 ∨¬x4k−2 ¬x4k−1 ∨¬x4k−3 ¬x4k−2 ∨¬x4k−3.

For each solution of a + b = c with a, b, c ∈ {1, . . . n} we
ensure that a, b, and c don’t all have the same color
with the following four clauses:

¬x4a ∨¬x4b ∨¬x4c ¬x4a−1 ∨¬x4b−1 ∨¬x4c−1
¬x4a−2 ∨¬x4b−2 ∨¬x4c−2 ¬x4a−3 ∨¬x4b−3 ∨¬x4c−3.

10 / 26

Solving a Combinatorial Problem of Schur using SAT
We will use SAT to find the smallest value of n for which such
colorings using four colors do not exist. We introduce variables
x1, x2, . . . , x4n where x4k is true iff k, x4k−1 is true iff k,
x4k−2 is true iff k, and x4k−3 is true iff k.

For each k = 1, 2, . . . n we ensure that k has at least one
color with the following clause: x4k ∨ x4k−1 ∨ x4k−2 ∨ x4k−3.

For each k = 1, 2, . . . n we ensure that k has at most one
color with the following six clauses:

¬x4k ∨¬x4k−1 ¬x4k ∨¬x4k−2 ¬x4k ∨¬x4k−3
¬x4k−1 ∨¬x4k−2 ¬x4k−1 ∨¬x4k−3 ¬x4k−2 ∨¬x4k−3.

For each solution of a + b = c with a, b, c ∈ {1, . . . n} we
ensure that a, b, and c don’t all have the same color
with the following four clauses:

¬x4a ∨¬x4b ∨¬x4c ¬x4a−1 ∨¬x4b−1 ∨¬x4c−1
¬x4a−2 ∨¬x4b−2 ∨¬x4c−2 ¬x4a−3 ∨¬x4b−3 ∨¬x4c−3.

10 / 26

Solving a Combinatorial Problem of Schur using SAT
We will use SAT to find the smallest value of n for which such
colorings using four colors do not exist. We introduce variables
x1, x2, . . . , x4n where x4k is true iff k, x4k−1 is true iff k,
x4k−2 is true iff k, and x4k−3 is true iff k.

For each k = 1, 2, . . . n we ensure that k has at least one
color with the following clause: x4k ∨ x4k−1 ∨ x4k−2 ∨ x4k−3.

For each k = 1, 2, . . . n we ensure that k has at most one
color with the following six clauses:

¬x4k ∨¬x4k−1 ¬x4k ∨¬x4k−2 ¬x4k ∨¬x4k−3
¬x4k−1 ∨¬x4k−2 ¬x4k−1 ∨¬x4k−3 ¬x4k−2 ∨¬x4k−3.

For each solution of a + b = c with a, b, c ∈ {1, . . . n} we
ensure that a, b, and c don’t all have the same color
with the following four clauses:

¬x4a ∨¬x4b ∨¬x4c ¬x4a−1 ∨¬x4b−1 ∨¬x4c−1
¬x4a−2 ∨¬x4b−2 ∨¬x4c−2 ¬x4a−3 ∨¬x4b−3 ∨¬x4c−3. 10 / 26

Mathematicians are Interested in Machine-Assisted Proofs

11 / 26

Keller’s Conjecture: A Tiling Problem

Consider tiling a floor with square tiles, all of the same size. Is
it the case that any gap-free tiling results in at least two fully
connected tiles, i.e., tiles that have an entire edge in common?

12 / 26

Keller’s Conjecture: A Tiling Problem

Consider tiling a floor with square tiles, all of the same size. Is
it the case that any gap-free tiling results in at least two fully
connected tiles, i.e., tiles that have an entire edge in common?

12 / 26

Keller’s Conjecture: Resolved
[Brakensiek, Heule, Mackey, & Narvaez 2019]

In 1930, Ott-Heinrich Keller
conjectured that this phenomenon holds
in every dimension.

Keller’s Conjecture.
For all n ≥ 1, every tiling of the
n-dimensional space with unit cubes has
two which fully share a face.

[Wikipedia, CC BY-SA]

13 / 26

An Empty Hexagon in Every Set of 30 Points

Computational geometry and SAT:
Shapes in point sets in general
position (no three points on a line)

k-hole: empty k-point convex shape

Every set of 5 points contains in a 4-hole [Klein 1932]

Every set of 30 points contains in a 6-hole (using SAT)
[Heule & Scheucher 2023]

14 / 26

An Empty Hexagon in Every Set of 30 Points

Computational geometry and SAT:
Shapes in point sets in general
position (no three points on a line)

k-hole: empty k-point convex shape

Every set of 5 points contains in a 4-hole [Klein 1932]

Every set of 30 points contains in a 6-hole (using SAT)
[Heule & Scheucher 2023]

14 / 26

An Empty Hexagon in Every Set of 30 Points

Computational geometry and SAT:
Shapes in point sets in general
position (no three points on a line)

k-hole: empty k-point convex shape

Every set of 5 points contains in a 4-hole [Klein 1932]

Every set of 30 points contains in a 6-hole (using SAT)
[Heule & Scheucher 2023]

14 / 26

Avoiding an Empty Hexagon in a Set of 29 Points

15 / 26

SAT Encoding: Orientation Variables

No explicit coordinates of points

Instead, for every triple a < b < c,
one orientation variable Oa,b,c to denote
whether point c is above the line ab

Not all assignments are realizable

I Axioms eliminate many
unrealizable assignments

Many possible SAT encodings

I Big impact on performance

I Machine learning can help!

+

–

a
b

c

d

16 / 26

Packing Chromatic Number

Definition
A packing k-coloring of a simple undirected graph G = (V, E)
is a function ϕ from V to {1, . . . , k} such that for any two
distinct vertices u, v ∈ V, and any color c ∈ {1, . . . , k}, it holds
that ϕ(u) = ϕ(v) = c implies d(u, v) > c.

3
1
2
1

1
2
1

1
7
1

5
1

1
6
1

4
1

1
2
1

1
2
1

11 6
1
2
1

1
2
1

1
5
1

3
1

1
3
1

4
1

1
2
1

1
2
1

11 3
1
2
1

1
2
1

1

1

5
1

1
6
1

4
1

1
2
1

1
2
1

11

17 / 26

Packing Chromatic Number of the Infinite Grid is 15
The 72× 72 15-coloring below can be used to tile the infinite grid

I This is not possible with 14 colors [Subercaseaux & Heule’23]

18 / 26

Chromatic Number of the Plane (CNP)

The Hadwiger-Nelson problem (around 1950):
How many colors are required to color the plane such that each
pair of points that are exactly 1 apart are colored differently?

I The Moser Spindle graph shows the lower bound of 4

I A coloring of the plane showing the upper bound of 7

19 / 26

Chromatic Number of the Plane (CNP)

The Hadwiger-Nelson problem (around 1950):
How many colors are required to color the plane such that each
pair of points that are exactly 1 apart are colored differently?

I The Moser Spindle graph shows the lower bound of 4

I A coloring of the plane showing the upper bound of 7

19 / 26

CNP: First progress in decades

Recently enormous progress:

I Lower bound of 5 [DeGrey ’18]

based on a 1581-vertex graph

I This breakthrough started a
polymath project

I Improved bounds of the fractional
chromatic number of the plane

We found smaller graphs with SAT:

I 874 vertices on April 14, 2018

I 803 vertices on April 30, 2018

I 610 vertices on May 14, 2018

20 / 26

CNP: First progress in decades

Recently enormous progress:

I Lower bound of 5 [DeGrey ’18]

based on a 1581-vertex graph

I This breakthrough started a
polymath project

I Improved bounds of the fractional
chromatic number of the plane

We found smaller graphs with SAT:

I 874 vertices on April 14, 2018

I 803 vertices on April 30, 2018

I 610 vertices on May 14, 2018

20 / 26

Proof Minimization: 510 Vertices [Heule 2021]

21 / 26

Beyond NP: The Collatz Conjecture

Resolving foundational algorithm questions

Col(n) =

{
n/2 if n is even
(3n + 1)/2 if n is odd

Does while(n > 1) n=Col(n); terminate?

Find a non-negative function fun(n) s.t.

∀n > 1 : fun(n) > fun(Col(n))
source: xkcd.com/710

Can we construct a function s.t. fun(n) > fun(Col(n)) holds?

fun(3) fun(5) fun(8) fun(4) fun(2) fun(1)
5 4 3 2 1 0

22 / 26

Beyond NP: The Collatz Conjecture

Resolving foundational algorithm questions

Col(n) =

{
n/2 if n is even
(3n + 1)/2 if n is odd

Does while(n > 1) n=Col(n); terminate?

Find a non-negative function fun(n) s.t.

∀n > 1 : fun(n) > fun(Col(n))
source: xkcd.com/710

Can we construct a function s.t. fun(n) > fun(Col(n)) holds?

fun(3) fun(5) fun(8) fun(4) fun(2) fun(1)
5 4 3 2 1 0

22 / 26

Collatz Conjecture: Studying a Rewrite System
[Yolcu, Aaronson, & Heule 2021]

1 ×3+2 ×3 ×3+2 ×3 ×3+2 ×1
1 ×2 ×2+1 ×3 ×3+2 ×3 ×3+2 ×1
1 ×2 ×3+1 ×2+1 ×3+2 ×3 ×3+2 ×1
1 ×2 ×3+1 ×3+2 ×2+1 ×3 ×3+2 ×1
1 ×2 ×3+1 ×3+2 ×3+1 ×2+1 ×3+2 ×1
1 ×2 ×3+1 ×3+2 ×3+1 ×3+2 ×2+1 ×1
1 ×2 ×3+1 ×3+2 ×3+1 ×3+2 ×3+2 ×1
1 ×3 ×2+1 ×3+2 ×3+1 ×3+2 ×3+2 ×1
1 ×3 ×3+2 ×2+1 ×3+1 ×3+2 ×3+2 ×1
1 ×3 ×3+2 ×3+2 ×2 ×3+2 ×3+2 ×1
1 ×3 ×3+2 ×3+2 ×3+1 ×2 ×3+2 ×1
1 ×3 ×3+2 ×3+2 ×3+1 ×3+1 ×2 ×1

1 ×3 ×3+2 ×3+2 ×3+1 ×3+1 ×1

×2 ×1 ×1

×2+1 ×1 ×3+2 ×1

×2 ×3 ×3 ×2

×2 ×3+1 ×3 ×2+1

×2 ×3+2 ×3+1 ×2

×2+1 ×3 ×3+1 ×2+1

×2+1 ×3+1 ×3+2 ×2

×2+1 ×3+2 ×3+2 ×2+1

1 ×3 1 ×2+1

1 ×3+1 1 ×2 ×2

1 ×3+2 1 ×2 ×2+1

23 / 26

Collatz Conjecture: Successes and Challenge

Success. Rewrite system with 11 rules: Their termination solves
Collatz. Our tool proves termination of any subset of 10 rules.

Success. Our tool proves termination of Farkas’ variant:

F(n) =

n−1

3 if n ≡ 1 (mod 3)
n
2 if n ≡ 0 or n ≡ 2 (mod 6)
3n+1

2 if n ≡ 3 or n ≡ 5 (mod 6)

Challenge ($500). An easier generalized Collatz problem is open:

H(n) =

3n
4 if n ≡ 0 (mod 4)

9n+1
8 if n ≡ 7 (mod 8)
⊥ otherwise

24 / 26

Collatz Conjecture: Successes and Challenge

Success. Rewrite system with 11 rules: Their termination solves
Collatz. Our tool proves termination of any subset of 10 rules.

Success. Our tool proves termination of Farkas’ variant:

F(n) =

n−1

3 if n ≡ 1 (mod 3)
n
2 if n ≡ 0 or n ≡ 2 (mod 6)
3n+1

2 if n ≡ 3 or n ≡ 5 (mod 6)

Challenge ($500). An easier generalized Collatz problem is open:

H(n) =

3n
4 if n ≡ 0 (mod 4)

9n+1
8 if n ≡ 7 (mod 8)
⊥ otherwise

24 / 26

Collatz Conjecture: Successes and Challenge

Success. Rewrite system with 11 rules: Their termination solves
Collatz. Our tool proves termination of any subset of 10 rules.

Success. Our tool proves termination of Farkas’ variant:

F(n) =

n−1

3 if n ≡ 1 (mod 3)
n
2 if n ≡ 0 or n ≡ 2 (mod 6)
3n+1

2 if n ≡ 3 or n ≡ 5 (mod 6)

Challenge ($500). An easier generalized Collatz problem is open:

H(n) =

3n
4 if n ≡ 0 (mod 4)

9n+1
8 if n ≡ 7 (mod 8)
⊥ otherwise

24 / 26

Conclusions

Successes, Advances, and Trust:

I A performance boost of SAT technology allows solving
new problems in mathematics

I Problems beyond NP are ready for an automated approach

I Some proofs may be gigantic, but can be validated using
formally-verified checkers

Classic problems ready for mechanization?

I Chromatic number of the plane

I Optimal matrix multiplication

I Collatz Conjecture

25 / 26

One More Thing: Costas Arrays

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

26 / 26

