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Abstract
We study the problem of computing a minimum time schedule to spread rumors in a given graph
under several models: In the radio model, all neighbors of a transmitting node listen to the
messages and are able to record it only when no other neighbor is transmitting; In the wireless
model (also called the edge-star model), each transmitter is at a different frequency to which any
neighbor can tune to, but only one neighboring transmission can be accessed in this way; In the
telephone model, the set of transmitter-receiver pairs form a matching in the graph. The rumor
spreading problems assume a message at one or several nodes of the graph that must reach a
target node or set of nodes. The transmission proceeds in synchronous rounds under the rules
of the corresponding model. The goal is to compute a schedule that completes in the minimum
number of rounds.

We present a comprehensive study of approximation algorithms for these problems, and show
several reductions from the harder to the easier models for special demands. We show a new
hardness of approximation of Ω(n 1

2−ε) for the minimum radio gossip time by a connection to
maximum induced matchings. We give the first sublinear approximation algorithms for the most
general case of the problem under the wireless model; we also consider various special cases
such as instances with symmetric demands and give better approximation algorithms. Our work
exposes the relationships across the models and opens up several new avenues for further study.
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1 Introduction

Problems modeling rumor spread are central to the design of coordination networks that
seek to keep demand pairs of vertices in contact over time. The prototypical example is the
broadcast problem where a message in a root node must be sent to all the other nodes via
connections represented by an undirected graph. We assume that communication proceeds in
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2 Rumors Across Radio, Wireless, and Telephone

synchronized rounds. When more than one message is being disseminated, we assume that in
each round each node can transmit an unlimited number of messages in one communication.
A subset generalization of broadcast is called the Multicast problem: a subset of nodes is
specified as terminals and the goal is to spread the rumor from the root only to this subset,
using other non-terminal nodes if needed in the process. An all-to-all generalization of the
broadcast problem is termed gossip: every node has its own piece of information that must be
communicated to all nodes, and the goal is to have all the information spread to all the nodes
in the minimum number of rounds. Gossip and broadcast are special cases of a more general
demand model that we may call multicommodity multicast: in this most general version, we
are given a set of source-sink pairs so that each source has a rumor that must be sent to
the corresponding sink. Recall that messages from many sources can all be aggregated and
exchanged in one round between any pair that can communicate, and the goal is to minimize
the number of rounds. In this paper, we will study a specialization of the multicommodity
demand model called the symmetric multicommodity where for every source-sink pair, we
also have the symmetric requirment that the sink wants to send its rumor to the source; thus,
the demand pairs are unordered in this case. The more general version will be called the
asymmetric multicommodity demand model to distinguish it from the symmetric demands
case.

1.1 Models: Telephone, Radio, and Edge-Star, a New Model from
Wireless

Different communication models result in different constraints on the set of edges on which
messages can be transmitted in a single round. The two most widely studied models are the
telephone and radio models: In the telephone model, in each round, a node can communicate
with at most one other node, thus the edges on which communication occurs is a matching;
In the radio model, a set of transmitters broadcast the message out but only their neighbors
who are adjacent to exactly only one transmitter can successfully receive the message (while
interference prevents other neighbors from receiving the message): the set of edges through
which the messages are sent in any round in this model is a set of stars centered at the
transmitters, where each leaf of each star has that star’s center as its unique neighbor among
all the star centers.

In this paper, we expand the study of rumor spreading problems by introducing a new
model based on wireless communications between nodes, which we call the edge-star model.
We assume that during each round of wireless communication, each transmitter can choose its
own channel or frequency distinct from that of all other transmitters. The input undirected
graph represents pairs of nodes that are within wireless range of each other. Receiving nodes
that are in the vicinity of many different transmitting nodes can choose to tune into the
frequency of one of them. In this way, the set of edges in which communication happens in
every round is a set of stars which are defined by a subset of edges of the input graph. Note
that unlike the radio model, there is no requirement that a receiver be adjacent to exactly
one transmitter. This model more closely models wireless networks, where a machine may be
able to see many wireless networks, but only interacts with one of these networks at a time.

1.2 Previous Work
The radio broadcast and gossip problems have been extensively studied (see the work reviewed
in the survey [11]). The best-known scheme for radio broadcast is by Kowalski and Pelc [12]
which completes in time O(D+log2 n), where n is the number of nodes, and D is the diameter
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of the graph and is a lower bound to get the message across the graph from any root. The
O(log2 n) term is also unavoidable as demonstrated by Alon et al. [1] in an example with
constant diameter that takes Ω(log2 n) rounds for an optimal broadcast scheme to complete.
Elkin and Korsartz [5] also show that this additive log-squared term is best possible unless
NP ⊆ DTIME(nlog logn).

The best bound for radio gossip known so far, however, is O(D + ∆ logn) steps in an
n-node graph with diameter D and maximum degree ∆ [10]. The maximum degree is not
a lower bound on the gossip time, and indeed no previous results are known about the
approximability for radio gossip, which is mentioned as an open problem in [11].

In the telephone model, the first poly-logarithmic approximation for minimum broadcast
time was achieved by Ravi [14] and the current best known approximation ratio is O( logn

log logn )
due to Elkin and Korsartz [6]. The best known lower bound on the approximation ratio for
telephone broadcast is 3− ε [4].

In his study of the telephone broadcast time problem, Ravi [14] introduced the idea of
finding low poise spanning trees to accomplish broadcast: the poise of a spanning tree of
an undirected graph is the sum of its diameter and its maximum degree. In the course of
deriving a poly-logarithmic approximation, Ravi also showed how a tree of poise P in an
n-node graph can be used to complete broadcast starting from any node in O(P · logn

log logn )
steps - we will use this observation later.

Nikzad and Ravi [13] studied the telephone multicommodity multicast problem, and
gave the first sub-linear approximation algorithm with performance ratio 2O(log log k

√
log k)

for instances with k source-sink pairs.
Gandhi et al. [9] recently studied the Radio Aggregation Scheduling problem which is

a gathering version of the rumor spreading problem in the radio model. The set of edges
in which communication occurs in every round is a matching with the additional property
that if the edges within receivers and within senders are ignored, the communicating edges
form an induced matching. In this model they prove a tight Θ(n1−ε)-approximation for their
radio aggregation scheduling. Our results were derived independently of their methods.

1.3 Our contributions
We give the first results on the approximability of gossip and multicommodity multicast
problems in the radio model. We introduce the edge-star model based on wireless channels
and give the first approximation results for minimum time rumor spreading by relating them
to their analogs in the telephone model.

1. We show that it is NP-hard to approximate gossip in the radio model within a factor of
O(n1/2−ε) in an n-node graph. This result is derived by isolating a gathering version of
the broadcast problem in the radio model and relating it in a simple bipartite graph to
induced matchings (Section 2).

2. We obtain an O( logn
log logn ) approximation algorithm for gossip in the edge-star model by

reducing the problem to the broadcast problem in the telephone model (Section 3.1).
3. We consider the special case where the underlying graph is a tree, and show that the

multicommodity multicast in the edge-star model reduces to the broadcast problem in
the telephone model, thus proving an O( logn

log logn ) approximation (Section 3.2).
4. We show that the case of edge-star symmetric multicommodity multicast problem has the

same optimal solution (up to poly-log factors) as telephone multicommodity multicast,
yielding a 2O(log logn

√
logn) approximation (Section 3.3).

FSTTCS’15



4 Rumors Across Radio, Wireless, and Telephone

5. We give an O(n 2
3 )-approximation for the general (asymmetric) multicommodity multicast

problem in the edge-star model (Section 3.4).

Table 1 contains a summary of our results in context.

Broadcast Gossip Multicommodity
Radio D + O(log2 n) [12] O(D + ∆ log n) [10] Unknown

Ω(n1/2−ε) hard* Ω(n1/2−ε) hard*
Edge-star OPT= D OPT·O( logn

log logn )* OPT·Õ(2
√

logn)*(symmetric)
OPT·O(n 2

3 )* (asymmetric)
Telephone OPT·O( logn

log logn ) [7] OPT·O( logn
log logn ) [7] OPT·Õ(2

√
logn) [13]

Table 1 A summary of upper and lower bounds achieved in the different problems. We prove
the results marked * in the table.

2 Lower bound for gossip in the radio model

In this section, we show it is NP-hard to approximate gossip in the radio model within a
factor of O(n1/2−ε). This also implies the same hardness result for multicommodity multicast
under the radio model, because gossip is a special case of multicommodity multicast. In
order to show these hardness results, we first consider the smallest set of induced matchings
which cover the vertices of a bipartite graph.

I Definition 2.1. An induced matching is a matching of some vertices U in a graph G, such
that G[U ] is a matching. (We use G[U ] to mean the graph G induced on the vertex set U .)
In other words, in the graph G only the matching edges are present between the nodes in U .

A covering set of induced matchings (CSIM) is a set of induced matchings which cover all
the vertices in the graph. The size of a covering set of induced matchings is defined to be
the number of induced matchings.

First, we will show the hardness of finding a minimum CSIM by a reduction from coloring.
Then we will use the hardness of minimum sized CSIM to prove the hardness results for
radio gossip.

I Theorem 2.2. It is NP-hard to approximate CSIM to within a n1/2−ε factor for any
constant ε > 0.

Proof. Given a coloring instance G = (V,E), we first turn this into a bipartite graph, where
we want to find a CSIM. For each v ∈ V we make n+1 copies of v in each side of the partition;
vL1 , v

L
2 , . . . v

L
n+1 for L and vR1 , vR2 , . . . vRn+1 for R. We use the edges Ev = {(vLi , vRi )|v ∈ V, i ∈

[n+ 1]}, called the straight edges and Ee = {(uLi , vRj )|uv ∈ E, i, j ∈ [n+ 1]}, called the cross
edges. Now G′ = (L,R,Ev ∪ Ee) is the bipartite graph for which we want to find a CSIM.
Figure 1 shows an example construction.

Let χ be the number of colors in an optimal coloring in G. Let λ be the number of sets
in a minimal CSIM in G′.

We now show that λ ≤ χ ≤ n. Let Ci be a set of vertices of color i in the coloring on G. If
we take the edges {(vLj , vRj )|v ∈ Ci, j ∈ [n+ 1]}, they are an induced matching. Each vertex
has one straight edge in G′, and if a vertex is used in the matching, then its straight edge is
used. So, we only need to show that no cross edges go between vertices in this matching. If
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G G’

L R

k=3

Straight edgesCross edges

Figure 1 Here is an example of the construction of G′ from G. The thick edges represent complete
bipartite subgraphs.

a cross edge (uLj , vRk ) did exist, then (u, v) ∈ E but then u, v couldn’t be the same color. So,
for each color we have defined an induced matching. These induced matchings cover all the
nodes since every node receives some color in the coloring on G.

Now we will show that χ ≤ λ or n+ 1 ≤ λ. Let S1, S2, . . . Sλ be the induced matchings
covering G′. Assume that there is some v ∈ V that has all of its corresponding vertices in
G′ matched via cross edges. Then we can only have at most one cross edge per induced
matching adjacent to the vLi ’s. If an induced matching has (vLi , uR` ) and (vLj , wR`′ ) then this
is not an induced matching since (vLj , uR` ) is an edge. Therefore in this case to match all the
vLi in some induced matching, we will need at least n+ 1 induced matchings. Now consider
each v ∈ G has one of its straight edges used in some induced matching. Let Sj be the first
induced matching containing a straight edge adjacent to some vLi . In Sj , because some vLi
is matched via its straight edge, then no vL` is matched via a cross edge. Now in G color v
with the jth color. This is a valid coloring. If some (vLi , vRi ) and (uL` , uR` ) were both in the
same induced matching, then there can’t be the edge (u, v) in the original graph G.

Combining the above two parts we get that χ = λ.
We begin with a graph G such that it is NP-hard to distinguish if there is a coloring

of size |V (G)|ε from if the coloring requires at least |V (G)|1−ε colors [8]. Therefore, in the
graph G′ we created, it is NP-hard to distinguish if there is a set of induced matchings that
cover the vertices of size nε or n. We have O(n2) vertices in G′ though. So, in a graph with
n vertices it is NP-hard to approximate the number of induced matchings needed to cover
the vertices within a factor of O(n1/2−ε). J

Now that we have developed the hardness result for CSIM, we will use the graph we
created for CSIM, to create instances of radio gossip.

I Corollary 2.3. It is NP-hard to approximate radio gossip to within a n1/2−ε factor for any
constant ε > 0.

Proof. We convert the induced matching instance to a gossip problem in a similar fashion

FSTTCS’15



6 Rumors Across Radio, Wireless, and Telephone

to above. We can consider that we have the bipartite graph G′ and we build a complete
binary tree with its leaves being the nodes vLi . The terminal nodes in the gossip problem
are set to be all the nodes. To communicate the message to all other nodes, each node vRi
must at some point be the only node trying to talk to some node on the other side of the
bipartition. In other words, we need to have induced matchings at each point in order for the
vRi to propagate their messages to some other node without interference. Therefore, we need
at least as many induced matchings as it takes to cover the graph to complete the gossip.
Call this number C; we can now achieve gossip in time 2C + 3 logn as follows. We do this by
using the induced matchings so that each vertex vRi communicates its message to someone
on the other side of the partition. Next we propagate the message up the binary tree to the
root node. This takes time at most 2 logn since at each node of the path in the binary tree,
a message can be delayed only for two steps, and the path length is logarithmic. Then we
broadcast the message down the tree. This takes time logn since we can use the edge-star
model to just broadcast all the gathered messages from the root along the down-stars in
one time step per level. Lastly, we need to communicate the message back to the vRi , which
takes time C. We know that radio gossip takes time at least C and can be done in time
2C + 3 logn on this graph.

Therefore, it is NP-hard to approximate radio gossip better than a factor of O(n1/2−ε)
otherwise, we could approximate the CSIM within the same factor. J

3 The Edge-Star Model

In this section, we consider the edge-star model which generalizes the telephone model. We
focus on three specific classes of problems; gossip, symmetric multicommodity multicast, and
asymmetric multicommodity. In the symmetric multicommodity problem, we are given a set
of demand pairs, and if (si, ti) is a demand, then (ti, si) is also a demand. In the asymmetric
multicommodity case, there are no restrictions on which demand pairs are present.

In Section 3.1, we first obtain an O( logn
log logn ) approximation algorithm for gossip in the

edge-star model by reducing the problem to the broadcast problem in the telephone model.
Next, in Section 3.2, we consider the special case where the underlying graph is a tree. In this
special case, then we show that the multicommodity multicast in the edge-star model reduces
to the broadcast problem in the telephone model, yielding an O( logn

log logn ) approximation. In
Section 3.3, we show that the case of edge-star symmetric multicommodity multicast problem
has the same optimal solution (up to poly-log factors) as telephone multicommodity multicast,
yielding an Õ(2

√
logn) approximation. Lastly, in Section 3.4, we give an O(n 2

3 )-approximation
for the general (asymmetric) multicommodity multicast problem in the edge-star model.

3.1 Gossip

Here we show an O( logn
log logn ) approximation for edge-star gossip. First, we show that a

solution to the gossip problem in the edge-star model gives a solution to the broadcast
problem in the telephone model of the same length. Next, we show that using a solution for
the broadcast problem in telephone we can get a solution of twice the length to the gossip
problem in the edge-star model. This show that their optimal solutions differ in cost by a
factor of at most two.

I Lemma 3.1. The optimal broadcast time in the telephone model is no more than the
optimal gossip time in the edge-star model.
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Proof. Let S denote an optimal schedule for gossip in the edge-star model that completes in
T rounds. Let r denote the root node for the broadcast problem in the telephone model. Fix
a node v. Let Pv denote a path taken by the message from v to arrive at r in the schedule S.
Let Et denote the set of all directed edges in ∪vPv that are activated in round t in S. By
definition of the edge-star model, if (u1, v1) and (u2, v2) are in Et, then v1 6= v2. Furthermore,
by our choice of the paths, we obtain that (i) for any distinct (u1, v1) and (u2, v2) in Et,
u1 6= u2; and (ii) the edges of Pv appear in order of increasing time in the collection of Ets.

We now argue that a reverse schedule in which the activated sets are given by E′t =
rev(ET−t) forms a broadcast schedule from the root, where rev(X) equals {(v, u) : (u, v) ∈
X} for any set X of directed edges. In any round t, for any distinct (u1, v1) and (u2, v2) in
Et, we have u1 6= u2 and v1 6= v2; therefore, rev(Et) is a matching. Since the edges of Pv
appear in order of increasing time in the collection of Ets, the edges of the rev(Pt) appear
in order of increasing time in the collection of E′ts. Consequently, the message from the root
is delivered to each node in T rounds. J

I Lemma 3.2. The optimal gossip time in the edge-star model is no more than twice the
optimal broadcast time in the telephone model.

Proof. The proof mirrors the proof of Lemma 3.1. Let S denote an optimal schedule for
broadcast from root r in the telephone model that completes in T rounds. Fix a node v. Let
Pv denote a path taken by the message from r to arrive at v in the schedule S. Let Et denote
the set of all directed edges in ∪vPv that are activated in round t in S. By definition of the
telephone model, for distinct (u1, v1) and (u2, v2) in Et, u1 6= u2 and v1 6= v2. Furthermore,
by our choice of the paths, we obtain that the edges of Pv appear in order of increasing time
in the collection of Ets.

We now argue that a reverse schedule in which the activated sets are given by E′t =
rev(ET−t) forms a schedule for gathering in the edge-star model. In any round t, for any
distinct (u1, v1) and (u2, v2) in Et, we have u1 6= u2 and v1 6= v2; therefore, rev(Et) is a
matching, and is a valid set of edges to activate in the edge-star model in round T − t. Since
the edges of Pv appear in order of increasing time in the collection of Ets, the edges of
the rev(Pt) appear in order of increasing time in the collection of E′ts. Consequently, the
message from any node v is delivered to the root in T rounds.

Once the root has all the messages, we can complete the gossip by running the broadcast
schedule. Since any schedule in the telephone model is valid in the edge-star model, it follows
that this broadcast completes in T rounds. We thus have a gossip schedule that completes in
the edge-star model in 2T rounds. J

There exists an O( logn
log logn ) approximation for telephone broadcast [7]. Therefore this

same approximation holds for the edge-star gossip problem.

3.2 Multicommodity multicast on a tree
In this part, we consider the multicommodity multicast problem in the edge-star model in the
special case where our host graph is a tree. Here we give a reduction to telephone broadcast.
When the host graph is a tree, the path taken by any message is known, so we simply need
to coordinate the communications.

I Lemma 3.3. There is an O( logn
log logn ) approximation for the edge-star multicommodity

multicast problem in a tree.

FSTTCS’15



8 Rumors Across Radio, Wireless, and Telephone

Proof. We will start by choosing some vertex r to be the root of the tree. Let the optimal
solution take time D (we can try all 2n possible values for D only losing a polynomial factor
in runtime). Now for each demand pair, (si, ti) the message will have to go from si to
lca(si, ti), and then from the lca(si, ti) down to ti. Bringing all the messages down the tree
from lca(si, ti) to ti can be done in time D+1; we spend D+1 time steps alternating between
the odd layers broadcasting their messages down and the even layers broadcasting their
message down. Since each layer is a collection of edge-disjoint stars, this can be implemented
in one round in the edge-star model.

The hard part is bringing the messages up from si to t′i = lca(si, ti). So, we will consider
that we simply have the constraints of the form (si, t′i). First we will break the tree up into
sets of 2D consecutive layers starting every D layers. This guarantees that every constraint
(si, ti) is in some set of 2D layers.

Now consider some 2D layers in the tree. Look at the union of all the (si, t′i) paths in
these layers. These form a forest, where each tree has depth at most 2D and each node has a
max degree of D; so each tree has poise 5D (recall that the poise is the sum of the maximum
degree and the diameter). Therefore each of these trees can gather all their messages to their
uppermost nodes in time O(D logn

log logn ).
We can run all the gathers to satisfy (si, t′i) in two groups; we can run every other set of

2D layers in the tree simultaneously, as they are disjoint. Hence, in time O(D logn
log logn ), we

can satisfy the demands (si, t′i). After this, in D + 1 more steps, we can satisfy the demands
(t′i, ti). Therefore in time O(D logn

log logn ) we satisfy all the (si, ti) demands. J

3.3 Symmetric Multicommmodity Multicast
Note that the symmetric multicommodity multicast problem in the telephone model is
equivalent (within constant factors) to the general multicommodity multicast problem [14, 3]
for which an Õ(2

√
log k) approximation algorithm is known, where k is the number of

terminals [13]. We show a reduction from the symmetric multicommodity multicast problem
in the edge-star model to the symmetric multicommodity multicast problem in the telephone
model, losing an additional O( log3 n

log logn ) factor in the approximation ratio in an n-node graph.

I Theorem 3.4. Given a ρ-approximation for the symmetric multicommodity multicast
problem on k terminal pairs in an n-node undirected graph under the telephone model, we can
design an O(ρ · log2 k · logn

log logn ) approximation for the same problem in the edge-star model.

Proof. Given an optimal solution to symmetric multicommodity multicast in the edge-star
model, we demonstrate a solution to the symmetric multicommodity multicast problem in
the telephone model with a poly-log multiplicative loss in performance. Consider an input
instance with demand pairs {si, ti} for i = 1 · · · k on an undirected graph G. Consider an
optimal schedule for the edge-star symmetric multicommodity multicast problem on this
instance. This defines for each pair s, t, a pair of paths from one node to the other where the
edges of the paths are labeled in increasing time order denoting the periods in which these
edges participated in an information transmission. Suppose the optimal time for multicasting
is L; then these paths are of length at most L. Also, given the in-degree one bound for the
edge-star model (each receiver can listen to at most one transmitter in this wireless model),
the indegree of the sugraph representing the union of these optimal transmissions is also
at most L. Our goal is to use these paths to aggregate the messages from a set of these
pairs into a subset of carefully selected terminals using a reverse broadcast scheme, and then
transmit the aggregated messages back to the corresponding mates of these sources. Both
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these steps of gathering and sending will be accomplished using multicommodity multicast
instances in the telephone model.

To define the aggregation pattern, define an auxiliary graph H with one node per demand
pair si, ti. This graph is only for the sake of argument so we will use optimal paths in the
edge-star multicommodity multicast scheme in defining it. Note that the optimal transmission
paths for a pair represent two paths: one from si to ti and the second from ti to si, where
these two paths may share edges. Concatenated together they define what we will call an
“optimal cycle” for this pair. Define an edge between two pairs if their optimal cycles intersect
at a node. In Figure 2, we can see an example of when optimal cycles intersect. Thus H
defines the conflict or interference between the demand pairs in the optimal multicommodity
multicast schedule in the edge-star model.

𝑠𝑖

𝑡𝑖

𝑠𝑗

𝑡𝑗

𝑠𝑘

𝑡𝑘

Figure 2 Here is an example of the optimal paths between some (si, ti) pairs. Here we see that
the (sj , tj) pair intersects (si, ti) and (sk, tk), but (si, ti) and (sk, tk) do not intersect.

We now use a network decomposition procedure [2] on H to decompose the k demand
pairs into log2 k disjoint layers with the following property: the set of nodes in each layer
can be decomposed into node-disjoint shallow trees, i.e., each tree in one of the layers has
diameter at most 2 log2 k. This decomposition is done as follows: pick any vertex v in H
and build a BFS tree from v. Now let i be the smallest depth such that the number of nodes
at depth i or less is more than the number of nodes at depth i+ 1. Put v and everything
within distance i of v into the current layer. Now remove v and it’s BFS tree up to depth
i+ 1 from H. Repeat this process to form each layer. Once H is empty, let U be the vertices
not yet assigned to a layer. Then start forming a new layer from the graph H[U ].

This process assigns at least half of the remaining nodes to the current layer, hence we
build at most log2 k layers. The diameter of each component in a layer is at most 2 log2 k,
because as we move down the BFS tree the number of nodes contained in it double at each
step.

Now we can use these layers to define our gathering problems. Consider one layer i and
one tree Ti,j in this layer in the decomposition. This represents a shallow subgraph in H,
so let us root this at a demand pair denoted Pij . By following the paths in this subgraph
from every other node to Pij , we can replace their intersections with paths in the optimal
multicast originating at each terminal s in any of the pairs to one of the two terminals, say

FSTTCS’15



10 Rumors Across Radio, Wireless, and Telephone

tij in the pair Pij . This defines one of the gathering trees gathering to the terminal tij . By
construction, the in-degree of any node in the gathering tree is at most L and the distance
from any node to the root tij is at most O(L log k). Note that by the disjointness of the
subgraphs in one layer i, all the gather trees are node disjoint. For each gather tree Tij , we
now set up a gathering multicast problem with all the terminals in the tree going to the root
tij . Note that since each tree has total degree + diameter at most O(L log k), the poise of
each tree is bounded by O(L log k) and thus each of these trees has a gathering schedule in
the telephone model taking at most O(Poise · logn

log logn ) steps in an n-node graph [14]. This
gives a feasible solution to the set of all gathering problems in one layer i running in time
O(L · log k · logn

log logn ). Repeating this over the layers finally gives a set of gathering problems
in the telephone model that complete in total time O(L · log2 k · logn

log logn ).
Note that the same schedules can be reversed to send all the gathered information in each

tree to all the terminals in a tree finishing the requirements. Employing a ρ-approximation
for this multicommodity multicast problem in the telephone model proves the theorem. J

3.4 Asymmetric Multicommodity Multicast
For the edge-star asymmetric multicommodity multicast problem, we will use the network
decomposition used in the previous proof, along with telephone broadcast in trees with small
poise.

I Theorem 3.5. There is an Õ(n 2
3 )-approximation for the asymmetric multicommodity

multicast problem in the edge-star model.

Proof. We develop the algorithm in two phases. First, we design an Õ(√p)-approximation
algorithm for the case with p demand pairs (note that p can be up to O(n2) in an n-node
graph). Then we combine this with an algorithm that satisfies all the demands in the
in-neighborhood of a node in the demand graph with high indegree to get the final result.

A Greedy Algorithm. To design the Õ(√p)-approximation algorithm, we use a greedy
method: assume that the value of the optimal multicast time is L (we can try all the 2n
possible guesses in parallel to dispense this assumption with a polynomial running-time
overhead). For every unsatisfied demand pair (si, ti) (note that demand pairs are ordered in
the asymmetric case), we look for a path of length at most L from si to ti. If we find one, we
add it to the greedy collection and delete all the nodes in this path. Suppose we are able to
collect g paths for the pairs denoted G in the greedy phase until we can find no more paths
of small length for the remaining demands.

Now it must be the case that all optimal paths for the remaining demands in P \G must
intersect the greedy paths. This implies that for every demand pair (s, t) in P \G, we can
follow its optimal path to its intersection with one of the greedy paths, say for the pair
(si, ti), and then continue in the greedy path to ti. In this way, every demand source in P \G
can be routed and assigned to one of the sinks in the greedy pairs G in a collection of paths:
each such path has length at most 2L (coming from at most L steps to the intersection
with the greedy collection and another L from the intersection to the sink at the end of
this greedy path); also the indegree of the collection of these paths is at most L+ 1 since
they arise from the optimal collection plus the greedy subgraph which adds at most one to
each node’s indegree. We now set up a dummy broadcast problem (following Nikzad and
Ravi [13]) by hooking up the set of sinks at the end of the greedy paths, say T (G), as leaves
in a complete binary tree with new dummy nodes and a dummy root t. We solve for the
broadcast problem in this graph from the dummy root t to all the sources si in all the pairs.
By the above construction, there exists a tree of poise O(L + logn) that connects all the
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sources to this root. From the result of Ravi [14], this implies a broadcast scheme completing
in O(L logn

log logn ). Using an α-approximation algorithm for broadcast in the telephone model,
we get a tree that assign the sources in P to the sinks in T (G) in O(α · L logn

log logn ) steps. Let
us denote the set of sinks in T (G) by t′1, ·, t′g and the set of sources assigned to a sink t′i by
Si.

The remaining task is to send back the messages gathered from Si at t′i to the sinks
corresponding to the sources in Si - let us denote this sink set by Ti. Note that by construction,
all the sinks in Ti are at a distance at most O(α · L logn

log logn ) from t′i by following the paths
to the corresponding source s and then concatenating the undirected path to its mate t.
However, these local broadcasts must obey the edge-subgraph condition of having indegree
at most one which is tricky to enforce.

If the number of greedy pairs g = |G| is at least √p, we simply satisfy these pairs and
move to the next iteration: the number of such iterations is at most √p and each iteration
can be implemented in O(L) steps (running the disjoint greedy path schedules in parallel).
If the number of pair is less than √p, we can carry out the broadcast from each greedy
sink t′i to its sink set Ti in time O(α · L logn

log logn ) by reversing the gathering in the earlier
broadcast tree and extending it to the corresponding sinks. Processing these trees one after
another, we use a total of O(√p · α · L logn

log logn ). Since α is sublogarithmic [6], we finally get
an Õ(√p)-approximation as claimed.

A Local Algorithm. For the second ingredient we observe that if the in-degree of any
node v in the demand graph is δ, then we can satisfy all the demand requirements of the
predecessors of v in the demand graph In(v) in time Õ(L). Note that since all the terminals
in In(v) send their message to v, the union of the directed paths that transmit these messages
in the optimal solution have distance at most L from the terminals to v and induce an
in-degree of at most L. This defines a tree of poise O(L) and hence enables us to find a
broadcast scheme that gathers all the messages from In(v) at v in time Õ(L). By reversing
this broadcast tree and then following the optimal paths from each terminal in In(v) to its
other sinks, we can find a tree of depth (not poise) at most Õ(L) rooted at v where these
messages are gathered. Since v is the only node sending out the gathered messages, we can
send all these messages to their intended sinks in a breadth-first tree in time Õ(L) in the
edge-star model. Note that we have taken care of all the demands originating in |In(v)|
nodes.

Combining the two algorithms. We can now combine the two algorithms as follows:
As long as p, the number of demand pairs in the n-node graph, is at least Ω(n 4

3 ), we use the
local algorithm. By averaging over the indegrees that partition the demand pairs, there exists
a node of indegree at least Ω(n 1

3 ) in the demand graph. The local algorithm thus satisfies the
demands originating in at least this many nodes in one iteration. The number of iterations is
thus at most n 2

3 each taking Õ(L) multicast steps. On the other hand, when p drops below
O(n 4

3 ), we use the greedy algorithm to get an approximation ratio of Õ(√p) = Õ(n 2
3 ) giving

the result. J

4 Conclusion

We have obtained new results in the approximability of rumor spreading problems in the
well-studied radio model as well as a new model motivated by wireless communications,
which we call the edge-star model. For the radio model, we present an Ω(n1/2−ε) hardness of
approximation bound for radio gossip, making progress on an open problem mentioned in [11].
For the edge-star model, we present an O( logn

log logn ) approximation algorithm for gossip, an
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Õ(2
√

logn) approximation algorithm for symmetric multicommodity multicast, and an Õ(n2/3)
approximation algorithm for asymmetric multicommodity multicast. Our approximation
algorithms expose relationships between the edge-star model and the well-studied telephone
model.

Our work leaves several interesting open problems. Among the nine cells listed in the
matrix of Table 1 of Section 1, only radio broadcast and edge-star broadcast are resolved.
Significant gaps between the best known upper and lower bounds on approximability remain
for telephone broadcast, the gossip problem under all three models, and the multicommodity
multicast problem under all three models. In the edge-star model, the symmetric and
asymmetric versions of the multicommodity multicast problem are distinct, and both are
open, in terms of the best approximation factor achievable in polynomial-time.
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