Computer Assisted Mathematical Discovery

John Mackey

Carnegie Mellon University

CMUMC Colloquium
Carnegie Mellon University April 17, 2024

50 Years of Success in Computer-Assisted Mathematics

1976 Four-Color Theorem
1998 Kepler's Conjecture
2010 Largest number of moves to solve a Rubik's Cube is 20
2014 Erdős discrepancy problem $(C=2)$
2016 2-Color Pythagorean triples problem
2018 Computation of Schur's fifth number
2019 Keller's Conjecture
2022 The Packing Number of the Infinite Square Grid is 15
2023 There is an Empty Hexagon in Every 30 Points

50 Years of Success in Computer-Assisted Mathematics

1976 Four-Color Theorem
1998 Kepler's Conjecture
2010 Largest number of moves to solve a Rubik's Cube is 20
2014 Erdős discrepancy problem $(C=2)$ SAT
2016 2-Color Pythagorean triples problem SAT
2018 Computation of Schur's fifth number SAT
2019 Keller's Conjecture SAT
2022 The Packing Number of the Infinite Square Grid is 15 SAT
2023 There is an Empty Hexagon in Every 30 Points SAT

What is SAT?

What is SAT?

SAT is the problem of determining whether the variables of a propositional formula can be assigned values in $\{$ TRUE, FALSE $\}$ in such a way to make the formula evaluate to TRUE.

What is SAT?

SAT is the problem of determining whether the variables of a propositional formula can be assigned values in $\{$ TRUE, FALSE $\}$ in such a way to make the formula evaluate to TRUE.

If such an assignment exists, then the formula is said to be satisfiable. Otherwise, the formula is said to be unsatisfiable.

What is SAT?

SAT is the problem of determining whether the variables of a propositional formula can be assigned values in $\{$ TRUE, FALSE $\}$ in such a way to make the formula evaluate to TRUE.

If such an assignment exists, then the formula is said to be satisfiable. Otherwise, the formula is said to be unsatisfiable.

Consider, for example,

$$
G:=(p \vee \neg q) \wedge(q \vee r) \wedge(\neg r \vee \neg p)
$$

What is SAT?

SAT is the problem of determining whether the variables of a propositional formula can be assigned values in $\{$ TRUE, FALSE $\}$ in such a way to make the formula evaluate to TRUE.

If such an assignment exists, then the formula is said to be satisfiable. Otherwise, the formula is said to be unsatisfiable.

Consider, for example,

$$
G:=(p \vee \neg q) \wedge(q \vee r) \wedge(\neg r \vee \neg p)
$$

How about $H:=(\neg v \wedge(v \vee w)) \wedge(\neg w) ?$

Naive SAT Solving via Truth Table

Naive SAT Solving via Truth Table

Recall $G:=(p \vee \neg q) \wedge(q \vee r) \wedge(\neg r \vee \neg p)$.

Naive SAT Solving via Truth Table

Recall $\quad G:=(p \vee \neg q) \wedge(q \vee r) \wedge(\neg r \vee \neg p)$.

p	q	r	falsifies	evaluation
F	F	F	$(q \vee r)$	F
F	F	T	none	T
F	T	F	$(p \vee \neg q)$	F
F	T	T	$(p \vee \neg q)$	F
T	F	F	$(q \vee r)$	F
T	F	T	$(\neg r \vee \neg p)$	F
T	T	F	none	T
T	T	T	$(\neg r \vee \neg p)$	F

Doing better than Truth Tables

Doing better than Truth Tables

Given a propositional formula, we first express it in Conjunctive Normal Form (ANDs of ORs) as in the following example:

Doing better than Truth Tables

Given a propositional formula, we first express it in Conjunctive Normal Form (ANDs of ORs) as in the following example:

$$
(p \Rightarrow q) \Rightarrow r
$$

Doing better than Truth Tables

Given a propositional formula, we first express it in Conjunctive Normal Form (ANDs of ORs) as in the following example:

$$
\begin{gathered}
\\
\\
(p \Rightarrow q) \Rightarrow r \\
\equiv \quad \\
(\neg p \vee q) \Rightarrow r
\end{gathered}
$$

Doing better than Truth Tables

Given a propositional formula, we first express it in Conjunctive Normal Form (ANDs of ORs) as in the following example:

$$
\begin{aligned}
& (p \Rightarrow q) \Rightarrow r \\
\equiv & (\neg p \vee q) \Rightarrow r \\
\equiv & \neg(\neg p \vee q) \vee r
\end{aligned}
$$

Doing better than Truth Tables

Given a propositional formula, we first express it in Conjunctive Normal Form (ANDs of ORs) as in the following example:

$$
\begin{array}{ll}
& (p \Rightarrow q) \Rightarrow r \\
\equiv & (\neg p \vee q) \Rightarrow r \\
\equiv & \neg(\neg p \vee q) \vee r \\
\equiv & (\neg \neg p \wedge \neg q) \vee r
\end{array}
$$

Doing better than Truth Tables

Given a propositional formula, we first express it in Conjunctive Normal Form (ANDs of ORs) as in the following example:

$$
\begin{array}{ll}
& (p \Rightarrow q) \Rightarrow r \\
\equiv & (\neg p \vee q) \Rightarrow r \\
\equiv & \neg(\neg p \vee q) \vee r \\
\equiv & (\neg \neg p \wedge \neg q) \vee r \\
\equiv & (p \wedge \neg q) \vee r
\end{array}
$$

Doing better than Truth Tables

Given a propositional formula, we first express it in Conjunctive Normal Form (ANDs of ORs) as in the following example:

$$
\begin{array}{ll}
& (p \Rightarrow q) \Rightarrow r \\
\equiv & (\neg p \vee q) \Rightarrow r \\
\equiv & \neg(\neg p \vee q) \vee r \\
\equiv & (\neg \neg p \wedge \neg q) \vee r \\
\equiv & (p \wedge \neg q) \vee r \\
\equiv & (p \vee r) \wedge(\neg q \vee r)
\end{array}
$$

Learning Clauses with Resolution Rules

Learning Clauses with Resolution Rules

Here is an example of a resolution rule:

$$
\left(p \vee C_{1}\right) \wedge\left(\neg p \vee C_{2}\right) \quad \Rightarrow \quad C_{1} \vee C_{2}
$$

Learning Clauses with Resolution Rules

Here is an example of a resolution rule:

$$
\left(p \vee C_{1}\right) \wedge\left(\neg p \vee C_{2}\right) \quad \Rightarrow \quad C_{1} \vee C_{2}
$$

We say that $C_{1} \vee C_{2}$ is the resolvent of $\left(p \vee C_{1}\right)$ and $\left(\neg p \vee C_{2}\right)$ over p.

Learning Clauses with Resolution Rules

Here is an example of a resolution rule:

$$
\left(p \vee C_{1}\right) \wedge\left(\neg p \vee C_{2}\right) \quad \Rightarrow \quad C_{1} \vee C_{2}
$$

We say that $C_{1} \vee C_{2}$ is the resolvent of $\left(p \vee C_{1}\right)$ and $\left(\neg p \vee C_{2}\right)$ over p.

Davis-Putnam Algorithm: Given a Conjunctive Normal Form (CNF) formula, repeatedly select a variable, add all resolvents over that variable, and then delete all clauses containing that variable. If you derive a contradiction, then the original formula is unsatisfiable, otherwise a satisfying assignment
can be found.

An example of the Davis-Putnam Algorithm

An example of the Davis-Putnam Algorithm

Consider the following CNF formula (here overline means negation):

$$
\begin{aligned}
& \left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{4}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge \\
& \left(\bar{x}_{1} \vee \bar{x}_{3} \vee \bar{x}_{4}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{3} \vee \bar{x}_{4}\right) \wedge\left(\bar{x}_{2} \vee \bar{x}_{3} \vee x_{4}\right)
\end{aligned}
$$

An example of the Davis-Putnam Algorithm

Consider the following CNF formula (here overline means negation):

$$
\begin{aligned}
& \left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{4}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge \\
& \left(\bar{x}_{1} \vee \bar{x}_{3} \vee \bar{x}_{4}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{3} \vee \bar{x}_{4}\right) \wedge\left(\bar{x}_{2} \vee \bar{x}_{3} \vee x_{4}\right)
\end{aligned}
$$

Resolving over the variable x_{1} yields:

$$
\begin{aligned}
& \left(x_{2} \vee \bar{x}_{3} \vee \bar{x}_{4}\right) \wedge\left(x_{2} \vee \bar{x}_{3} \vee x_{4}\right) \wedge\left(\bar{x}_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge \\
& \left(\bar{x}_{2} \vee \bar{x}_{3} \vee \bar{x}_{4}\right) \wedge\left(x_{2} \vee x_{3} \vee \bar{x}_{4}\right) \wedge\left(\bar{x}_{2} \vee x_{3} \vee \bar{x}_{4}\right) \wedge\left(\bar{x}_{2} \vee \bar{x}_{3} \vee x_{4}\right)
\end{aligned}
$$

An example of the Davis-Putnam Algorithm

Consider the following CNF formula (here overline means negation):

$$
\begin{aligned}
& \left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{4}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge \\
& \left(\bar{x}_{1} \vee \bar{x}_{3} \vee \bar{x}_{4}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{3} \vee \bar{x}_{4}\right) \wedge\left(\bar{x}_{2} \vee \bar{x}_{3} \vee x_{4}\right)
\end{aligned}
$$

Resolving over the variable x_{1} yields:

$$
\begin{aligned}
& \left(x_{2} \vee \bar{x}_{3} \vee \bar{x}_{4}\right) \wedge\left(x_{2} \vee \bar{x}_{3} \vee x_{4}\right) \wedge\left(\bar{x}_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge \\
& \left(\bar{x}_{2} \vee \bar{x}_{3} \vee \bar{x}_{4}\right) \wedge\left(x_{2} \vee x_{3} \vee \bar{x}_{4}\right) \wedge\left(\bar{x}_{2} \vee x_{3} \vee \bar{x}_{4}\right) \wedge\left(\bar{x}_{2} \vee \bar{x}_{3} \vee x_{4}\right)
\end{aligned}
$$

Resolving over the variable x_{2} yields:

$$
\left(\bar{x}_{3} \vee \bar{x}_{4}\right) \wedge\left(\bar{x}_{3} \vee x_{4}\right) \wedge\left(x_{3} \vee \bar{x}_{4}\right) \wedge\left(x_{3} \vee x_{4}\right)
$$

An example of the Davis-Putnam Algorithm

Consider the following CNF formula (here overline means negation):

$$
\begin{aligned}
& \left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{4}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge \\
& \left(\bar{x}_{1} \vee \bar{x}_{3} \vee \bar{x}_{4}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{3} \vee \bar{x}_{4}\right) \wedge\left(\bar{x}_{2} \vee \bar{x}_{3} \vee x_{4}\right)
\end{aligned}
$$

Resolving over the variable x_{1} yields:

$$
\begin{aligned}
& \left(x_{2} \vee \bar{x}_{3} \vee \bar{x}_{4}\right) \wedge\left(x_{2} \vee \bar{x}_{3} \vee x_{4}\right) \wedge\left(\bar{x}_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge \\
& \left(\bar{x}_{2} \vee \bar{x}_{3} \vee \bar{x}_{4}\right) \wedge\left(x_{2} \vee x_{3} \vee \bar{x}_{4}\right) \wedge\left(\bar{x}_{2} \vee x_{3} \vee \bar{x}_{4}\right) \wedge\left(\bar{x}_{2} \vee \bar{x}_{3} \vee x_{4}\right)
\end{aligned}
$$

Resolving over the variable x_{2} yields:
$\left(\bar{x}_{3} \vee \bar{x}_{4}\right) \wedge\left(\bar{x}_{3} \vee x_{4}\right) \wedge\left(x_{3} \vee \bar{x}_{4}\right) \wedge\left(x_{3} \vee x_{4}\right)$

Resolving over the variable x_{3} yields:
$x_{4} \wedge \bar{x}_{4}$

An example of the Davis-Putnam Algorithm

Consider the following CNF formula (here overline means negation):

$$
\begin{aligned}
& \left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{4}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge \\
& \left(\bar{x}_{1} \vee \bar{x}_{3} \vee \bar{x}_{4}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{3} \vee \bar{x}_{4}\right) \wedge\left(\bar{x}_{2} \vee \bar{x}_{3} \vee x_{4}\right)
\end{aligned}
$$

Resolving over the variable x_{1} yields:

$$
\begin{aligned}
& \left(x_{2} \vee \bar{x}_{3} \vee \bar{x}_{4}\right) \wedge\left(x_{2} \vee \bar{x}_{3} \vee x_{4}\right) \wedge\left(\bar{x}_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge \\
& \left(\bar{x}_{2} \vee \bar{x}_{3} \vee \bar{x}_{4}\right) \wedge\left(x_{2} \vee x_{3} \vee \bar{x}_{4}\right) \wedge\left(\bar{x}_{2} \vee x_{3} \vee \bar{x}_{4}\right) \wedge\left(\bar{x}_{2} \vee \bar{x}_{3} \vee x_{4}\right)
\end{aligned}
$$

Resolving over the variable x_{2} yields:
$\left(\bar{x}_{3} \vee \bar{x}_{4}\right) \wedge\left(\bar{x}_{3} \vee x_{4}\right) \wedge\left(x_{3} \vee \bar{x}_{4}\right) \wedge\left(x_{3} \vee x_{4}\right)$

Resolving over the variable x_{3} yields:
$x_{4} \wedge \bar{x}_{4}$
Thus, the original formula is unsatisfiable.

Breakthrough in SAT Solving in the Last 25 Years

Breakthrough in SAT Solving in the Last 25 Years

Mid '90s: Formulas with thousands of variables and clauses were solvable.

Breakthrough in SAT Solving in the Last 25 Years

Mid '90s: Formulas with thousands of variables and clauses were solvable. Now: Formulas with millions of variables and clauses are solvable.

Breakthrough in SAT Solving in the Last 25 Years

Mid '90s: Formulas with thousands of variables and clauses were solvable. Now: Formulas with millions of variables and clauses are solvable.

Edmund Clarke: "a key technology of the 21st century"
[Biere, Heule, vanMaaren, and Walsh '09]

Breakthrough in SAT Solving in the Last 25 Years

Mid '90s: Formulas with thousands of variables and clauses were solvable. Now: Formulas with millions of variables and clauses are solvable.

Edmund Clarke: "a key technology of the 21st century" [Biere, Heule, vanMaaren, and Walsh '09]

> NEWLY AVAILABLE SECTION OF
> THE CLASSIC WORK

The Art of
Computer Programming

DONALD E. KNUTH
Donald Knuth: "evidently a killer app, because it is key to the solution of so
many other problems" [Knuth '15]

A Combinatorial Problem of Schur

A Combinatorial Problem of Schur

Is it possible to color the integers from 1 to n using colors from $\{$ red, blue, green, orange $\}$ so that whenever $a+b=c$, the integers a, b and c don't all have the same color?

A Combinatorial Problem of Schur

Is it possible to color the integers from 1 to n using colors from $\{$ red, blue, green, orange $\}$ so that whenever $a+b=c$, the integers a, b and c don't all have the same color?

For small values of n it is possible. Consider, for example, $\{1,2,3,4,5,6\}$ which doesn't even use orange.

A Combinatorial Problem of Schur

Is it possible to color the integers from 1 to n using colors from $\{$ red, blue, green, orange $\}$ so that whenever $a+b=c$, the integers a, b and c don't all have the same color?

For small values of n it is possible. Consider, for example, $\{1,2,3,4,5,6\}$ which doesn't even use orange.

We can list all solutions of $a+b=c$ with $a, b, c \in\{1,2,3,4,5,6\}$ and verify that each solution uses at least two colors.

A Combinatorial Problem of Schur

Is it possible to color the integers from 1 to n using colors from $\{$ red, blue, green, orange $\}$ so that whenever $a+b=c$, the integers a, b and c don't all have the same color?

For small values of n it is possible. Consider, for example, $\{1,2,3,4,5,6\}$ which doesn't even use orange.

We can list all solutions of $a+b=c$ with $a, b, c \in\{1,2,3,4,5,6\}$ and verify that each solution uses at least two colors.

$$
\begin{array}{lll}
1+1=2 & 1+2=3 & 1+3=4 \\
1+4=5 & 1+5=6 & 2+2=4 \\
2+3=5 & 2+4=6 & 3+3=6
\end{array}
$$

A Combinatorial Problem of Schur

Is it possible to color the integers from 1 to n using colors from $\{$ red, blue, green, orange $\}$ so that whenever $a+b=c$, the integers a, b and c don't all have the same color?

For small values of n it is possible. Consider, for example, $\{1,2,3,4,5,6\}$ which doesn't even use orange.
We can list all solutions of $a+b=c$ with $a, b, c \in\{1,2,3,4,5,6\}$ and verify that each solution uses at least two colors.

$$
\begin{array}{lll}
1+1=2 & 1+2=3 & 1+3=4 \\
1+4=5 & 1+5=6 & 2+2=4 \\
2+3=5 & 2+4=6 & 3+3=6
\end{array}
$$

As n gets larger, such colorings will become more difficult to produce; eventually we will need to use orange, and for sufficiently large n such colorings will be impossible to produce. This is a consequence of Schur's Theorem.

Solving a Combinatorial Problem of Schur using SAT

Solving a Combinatorial Problem of Schur using SAT

We will use SAT to find the smallest value of n for which such colorings using four colors do not exist.

Solving a Combinatorial Problem of Schur using SAT

We will use SAT to find the smallest value of n for which such colorings using four colors do not exist. We introduce variables $x_{1}, x_{2}, \ldots, x_{4 n}$ where

Solving a Combinatorial Problem of Schur using SAT

We will use SAT to find the smallest value of n for which such colorings using four colors do not exist. We introduce variables $x_{1}, x_{2}, \ldots, x_{4 n}$ where $x_{4 k}$ is true iff k ,

Solving a Combinatorial Problem of Schur using SAT

We will use SAT to find the smallest value of n for which such colorings using four colors do not exist. We introduce variables $x_{1}, x_{2}, \ldots, x_{4 n}$ where $x_{4 k}$ is true iff $\mathrm{k}, x_{4 k-1}$ is true iff k ,

Solving a Combinatorial Problem of Schur using SAT

We will use SAT to find the smallest value of n for which such colorings using four colors do not exist. We introduce variables $x_{1}, x_{2}, \ldots, x_{4 n}$ where $x_{4 k}$ is true iff $\mathrm{k}, x_{4 k-1}$ is true iff k , $x_{4 k-2}$ is true iff k,

Solving a Combinatorial Problem of Schur using SAT

We will use SAT to find the smallest value of n for which such colorings using four colors do not exist. We introduce variables $x_{1}, x_{2}, \ldots, x_{4 n}$ where $x_{4 k}$ is true iff $\mathrm{k}, x_{4 k-1}$ is true iff k , $x_{4 k-2}$ is true iff k , and $x_{4 k-3}$ is true iff k .

Solving a Combinatorial Problem of Schur using SAT

We will use SAT to find the smallest value of n for which such colorings using four colors do not exist. We introduce variables $x_{1}, x_{2}, \ldots, x_{4 n}$ where $x_{4 k}$ is true iff $\mathrm{k}, x_{4 k-1}$ is true iff k , $x_{4 k-2}$ is true iff k , and $x_{4 k-3}$ is true iff k .

For each $k=1,2, \ldots n$ we ensure that k has at least one color with the following clause: $x_{4 k} \vee x_{4 k-1} \vee x_{4 k-2} \vee x_{4 k-3}$.

Solving a Combinatorial Problem of Schur using SAT

We will use SAT to find the smallest value of n for which such colorings using four colors do not exist. We introduce variables $x_{1}, x_{2}, \ldots, x_{4 n}$ where $x_{4 k}$ is true iff $\mathrm{k}, x_{4 k-1}$ is true iff k , $x_{4 k-2}$ is true iff k, \quad and $x_{4 k-3}$ is true iff k .
For each $k=1,2, \ldots n$ we ensure that k has at least one color with the following clause: $x_{4 k} \vee x_{4 k-1} \vee x_{4 k-2} \vee x_{4 k-3}$.
For each $k=1,2, \ldots n$ we ensure that k has at most one color with the following six clauses:

$$
\begin{array}{ccc}
\neg x_{4 k} \vee \neg x_{4 k-1} & \neg x_{4 k} \vee \neg x_{4 k-2} & \neg x_{4 k} \vee \neg x_{4 k-3} \\
\neg x_{4 k-1} \vee \neg x_{4 k-2} & -x_{4 k-1} \vee \neg x_{4 k-3} & \neg x_{4 k-2} \vee \neg x_{4 k-3} .
\end{array}
$$

Solving a Combinatorial Problem of Schur using SAT

We will use SAT to find the smallest value of n for which such colorings using four colors do not exist. We introduce variables $x_{1}, x_{2}, \ldots, x_{4 n}$ where $x_{4 k}$ is true iff $\mathrm{k}, x_{4 k-1}$ is true iff k , $x_{4 k-2}$ is true iff k , and $x_{4 k-3}$ is true iff k .
For each $k=1,2, \ldots n$ we ensure that k has at least one color with the following clause: $x_{4 k} \vee x_{4 k-1} \vee x_{4 k-2} \vee x_{4 k-3}$.

For each $k=1,2, \ldots n$ we ensure that k has at most one color with the following six clauses:

$$
\begin{array}{ccc}
\neg x_{4 k} \vee \neg x_{4 k-1} & \neg x_{4 k} \vee \neg x_{4 k-2} & \neg x_{4 k} \vee \neg x_{4 k-3} \\
\neg x_{4 k-1} \vee \neg x_{4 k-2} & \neg x_{4 k-1} \vee \neg x_{4 k-3} & \neg x_{4 k-2} \vee \neg x_{4 k-3}
\end{array}
$$

For each solution of $a+b=c$ with $a, b, c \in\{1, \ldots n\}$ we ensure that a, b, and c don't all have the same color with the following four clauses:

$$
\begin{array}{cl}
\neg x_{4 a} \vee \neg x_{4 b} \vee \neg x_{4 c} & \neg x_{4 a-1} \vee \neg x_{4 b-1} \vee \neg x_{4 c-1} \\
\neg x_{4 a-2} \vee \neg x_{4 b-2} \vee \neg x_{4 c-2} & \neg x_{4 a-3} \vee \neg x_{4 b-3} \vee \neg x_{4 c-3} .
\end{array}
$$

Mathematicians are Interested in Machine-Assisted Proofs

Machine Assisted Proofs
FEBRUARY 13-17, 2023

ORGANIZING COMMITTEE

Erika Abraham (RWTH Aachen University)
Jeremy Avigad (Carnegie Mellon University)
Kevin Buzzard (Imperial College London)
Jordan Ellenberg (University of Wisconsin-Madison)
Tim Gowers (College de France)
Marijn Heule (Carnegie Mellon University)
Terence Tao (University of California, Los Angeles (UCLA))

nature

NEWS | 18 June 2021

> Mathematicians welcome computer-assisted proof in 'grand unification' theory

Keller's Conjecture: A Tiling Problem

Consider tiling a floor with square tiles, all of the same size. Is it the case that any gap-free tiling results in at least two fully connected tiles, i.e., tiles that have an entire edge in common?

Keller's Conjecture: A Tiling Problem

Consider tiling a floor with square tiles, all of the same size. Is it the case that any gap-free tiling results in at least two fully connected tiles, i.e., tiles that have an entire edge in common?

Keller's Conjecture: Resolved

[Brakensiek, Heule, Mackey, \& Narvaez 2019]
In 1930, Ott-Heinrich Keller conjectured that this phenomenon holds in every dimension.

Keller's Conjecture.
For all $n \geq 1$, every tiling of the n-dimensional space with unit cubes has two which fully share a face.

[Wikipedia, CC BY-SA]

Computer Search Settles 90-Year-Old Math Problem

An Empty Hexagon in Every Set of 30 Points

Computational geometry and SAT: Shapes in point sets in general position (no three points on a line)
k-hole: empty k-point convex shape

An Empty Hexagon in Every Set of 30 Points

Computational geometry and SAT: Shapes in point sets in general position (no three points on a line) k-hole: empty k-point convex shape

Every set of 5 points contains in a 4-hole [Klein 1932]

An Empty Hexagon in Every Set of 30 Points

Computational geometry and SAT: Shapes in point sets in general position (no three points on a line) k-hole: empty k-point convex shape

Every set of 5 points contains in a 4-hole [Klein 1932]

Every set of 30 points contains in a 6 -hole (using SAT)
[Heule \& Scheucher 2023]

Avoiding an Empty Hexagon in a Set of 29 Points

SAT Encoding: Orientation Variables

No explicit coordinates of points
Instead, for every triple $a<b<c$, one orientation variable $O_{a, b, c}$ to denote whether point c is above the line $a b$

Not all assignments are realizable

- Axioms eliminate many unrealizable assignments

Many possible SAT encodings

- Big impact on performance
- Machine learning can help!

Packing Chromatic Number

Definition

A packing k-coloring of a simple undirected graph $G=(V, E)$ is a function φ from V to $\{1, \ldots, k\}$ such that for any two distinct vertices $u, v \in V$, and any color $c \in\{1, \ldots, k\}$, it holds that $\varphi(u)=\varphi(v)=c$ implies $d(u, v)>c$.

Packing Chromatic Number of the Infinite Grid is 15

The 72×7215-coloring below can be used to tile the infinite grid

- This is not possible with 14 colors [Subercaseaux \& Heule'23]

Chromatic Number of the Plane (CNP)

The Hadwiger-Nelson problem (around 1950): How many colors are required to color the plane such that each pair of points that are exactly 1 apart are colored differently?

Chromatic Number of the Plane (CNP)

The Hadwiger-Nelson problem (around 1950): How many colors are required to color the plane such that each pair of points that are exactly 1 apart are colored differently?

- The Moser Spindle graph shows the lower bound of 4
- A coloring of the plane showing the upper bound of 7

CNP: First progress in decades

Recently enormous progress:

- Lower bound of 5 [DeGrey '18] based on a 1581 -vertex graph
- This breakthrough started a polymath project
- Improved bounds of the fractional chromatic number of the plane

CNP: First progress in decades

Recently enormous progress:

- Lower bound of 5 [DeGrey '18] based on a 1581 -vertex graph
- This breakthrough started a polymath project
- Improved bounds of the fractional chromatic number of the plane

WIRED

Marijn Heule, a computer scientist at the University of
Texas, Austin, found one with just 874 vertices. Yesterday he lowered this number to 826 vertices.

Proof Minimization: 510 Vertices [Heule 2021]

Beyond NP: The Collatz Conjecture

Resolving foundational algorithm questions

$$
\operatorname{Col}(n)= \begin{cases}n / 2 & \text { if } n \text { is even } \\ (3 n+1) / 2 & \text { if } n \text { is odd }\end{cases}
$$

Does while $(n>1) n=\operatorname{Col}(n)$; terminate?
Find a non-negative function $f u n(n)$ s.t.

$$
\forall n>1: \operatorname{fun}(n)>\operatorname{fun}(\operatorname{Col}(n))
$$

THE COLATZ CONJECTURE STATES THAT IF YOU PICK A NUMBER, AND IF ITSEVEN DIVIDE ITBY TWO AND IF IT'S OOD MULTIPLY ITBY THREE AND ADD ONE, AND YOU REPEAT THIS PROCEDURE LONG ENOUGH, EVENTUALUY YOUR FRIENDS WIL STOP CAUING TO SEE IF YOU WANT TO HANG OUT.
source: xkcd.com/710

Beyond NP: The Collatz Conjecture

Resolving foundational algorithm questions

$$
\operatorname{Col}(n)= \begin{cases}n / 2 & \text { if } n \text { is even } \\ (3 n+1) / 2 & \text { if } n \text { is odd }\end{cases}
$$

Does while $(n>1) n=\operatorname{Col}(n)$; terminate?
Find a non-negative function $f u n(n)$ s.t.

$$
\forall n>1: \operatorname{fun}(n)>\operatorname{fun}(\operatorname{Col}(n))
$$

THE COLATZ CONJECTURE STATES THAT IF YOU PICK A NUMBER, AND IF ITSEVEN DIVIDE ITBY TWO AND IF IT'S OOD MULTIPLY ITBY THREE AND ADD ONE, AND YOU REPEAT THIS PROCEDURE LONG ENOUGH, EVENTUALUY YOUR FRIENDS WIL STOP CAUING TO SEE IF YOU WANT TO HANG OUT.
source: xkcd.com/710

Can we construct a function s.t. $\operatorname{fun}(n)>\operatorname{fun}(\operatorname{Col}(n))$ holds?

fun(3)	fun(5)	fun(8)	fun(4)	fun(2)	fun(1)
5	4	3	2	1	0

Collatz Conjecture: Studying a Rewrite System

Collatz Conjecture: Successes and Challenge

Success. Rewrite system with 11 rules: Their termination solves Collatz. Our tool proves termination of any subset of 10 rules.

Collatz Conjecture: Successes and Challenge

Success. Rewrite system with 11 rules: Their termination solves Collatz. Our tool proves termination of any subset of 10 rules.

Success. Our tool proves termination of Farkas' variant:

$$
F(n)= \begin{cases}\frac{n-1}{3} & \text { if } n \equiv 1 \quad(\bmod 3) \\ \frac{n}{2} & \text { if } n \equiv 0 \text { or } n \equiv 2 \quad(\bmod 6) \\ \frac{3 n+1}{2} & \text { if } n \equiv 3 \text { or } n \equiv 5 \quad(\bmod 6)\end{cases}
$$

Collatz Conjecture: Successes and Challenge

Success. Rewrite system with 11 rules: Their termination solves Collatz. Our tool proves termination of any subset of 10 rules.

Success. Our tool proves termination of Farkas' variant:

$$
F(n)= \begin{cases}\frac{n-1}{3} & \text { if } n \equiv 1 \quad(\bmod 3) \\ \frac{n}{2} & \text { if } n \equiv 0 \text { or } n \equiv 2 \quad(\bmod 6) \\ \frac{3 n+1}{2} & \text { if } n \equiv 3 \text { or } n \equiv 5 \quad(\bmod 6)\end{cases}
$$

Challenge (\$500). An easier generalized Collatz problem is open:

$$
H(n)=\left\{\begin{array}{lll}
\frac{3 n}{4} & \text { if } n \equiv 0 & (\bmod 4) \\
\frac{9 n+1}{8} & \text { if } n \equiv 7 & (\bmod 8) \\
\perp & \text { otherwise }
\end{array}\right.
$$

Conclusions

Successes, Advances, and Trust:

- A performance boost of SAT technology allows solving new problems in mathematics
- Problems beyond NP are ready for an automated approach
- Some proofs may be gigantic, but can be validated using formally-verified checkers

Classic problems ready for mechanization?

- Chromatic number of the plane
- Optimal matrix multiplication
- Collatz Conjecture

One More Thing: Costas Arrays

