
Streaming Min-max Hypergraph Partitioning

Dan Alistarh
Microsoft Research

Cambridge, United Kingdom
dan.alistarh@microsoft.com

Jennifer Iglesias∗
Carnegie Mellon University

Pittsburgh, PA
jiglesia@andrew.cmu.edu

Milan Vojnovic
Microsoft Research

Cambridge, United Kingdom
milanv@microsoft.com

Abstract

In many applications, the data is of rich structure that can be represented by a
hypergraph, where the data items are represented by vertices and the associations
among items are represented by hyperedges. Equivalently, we are given an input
bipartite graph with two types of vertices: items, and associations (which we refer
to as topics). We consider the problem of partitioning the set of items into a
given number of parts such that the maximum number of topics covered by a part
of the partition is minimized. This is a natural clustering problem, with various
applications, e.g. partitioning of a set of information objects such as documents,
images, and videos, and load balancing in the context of computation platforms.
In this paper, we focus on the streaming computation model for this problem, in
which items arrive online one at a time and each item must be assigned irrevocably
to a part of the partition at its arrival time. Motivated by scalability requirements,
we focus on the class of streaming computation algorithms with memory limited
to be at most linear in the number of the parts of the partition. We show that
a greedy assignment strategy is able to recover a hidden co-clustering of items
under a natural set of recovery conditions. We also report results of an extensive
empirical evaluation, which demonstrate that this greedy strategy yields superior
performance when compared with alternative approaches.

1 Introduction

In a variety of applications, one needs to process data of rich structure that can be conveniently
represented by a hypergraph, where associations of the data items, represented by vertices, are rep-
resented by hyperedges, i.e. subsets of items. Such data structure can be equivalently represented
by a bipartite graph that has two types of vertices: vertices that represent items, and vertices that
represent associations among items, which we refer to as topics. In this bipartite graph, each item
is connected to one or more topics. The input can be seen as a graph with vertices belonging to
(overlapping) communities.

There has been significant work on partitioning a set of items into disjoint parts such that similar
items are assigned to the same part of the partition, see, e.g., [9] for a survey. This problem arises in
the context of clustering of information objects such as documents, images or videos. For example,
the goal may be to partition given collection of documents into disjoint sub-collections such that
the maximum number of distinct topics covered by each sub-collection is minimized, resulting in a

∗Work performed in part while an intern with Microsoft Research.

1

Figure 1: A simple example of a set of items
with overlapping associations to topics.

Figure 2: An example of hidden co-
clustering with five hidden clusters.

parsimonious summary. The same fundamental problem also arises in processing of complex data
workloads, including enterprise emails [11], online social networks [19], graph data processing and
machine learning computation platforms [21, 22, 2], and load balancing in modern streaming query
processing platforms [25]. In this context, the goal is to partition a set of data items over a given
number of servers to balance the load according to some given criteria.

Problem Definition. We consider the min-max hypergraph partitioning problem defined as follows.
The input to the problem is a set of items, a set of topics, a number of parts to partition the set of
items, and a demand matrix that specifies which particular subset of topics is associated with each
individual item. Given a partitioning of the set of items, the cost of a partition is defined as the
number of distinct topics that are associated with items of the given partition1. The cost of a given
partitioning is the maximum cost of a partition. In other words, given an input hypergraph and a
partitioning of the set of vertices into a given number of disjoints parts, the cost of a partition is
defined to be the number of hyperedges that have at least one vertex assigned to this partition. For
example, for the simple input graph in Fig. 1, a partitioning of the set of items into two parts {1, 3}
and {2, 4} amounts to costs of the partitions each of value 2, thus, the cost of the partitioning is
value 2. The cost of a partition is a submodular function as the distinct topics associated with items
of the partition correspond to a neighborhood set in the input bipartite graph.

In the streaming computation model that we consider, items arrive sequentially one at a time, and
each item needs to be assigned, irrevocably, to one partition at its arrival time. This streaming
computation model allows for limited memory to be used at any time during the execution whose size
is restricted to be at most linear in the number of the parts of the partition. Both these assumptions
arise as part of system requirements for deployment in web-scale services.

The min-max hypergraph partition problem is NP hard. The streaming computation problem is even
more difficult, as less information is available to the algorithm when an item must be assigned.

Contribution. In this paper, we consider the streaming min-max hypergraph partitioning problem.
We identify a greedy item placement strategy which outperforms all alternative approaches consid-
ered on real-world datasets, and can be proven to have a non-trivial recovery property: it recovers
hidden co-clusters of items in probabilistic inputs subject to a set of recovery conditions.

Specifically, we show that, given a set of hidden co-clusters to be placed onto k partitions, the greedy
strategy will tend to place items from the same hidden cluster onto the same partition, with high
probability. In turn, this property implies that greedy will provide a constant factor approximation
of the optimal partitioning on inputs satisfying the recovery property.

The probabilistic input model we consider is defined as follows. The set of topics is assumed to
be partitioned into a given number ℓ ≥ 1 of disjoint hidden clusters. Each item is connected to
topics according to a mixture probability distribution defined as follows. Each item first selects one
of the hidden clusters as a home hidden cluster by drawing an independent sample from a uniform
distribution over the hidden clusters. Then, it connects to each topic from its home hidden cluster
independently with probability p, and it connects to each topic from each other hidden cluster with
probability q ≤ p. This defines a hidden co-clustering of the input bipartite graph; see Figure 2 for
an example.

This model is similar in spirit to the popular stochastic block model defined as a model of an undi-
rected graph, and it corresponds to a hidden co-clustering [6, 7, 18, 4] defined as a model of an undi-
rected bipartite graph. We consider asymptotically accurate recovery of this hidden co-clustering: a
hidden cluster is said to be asymptotically recovered if the portion of items from the given hidden

1From here on, we will use partition to refer to a part of a partitioning

2

cluster assigned to the same partition goes to one asymptotically as the number of items observed
grows large. An algorithm guarantees balanced asymptotic recovery if, additionally, it ensures that
the cost of the most loaded partition is within a constant of the average partition load.

Our main analytical result is showing that a simple greedy strategy provides balanced asymptotic
recovery of hidden clusters (Theorem 1). We prove that a sufficient condition for the recovery of
hidden clusters is that the number of hidden clusters ℓ is at least k log k, where k is the number
of parts of a partition of the set of items, and that the gap between the probability parameters q
and p is sufficiently large: q < log r/(kr) < 2 log r/r ≤ p, where r is the number of topics in a
hidden cluster. Roughly speaking, this means that if the mean number of topics to which an item
is associated with in its home hidden cluster of topics is at least twice as large as the mean number
of topics to which an item is associated with from other hidden clusters of topics, then the simple
greedy online algorithm guarantees asymptotic recovery.

The proof is based on a coupling argument, where we first show that assigning an item to a parti-
tion based on the number of topics it has in common with each partition is similar to making the
assignment proportionally to the number of items corresponding to the same hidden cluster present
on each partition. In turn, this allows us to couple the assignment strategy with a Polya urn pro-
cess [5] with “rich-get-richer” dynamics, which implies that the policy converges to assigning each
item from a hidden cluster to the same partition. Additionally, this phenomenon occurs “in parallel”
for each cluster. This recovery property will imply that this strategy will ensure a constant factor
approximation of the optimum assignment.

Further, we provide experimental evidence that this greedy online algorithm exhibits good perfor-
mance for several real-world input bipartite graphs, outperforming more complex assignment strate-
gies, and even some offline approaches.

2 Problem Definition and Basic Results

In this section we provide a formal problem definition, and present some basic results on the com-
putational hardness and lower bounds.

Input. The input is defined by a set of items N = {1, 2, . . . , n}, a set of topics M = {1, 2, . . . ,m},
and a set of k partitions. Dependencies between items and topics are given by a demand matrix
D = (di,l) ∈ {0, 1}n×m where di,l = 1 indicates that item i needs topic l, and di,l = 0, otherwise.2

Alternatively, we can represent the input as a bipartite graph G = (N,M,E) where there is an edge
(i, l) ∈ E if and only if item i needs topic l or as a hypergraph H = (N,E) where a hyperedge
e ∈ E consists of all items that use the same topic.

The Problem. An assignment of items to partitions is given by x ∈ {0, 1}n×k where xi,j = 1 if
item i is assigned to partition j, and xi,j = 0, otherwise. Given an assignment of items to partitions
x, the cost of partition j is defined to be equal to the minimum number of distinct topics that are
needed by this partition to cover all the items assigned to it, i.e.

cj(x) =
∑
l∈M

min

{∑
i∈N

di,lxi,j , 1

}
.

As defined, the cost of a partition is a submodular function of the items assigned to it. We consider
the min-max hypergraph partitioning problem defined as follows:

minimize max{c1(x), c2(x), . . . , ck(x)}
subject to

∑
j∈[k] xi,j = 1 ∀i ∈ [n]

x ∈ {0, 1}n×k
(1)

We note that this problem is an instance of the submodular load balancing, as defined in [24].

Basic Results. This problem is NP-Complete, by reduction from the subset sum problem.
2The framework allows for a natural generalization to allow for real-valued demands. In this paper we focus

on {0, 1}-valued demands.

3

Proposition 1. The min-max hypergraph partitioning problem is NP-Complete.

We now give a lower bound on the optimal value of the problem, using the observation that each
topic needs to be made available on at least one partition.
Proposition 2. For every partition of the set of items in k partitions, the maximum cost of a part is
larger than or equal to m/k, where m is the number of topics.

Finally, we analyze the performance of an algorithm which simply assigns items to randomly cho-
sen partitions upon arrival. Although this is a popular strategy commonly deployed in practice for
other problems, the following result shows that it does not yield a good solution for the min-max
hypergraph partitioning problem.
Proposition 3. The expected maximum load of a partition under random assignment is at least
(1−

∑m
j=1(1− 1/k)nj/m) ·m, where nj is the number of items associated with topic j.

For instance, if we assume that nj ≥ k for each topic j, we obtain that the expected maximum load
is of at least (1 − 1/e)m. This suggests that the performance of random assignment is poor: on
an input where m topics form k disjoint clusters, and each item subscribes to a single cluster, the
optimal solution has cost m/k, whereas, by the above claim, random assignment has approximate
cost 2m/3, yielding a competitive ratio that is linear in k.

Balanced Recovery of Hidden Co-Clusters. We relax the worst-case input requirements by defin-
ing a family of hidden co-clustering inputs. Our model is a generalization of the graph stochastic
block model to the case of hypergraphs.

We consider a set of topics R, partitioned into ℓ clusters C1, C2, . . . , Cℓ, each of which contains
r topics. Given these hidden clusters, each item is associated with topics as follows. Each item is
first assigned a “home” cluster Ch, chosen uniformly at random among the hidden clusters. The
item then connects to topics inside its home cluster by picking each topic independently with fixed
probability p. Further, the item connects to topics from a fixed arbitrary “noise” set Qh of size ≤ r/2
outside its home cluster Ch, where the item is connected to each topic in Qh uniformly at random,
with fixed probability q. (Sampling outside topics from the set of all possible topics would in the
limit lead to every partition to contain all possible topics, which renders the problem trivial. We do
not impose this limitation in the experimental validation.)
Definition 1 (Hidden Co-Clustering). A bipartite graph is in HC(n, r, ℓ, p, q) if it is constructed
using the above process, with n items and ℓ clusters with r topics per cluster, where each item
subscribes to topics inside its randomly chosen home cluster with probability p, and to topics from
the noise set with probability q.

At each time step t, a new item is presented in the input stream of items, and is immediately assigned
to one of the k partitions, S1, S2, . . . , Sk, according to some algorithm. Algorithms do not know the
number of hidden clusters or their size, but can examine previous assignments.
Definition 2 (Asymptotic Balanced Recovery.). Given a hidden co-clustering HC(n, r, ℓ, p, q), we
say an algorithm asymptotically recovers the hidden clusters C1, C2, . . . , Cℓ if there exists a recov-
ery time tR during its execution after which, for each hidden cluster Ci, there exists a partition Sj

such that each item with home cluster Ci is assigned to partition Sj with probability that goes to
1. Moreover, recovery is balanced if the ratio between the maximum partition cost and the average
partition cost is upper bounded by a constant B > 0.

3 Streaming Algorithm and the Recovery Guarantee

Recall that we consider the online problem, where we receive one item at a time together with all its
corresponding topics. The item must be immediately and irrevocably assigned to some partition. In
the following, we describe the greedy strategy, specified in Algorithm 1.

This strategy places each incoming item onto the partition whose incremental cost (after adding the
item and its topics) is minimized. The immediate goal is not balancing, but rather clustering similar
items. This could in theory lead to large imbalances; to prevent this, we add a balancing constraint

4

Data: Hypergraph H = (V,E), received one item (vertex) at a time, k partitions, capacity bound c
Result: A partition of V into k parts

1 Set initial partitions S1, S2, . . . , Sk to be empty sets
2 while there are incoming items do
3 Receive the next item t, and its topics R
4 I ← {i : |Si| ≤ minj |Sj |+ c} /* partitions not exceeding capacity */
5 Compute ri = |Si ∩R| ∀i ∈ I /* size of topic intersection */
6 j ← argmaxi∈I ri /* if tied, choose least loaded partition */
7 Sj ← Sj ∪R /* item t and its topics are assigned to Sj */
8 return S1, S2, . . . , Sk

Algorithm 1: The greedy algorithm.

specifying the maximum load imbalance. If adding the item to the first candidate partition would
violate the balancing constraint, then the item is assigned to the first valid partition, in decreasing
order of intersection size.

3.1 Theorem Statement and Proof Outline

Our main technical result provides sufficient conditions on the cluster parameters for the greedy
strategy to provide balanced recovery of hidden clusters, with high probability.

Theorem 1 (The Recovery Theorem). For a random input consisting of a hidden co-cluster graph
G in HC(n, r, ℓ, p, q) to be distributed across k ≥ 2 partitions, if the number of clusters is ℓ ≥
k log k, and the probabilities p and q satisfy p ≥ 2 log r/r, and q ≤ log r/(rk), then greedy ensures
balanced asymptotic recovery of the hidden clusters.

Coupling and High Probability. In the following, we say that two random processes are coupled
to mean that their random choices are the same. We say that an event occurs with high probability
(w.h.p.) if it occurs with probability at least 1− 1/rc, where c ≥ 1 is a constant.

Proof Overview. The proof of this result can be summarized as follows. The first step will be
to prove that greedy recovers a single cluster w.h.p. when assigning to just two partitions. More
precisely, given a sequence of items generated from a single home cluster, and two partitions, a
version of the algorithm without balancing constraints will eventually converge to assigning all
incoming items to a single partition. This is a main technical step of the proof, and it is based on
a coupling of greedy assignment with a “rich get richer” Polya urn process [5], and then using the
convergence properties of such processes. Further, we extend this coupling claim from two partitions
to k > 2 partitions, again for a single cluster, showing that, when the input consists of items from a
single cluster, greedy will quickly converge to assigning all items to a single partition, w.h.p.

In the next step, we prove that the algorithm will in fact recover ℓ clusters of items in parallel,
assigning each of them (i.e., most of their corresponding items) independently at random to one of
the partitions, and that this convergence is not adversely affected by the fact that items also subscribe
to topics from outside their home cluster. The problem of determining the maximum partition load
is then reduced to showing that the maximum number of clusters that may be randomly assigned to
a partition is balanced, as well as bounding the extra load due on a server to topics outside the home
cluster and miss-assignments.

Polya Urn Processes. For reference, a Polya urn process [5] works as follows. We start each of
k ≥ 2 urns with one ball, and, at each step t, observe a new ball. We assign the new ball to urn
i ∈ {1, . . . , k} with probability proportional to (bi)

γ , where γ > 0 is a fixed real constant, and bi is
the number of balls in urn i at time t. We shall employ the following classic result.

Lemma 1 (Polya Urn Convergence [5]). Consider a finite k-bin Polya urn process with exponent
γ > 1, and let xt

i be the fraction of balls in urn i at time t. Then, almost surely, the limit Xi =
limt→∞ xt

i exists for each 1 ≤ i ≤ k. Moreover, we have that there exists an urn j such that
Xj = 1, and that Xi = 0, for all i ̸= j.

5

3.2 Step 1: Recovering a Single Cluster

Strategy. We first prove that, in the case of a single home cluster for all items, and two partitions
(k = 2), with no balance constraints, the greedy algorithm with no balance constraints converges
to a monopoly, i.e., eventually assigns all the items from the cluster onto the same partition, w.h.p.
Formally, there exists some convergence time tR and some partition Si such that, after time tR, all
future items associated to this home cluster will be assigned to partition Si, with probability at least
1− 1/rc.

Our strategy will be to couple greedy assignment with a Polya urn process with exponent γ > 1,
showing that the dynamics of the two processes are the same, w.h.p. There is one serious technical
issue: while the Polya process assigns new balls based on the ball counts of urns, greedy assigns
items (and their respective topics) based on the number of topic intersections between the item and
the partition. It is not clear how these two measures are related.

We circumvent this issue by taking a two-tiered approach. Roughly, we first prove that, w.h.p.,
we can couple the number of items on a server with the number of unique topics assigned to the
same partition. We then prove that this is enough to couple the greedy assignment with a Polya urn
process with exponent γ > 1 (Lemma 4). This will imply that greedy converges to a monopoly, by
Lemma 1.

Notation. Fix a time t in the execution of the greedy assignment process, corresponding to some
new item being randomly generated. A topic r is known at time t if it has been a topic for some
item up to time t. A known topic r is a singleton if it has been placed on one partition, but not on
others. Otherwise, it is a duplicate. In the following, we will focus on the above quantities around
the special time t0 = r/ log r, which we shall prove is close to the convergence time. For simplicity,
when referring to a value at time t0, we omit the subscript.

3.2.1 Auxiliary Results

We first state some helper results characterizing the number of known and singleton topics up to
some point in time. The reader may skip this sub-section, and return to it as necessary while reading
the proof of Lemma 4.

Lemma 2. The following hold.

1. For 0 < ϵ < 1 constant, the number of topics inside the cluster to which an item τ sub-
scribes is in [2(1− ϵ) log r, 2(1 + ϵ) log r], w.h.p.

2. The expected number of known topics by time t is at least r(1− exp(−2t log r/r)).

3. For any time t ≥ r/ log2 r, the number of known topics is at least r/ log r and the number
of singleton topics is at least r/(2 log r), both w.h.p.

Proof. The first statement follows by straightforward application of Chernoff bounds. To bound
the number of known topics, notice that, at each step, a specific topic r is sampled with probability
p. Therefore, the probability that r has not been sampled by time t is (1 − p)t. Plugging in p =
2 log r/r, it follows that the expected number of unknown topics up to t is r exp(−2t log r/r), which
implies the second claim.

In particular, this number of unknown topics by time t = r/ log2 r is at most r/e2/ log r ≤ r(1 −
3/2 log r), by the Taylor expansion. Therefore, the expected number of known topics up to t is at
least 3r/(2 log r). By a Chernoff bound, it follows that the number of known topics up to t is at
most r/ log r, w.h.p., as required.

To lower bound the number of singleton topics, notice that it is sufficient to lower bound the number
of topics that have been sampled exactly once up to and including time t. (Such topics are necessarily
singletons.) The probability that a topic has been sampled exactly once is tp(1 − p)t−1. Since
t ≥ r/ log2 r, we obtain that the expected number of topics that have been sampled exactly once is
at least r/(log re1/ log r) ≥ r/ log r, for large enough r. Hence, the number of singletons up to this
point is at least r/(2 log r), w.h.p., which completes the proof.

6

We next focus on the ratio of singleton topics between the two partitions. Define the singleton
topic ratio as the number of singleton topics on the more loaded partition divided by the number of
singleton topics on the less loaded partition. Further, define the topic-to-item quotient of a partition
as the number of topics it contains divided by the number of items that have been assigned to it.

Lemma 3. Assume that the singleton topic ratio at time t0 is µ ≤ 1/2 + ϵ, for fixed ϵ < 1, and let

ϕ(ϵ) =
(

1/2+2ϵ
1/2−2ϵ

)2

. Then, the ratio between the topic-to-item quotients of the two partitions is in

the interval [1/ϕ(ϵ), ϕ(ϵ)], with high probability.

Proof. Let σi denote the number of singleton topics on partition i. Without loss of generality, let
partition 1 be the more loaded one at t0, i.e., µ = σ1/(σ1 + σ2). Let T1 be the set of items assigned
to the first partition between times r/ log2 r and r/ log r, and T2 be the corresponding set of items
for partition 2. By the Lemma statement, we have that σ1/(σ1 + σ2) ≤ 1/2 + ϵ at t0.

Given this bound, our first claim is as follows. If µ ≤ 1/2+ϵ at time t0, then, for all times r/ log2 r ≤
t ≤ r/ log r, we have that µt ≤ 1/2 + 2ϵ, w.h.p. Also, |T1|/(|T1| + |T2|) ∈ [1/2 − 2ϵ, 1/2 + ϵ],
w.h.p.

We focus on the proof of the first statement above, and the second will follow as a corollary. Let us
assume for contradiction the converse, i.e., that there exists a time step r/ log2 r ≤ t ≤ r/ log r for
which µt > 1/2 + 2ϵ. We will show that, after time t, the relative gap in terms of singleton topics
between the two partitions will increase, with high probability, which contradicts the bound at time
t0.

For this, consider an incoming item τ . If this item is subscribing to a known topic, which we call case
1, then it will be assigned by the intersection rule. In case 2, it will be placed uniformly at random
on one of the partitions. To control this process, we split the execution from time t into blocks
of b = r/ log4 r consecutive incoming items. Notice that, by Lemma 2, there are at least r/ log r
known topics after time r/ log2 r, w.h.p. This implies that the probability that an item is not assigned
by the intersection rule after this time is at most (1 − 2 log r/r)r/ log r ≤ (1/e)2. Therefore, each
incoming item is assigned by the intersection rule after this time, with at least constant probability.

Consider now the probability that a case-1 item gets assigned to partition 1, assuming that σ1/(σ1+
σ2) > 1/2 + 2ϵ at the beginning of the current block. This means that the item has more topics in
common with partition 1 than with partition 2. By calculation, this probability is at least

1/2 + 2ϵ

1/2− 2ϵ+ 7b log r/r + 1/2 + 2ϵ
≥ 1/2 + 7ϵ/4,

where we have pessimistically assumed that all the items in the current block get assigned to the
second partition, and that each such item contains at most 7/3 log r new topics. (This last fact holds
w.h.p. by Lemma 2.)

For an item i during this block, let Xi be an indicator random variable for the event that the item
gets assigned to partition 1, and fix X =

∑
i Xi. We wish to lower bound X , and will assume that

these events are independent—the fact that they are positively correlated does not affect the lower
bound. We apply Chernoff bounds, to get that, w.h.p., X ≥ (1 − δ)7bϵ/4, that is, the first partition
gets at least (1− δ)7bϵ/4 extra items from each block, where 0 < δ < 1 is a constant. On the other
hand, the number of case-2 items assigned is balanced, since these items are assigned randomly.
In particular, it can be biased towards partition 2 by a fraction of at most (1 − δ)ϵ/4, w.h.p. We
have therefore obtained that partition 1 obtains an extra number of items which is at least 3bϵ/2 in
each block, w.h.p. Summing over log2 r blocks, we get that, over a period of r/ log2 r time steps,
partition 1 gets at least (1/2 + 3ϵ/2)r/ log2 r extra items, w.h.p.

Notice that, in turn, this item advantage also translates into a similar extra proportion of new topics
acquired during each block. In particular, we obtain that the first partition acquires an (1/2 + 4ϵ/3)
fraction of the new topics observed in a block, w.h.p. Recall that, by assumption, at the beginning
of the process, partition 1 already had a fraction of (1/2+ 2ϵ) singleton topics. Therefore, the event
that the singleton topic ratio is balanced by at most 1/2+ϵ at t0 has very low probability, as claimed.
The proof of the second statement follows by a similar argument.

7

To complete the proof of Lemma 3, it is enough to notice that, by the previous claim, the ratio

between the topic-to-item quotients of the two partitions is bounded as σ1+κ
σ2+κ · q2

q1
≤

(
1/2+2ϵ
1/2−2ϵ

)2

,

which completes the proof of Lemma 3.

3.2.2 Convergence to a Monopoly

We can now prove that one of two things must happen during the algorithm’s execution: either one
of the partitions gains a constant size advantage, or the algorithm can be coupled with a Polya urn
process. In both cases, the algorithm will converge to a monopoly.

Lemma 4. Given a hidden cluster input HC(n, r, ℓ, p, q), with ℓ = 1, p ≥ 2 log r/r and q = 0, for
every t ≥ t0 = r/ log r, to be allocated onto two partitions, one of the following holds:

1. With high probability, the greedy algorithm with a cluster and two partitions can be coupled
with a finite Polya urn process with parameter γ > 1, or

2. There exists a constant ρ > 0 such that the ratio between the number of singleton topics on
the two partitions is > 1 + ρ at time t0.

Further, in both cases, the algorithm converges to assigning all incoming items to a single partition
after some time t = O(r/ log r), w.h.p.

Proof. We proceed by induction on the time t ≥ t0. We will focus on time t0 = r/ log r, as the
argument is similar for larger values of t. Notice that we have two cases at t0. If there exists a
constant ρ > 0 such that the ratio between the number of singleton topics on the two partitions is
> 1 + ρ at time t, then we are obviously done by case 2.

Therefore, in the following, we will work in the case where the load ratio between the two partitions
at time t0 is ≤ 1 + ρ. Without loss of generality, assume 1 ≤ (σ1 + κ)/(σ2 + κ) ≤ 1 + ρ.

By Lemma 2, the number of singleton topics at time t ≥ t0 is at least a constant fraction of r, w.h.p.,
and it follows that there exists a constant ϵ > 0 such that the singleton ratio at time t0 is at most
1+ϵ. Also, the probability that an item with 3 log r/2 distinct topics does not hit any of these known
topics is at most 1/r3/2. Hence, in the following, we can assume w.h.p. that every incoming item is
assigned by the intersection rule.

By Lemma 3, the ratio between the topic-to-item quotients of the two partitions at time t0 is at most(
1/2+2ϵ
1/2−2ϵ

)2

, w.h.p. We now proceed to prove that in this case the greedy assignment process can be
coupled with a Polya urn process with γ > 1, w.h.p., noting that this part of the proof is similar to
the coupling argument in [20].

By Lemma 2, for t ≥ r/ log r steps, at least 2r/3 topics have been observed, w.h.p. Therefore,
the probability that an item with 3 log r/2 topics does not hit any of these known topics is at most
1/r3/2. Hence, in the following, we can safely assume that every incoming item is assigned by the
intersection rule.

More precisely, when a new item comes in, we check the intersection with the number of topics on
each server, and assign it to the partition with which the intersection is larger. (Or randomly if the
intersections are equal.) Given an item τ observed at time t ≥ r/ log r, let A be the number of topics
it has in common with partition 1, and B be the number it has in common with partition 2.

More precisely, fix j ≥ 0 to be the size of the total intersection with either partition, and let a and
b be the values of the intersections with partitions 1 and 2, respectively, conditioned on the fact
that a + b = j. Let δ be the advantage in terms of topics of partition 1 versus partition 2, i.e.
(σ1 + κ)/(σ1 + σ2 + 2κ) = 1/2 + δ, and (σ2 + κ)/(σ1 + σ2 + 2κ) = 1/2 − δ, where κ is the
number of duplicate topics. We now analyze the probability that a > b.

We can see this as a one-dimensional random walk, in which we start at 0, and take j steps, going
right with probability (1/2+δ), and left with probability (1/2−δ). We wish to know the probability
that we have finished to the right of 0. Iterating over i, the possible value of our drift to the right, we
have that

8

Pr[a > b] =

j∑
i=[j/2]+1

(
j

i

)(
1

2
+ δ

)i (
1

2
− δ

)j−i

=

(
1

2
+ δ

)[j/2]+1 [j/2]∑
i=0

(
j

i

)(
1

2
+ δ

)[j/2]−i (
1

2
− δ

)i

.

Similarly, we obtain that

Pr[a < b] =

(
1

2
− δ

)[j/2]+1 [j/2]∑
i=0

(
j

i

)(
1

2
+ δ

)i (
1

2
− δ

)[j/2]−i

.

Since δ > 0, we have that the sum on the right-hand-side of the first equation dominates the term on
the right-hand-side of the second equation. It follows that

Pr[a > b]

Pr[a < b]
>

(
1
2 + δ

)[j/2]+1(
1
2 − δ

)[j/2]+1
.

Since the two quantities sum up to (almost) 1, we obtain that

Pr[a > b] >

(
1
2 + δ

)[j/2]+1(
1
2 + δ

)[j/2]+1
+

(
1
2 − δ

)[j/2]+1
.

Let δ′ be the advantage that the first partition has over the second in terms of number of items, i.e.
1/2 + δ′ = q1/(q1 + q2). Using Lemma 3, and setting ϵ to a small constant, we obtain that δ ≃ δ′.
We can therefore express the same lower bound in terms of δ′.

Pr[a > b] >

(
1
2 + δ′

)[j/2]+1(
1
2 + δ′

)[j/2]+1
+

(
1
2 − δ′

)[j/2]+1
.

The lower bound on the right-hand-side is the probability that the ball goes in urn 1 in a Polya process
with γ = [j/2] + 1. Importantly, notice that, in this process, we are assigning balls (items) with
probability proportional to the number of balls (items) present in each bin, and have thus eliminated
topics from the choice. Let βt be the proportion of singletons at time t, i.e. (σ1 + σ2)/r. We can
then eliminate the conditioning on j to obtain that

Pr[A > B] ≥
d∑

j=1

(
d

j

)
(βt/r)

j(1− βt/r)
d−j Pr[a > b|j]. (2)

The only case where greedy is coupled with a Polya urn process with undesirable exponent γ ≤ 1
is when j ≤ 1. However, since an item has at least 3 log r/2 distinct topics, w.h.p., and t ≥ t0 =
r/ log r, the probability that we hit j ≤ 1 topics is negligible. Therefore we can indeed couple our
process to a finite Polya urn process with γ > 1 at time t0 in the case where the singleton ratio at
t0 is at most 1/2 + ϵ, for ϵ a small constant. We can apply the same argument by induction for all
times t ≥ t0, noticing that, once the load ratio is larger than a fixed constant, it never falls below
that constant, except with low probability.

3.3 Step 2: k Partitions and Convergence

Multiple Partitions. Consider now greedy on k ≥ 3 partitions, but with no load balancing con-
straint. We now extend the previous argument to this case.

Let t ≥ r/ log r, and consider the state of the partitions at time t. If there exists a set of partitions
which have a constant fraction more singleton topics than the others, it follows by a simple extension

9

of Lemma 4 (considering sets of partitions as a single partition) that these heavier partitions will
attract all future items and their topics, w.h.p. The only interesting case is when the relative loads of
all partitions are close to each other, say within an ϵ fraction. However, in this case, we can apply
Lemma 4 to pairs of partitions, to obtain that some partition will gain an monopoly.
Lemma 5. Given a single cluster instance in HC(r, ℓ, p, q) with p ≥ 2 log r/r and q = 0 to be split
across k partitions, the greedy algorithm with no balancing constraints will recover the cluster onto
a single partition w.h.p.

Proof. Let us now fix two bins A and B. Notice that the argument of Lemma 4 applies, up to the
point where we compute Pr[A > B] in Equation 2. Here, we have to condition on either A or B
having the maximum number of intersections, i.e., replacing

Pr[#intersections = j] =

(
d

j

)
(σt/r)

j(1− σt/r)
d−j

with
Pr[#intersections = j| A or B in argmax].

Notice that the coupling still works for j ≥ 2. Therefore, it is sufficient to show that
Pr[#intersections ∈ {0, 1}] ≥

Pr[#intersections ∈ {0, 1}| A or B in argmax].

This holds since the event (A or B in argmax) implies that the intersection is less likely to be empty
or of size 1. Therefore, the argument reduces to the two bin case.

Speed of Convergence. Note that, by Chernoff bounds, once one of the partitions acquires a con-
stant fraction more topics from the single cluster than the other partitions, it will acquire all fu-
ture topics w.h.p. By Lemma 4, it either holds that one of the partitions dominates before time
t0 = r/ log r, or that we can couple greedy with a Polya urn process with γ > 1 after this time.
The only remaining piece of the puzzle, before we consider the multi-cluster case, is how fast the
Polya urn process converges to a configuration where some partition contains a constant fraction
more topics than the others.

This question is addressed by Drinea et al. [8], which prove the following two facts about the two-
bin and k-bin case, respectively. We state this as a single result below, combining Theorems 2.1,
2.4, and Lemma 4 from the aforementioned paper. A system of two bins is said to ϵ0-separate if one
of the bins acquires a 1/2+ ϵ0 fraction of the balls. A bin B0 is all-but-δ dominant if B0 contains at
least a 1− δ fraction of the balls thrown.
Theorem 2 (Speed of Convergence [8]). The following hold.

1. Consider a Polya urn process with γ > 1, and two bins, in an arbitrary initial state with
at least one ball each. Then there exist constants ϵ0 and λ > 0 such that, after n steps, the
probability that the two bins fail to ϵ0 separate is at most O(n−λ).

2. Consider a Polya urn process with γ > 1, and two bins. Assume that, initially, there are n0

balls in the system, and that bin B0 has an ϵ0 advantage. We throw balls until B0 is all-but-
δ dominant, for some δ > 0. Then, with probability 1 − eΩ(n0), B0 is all-but-δ dominant
when the system has 2x+zn0 balls, where x = log(0.4/ϵ0)

log(1+(γ−1)/(5+4(γ−1)) , and z = log(0.1/δ)
2γ/(γ+1) .

3. Suppose that when n balls are thrown into a pair of bins, the probability that neither is
all-but-δ dominant is upper bounded by p(n, δ), non-increasing in n. Then when 1+ kn/2
balls are thrown into k bins, the probability that none is all-but-λ dominant is at most(
k
2

)
p(n, δ), for λ = δ

δ+(1−δ)(k−1) .

Convergence argument. We can apply the previous result to bound the convergence time of the
algorithm as follows.
Theorem 3. Given a hidden co-cluster graph in HC(n, r, ℓ, p, q), with parameters p ≥ 2 log r/r,
q = 0, and a single hidden cluster, i.e., ℓ = 1, to be split across k partitions, the following holds.
There exists a partition j such that, after 2r/ log r items have been observed, each additional gen-
erated item is assigned to partition j, w.h.p.

10

3.4 Final Step: The General Case

We now complete the proof of Theorem 1 in the general case with ℓ ≥ 2 clusters and q > 0. We
proceed in three steps. We first show the recovery claim for general ℓ ≥ 2, but q = 0 and no balance
constraints, then extend it for any q ≤ log r/(rk), and finally show that the balance constraints are
practically never violated for this type of input.

Generalizing to ℓ ≥ 2. A first observation is that, even if ℓ ≥ 2, the topics must be disjoint
across clusters if q = 0. Also, since we assume no balance constraints, the clusters and their
respective topics are independent. The assignment problem for clusters then reduces to throwing ℓ
balls (the clusters) into k bins (the partitions). We use concentration bounds on the result bin loads
to understand the maximum number of clusters per partition, which in turn bounds the maximum
load.

Lemma 6. Assume a clustered bipartite graph G with parameters ℓ ≥ k log k, p ≥ 2 log r/r,
and q = 0, to be split onto k partitions with no balance constraints. Then, w.h.p., greedy ensures
balanced recovery of G. Moreover, the maximum number of topics per partition is upper bounded
by (1 + β)rℓ/k, w.h.p., where β < 1 is a constant.

Proof. Notice that, since the clusters are disjoint and q = 0, their corresponding topics must be
disjoint. Also, since there is no balance constraint, the clusters and their respective topics are inde-
pendent. Fix an arbitrary cluster Ci. Let ti be the first time in the execution when we have observed
2r/ log r items from Ci. By Theorem 3, after time ti there exists a partition Pj such that all future
items associated to this hidden cluster will be assigned to Pj , w.h.p. Also, note that, by Lemma 2,
the expected number of topics from this cluster that may have been assigned to other partitions by
time ti is at most r(1− 1/e2), which implies that at most 8m/9 total topics may have been assigned
to other partitions by this time, w.h.p.

To examine the maximum partition load, we model this process as a balls-into-bins game in which
ℓ = k log k balls (the clusters) are distributed randomly across k bins (the partitions). The expected
distribution per bin is of ℓ/k clusters, and, by Chernoff bounds, the maximum load per bin is (1 +
α)ℓ/k, with high probability in k, where 0 < α < 1 is a small constant. This means that a partition
may receive number of topics of (1 + α)rℓ/k from the clusters assigned to it. To upper bound
the extra load due to duplicates, first recall that at most 8m/9 total topics from each cluster may
be duplicated, w.h.p. In total, since clusters are distinct, we obtain that 8rℓ/9 total topics will be
duplicated, w.h.p. Since these duplicates are distributed uniformly at random, a partition may receive
an extra load of (1 + α)8rℓ/9k topics, w.h.p. Choosing small α, we get that the maximum load per
partition is bounded by (1+α)rℓ/k+(1+α)8rℓ/9k ≤ 1.9rℓ/k. It is interesting to contrast this to
the factor obtained by random assignment of items to partitions.

Generalizing to q > 0. The next step is to show that, as long as q < log r/(rk), the greedy process
is not adversely affected by the existence of out-of-cluster (noise) topics, since out-of-cluster topics
have a very low probability of changing the algorithm’s assignment decisions.

Lemma 7. Given q < log r/(rk), then w.h.p. the greedy process can be coupled with a greedy
process on the same input with q = 0, where r/ log r topics have been observed for each cluster of
topics.

Proof. We couple the two processes in the following way. We consider a hidden cluster input G
built with q = 0, and a copy of that input G′ where q = log r/(rk), running the algorithm in parallel
on the two graphs. Notice that we can view this process on an item-by-item basis, where in the q = 0
copy the algorithm gets presented with an item τ , while in G′ the algorithm gets presented with a
variant τ ′ of τ from the same home cluster, which also has out-of-cluster topics, chosen uniformly
at random from an arbitrary set Qh of at most r/2 topics.

The key question is whether the greedy assignments are the same for items τ and τ ′. We prove that
this is indeed the case, with high probability. In particular, we need to show that, w.h.p., the outside
topics are not enough to change the decision based on the intersection argmax.

Given an item τ ′ in G′ which belongs to cluster Ci, notice that, by Lemma 2, it has at least 3 log r/2
distinct topics in Ci, w.h.p. Let ti be the first time when at least r/ log r items from Ci have

11

Dataset Items Topics # of Items # of Topics # edges
Book Ratings Readers Books 107,549 105,283 965,949

Facebook App Data Users Apps 173,502 13,604 5,115,433
Retail Data Customers Items bought 74,333 16,470 947,940

Zune Podcast Data Listeners Podcasts 80,633 7928 1,037,999

Figure 3: A table showing the data sets and information about the items and topics.

been observed. After time ti, using Chernoff bounds and the pigeonhole principle, the size of the
intersection of τ with one of the k partitions must be of at least (1− α)(1− 1/e)3 log r/2k, w.h.p.,
where α > 0 is a constant.

We now bound the number of topics that τ has outside Ci. Since q < log r/rk, it follows that τ may
have at most (1+ β) log r/k topics outside Ci, w.h.p., where β is a constant. For small α and β, we
get that the number of home cluster topics of τ exceeds the number of outside topics, w.h.p. In turn,
this implies that the two random processes can be coupled for each cluster starting with time ti, as
claimed.

We can combine Lemma 7 and Theorem 3 to obtain that greedy converges after 2r/ log r items have
been observed out of each hidden cluster.

The Capacity Constraint. Finally, we extend the argument to show that the partition capacity
constraints do not cause the algorithm to change its decisions, with high probability. The proof fol-
lows by noticing that the load distributions are balanced across servers as the algorithm progresses,
as items are either distributed randomly (before convergence), or to specific partitions chosen uni-
formly at random (after convergence).

Lemma 8. On a hidden co-cluster input, greedy without capacity constraints can be coupled with
a version of the algorithm with a constant capacity constraint, w.h.p.

Proof. We can model the assignment process as follows: during the execution, each of the ℓ clusters
has its items assigned randomly (at the beginning of the execution), then converges to assigning
items to a single server. If we regard this from the point of view of each partition i at some time
t, there is a contribution Ri of topics which comes from items in clusters that are still randomly
assigned at t, and a contribution Fi of topics coming from items in clusters that have converged.
Notice that both these contributions are balanced across partitions: each partition has the same
probability of being assigned a random cluster; also, since clusters are assigned independently and
ℓ ≥ k log k, the weight coming from converged clusters is also balanced across partitions. Using
concentration bounds for each contribution in turn, it follows that the maximally loaded partition is
at most a constant fraction more loaded then the minimally loaded one, w.h.p.

Final Argument. Putting together Lemmas 6, 7 and 8, we obtain that greedy ensures balanced
recovery for general hidden cluster inputs in HC(n, r, ℓ, p, q), for parameter values ℓ ≥ k log k,
p ≥ 2 log r/r, and q ≤ log r/(rk). This completes the proof of Theorem 1.

Moreover, the fact that each cluster is recovered can be used to bound the maximum load of a
partition. More precisely, by careful accounting of the cost incurred, we obtain that the maximum
load is 2.4rℓ/k, with high probability, where the extra cost comes from initial random assignments,
and from the imperfect balancing of clusters between partitions.

4 Experimental Results

Datasets and Evaluation. We first consider a set of real-world bipartite graph instances with a
summary provided in Table 3. All these datasets are available online, except for Zune podcast
subscriptions. We chose the consumer to be the item and the resource to be the topic. We provide an
experimental validation of the analysis on synthetic co-cluster inputs in the full version of our paper.

12

2 3 4 5 6 7 8 9 10

k

1

2

3

4

5

6

7

8

9

10

N
o
rm

a
li
z
e
d
 M

a
x
im

u
m

 L
o
a
d

All on One

Proportional Greedy (Decreasing Order)

Balance Big

Prefer Big

Random

Greedy (Random Order)

Greedy (Decreasing Order)

(a) Book Ratings

2 3 4 5 6 7 8 9 10

k

1

2

3

4

5

6

7

8

9

10

N
o
rm

a
li
z
e
d
 M

a
x
im

u
m

 L
o
a
d

All on One

Proportional Greedy (Decreasing Order)

Balance Big

Prefer Big

Random

Greedy (Random Order)

Greedy (Decreasing Order)

(b) Facebook App Data

2 3 4 5 6 7 8 9 10

k

1

2

3

4

5

6

7

8

9

10

N
o
rm

a
li
z
e
d
 M

a
x
im

u
m

 L
o
a
d

All on One

Proportional Greedy (Decreasing Order)

Balance Big

Prefer Big

Random

Greedy (Random Order)

Greedy (Decreasing Order)

(c) Retail Data

2 3 4 5 6 7 8 9 10

k

1

2

3

4

5

6

7

8

9

10

N
o
rm

a
li
z
e
d
 M

a
x
im

u
m

 L
o
a
d

All on One

Proportional Greedy (Decreasing Order)

Balance Big

Prefer Big

Random

Greedy (Random Order)

Greedy (Decreasing Order)

(d) Zune Podcast Data

Figure 4: The normalized maximum load for various online assignment algorithms under different
input bipartite graphs versus the numbers of partitions.

In our experiments, we considered partitioning of items onto k partitions for a range of values going
from two to ten partitions. We report the maximum number of topics in a partition normalized by
the cost of a perfectly balanced solution m/k, where m is the total number of topics.

Online Assignment Algorithms. We compared greedy to the following other online algorithms:

• All-on-One trivially assigns all items and topics to one partition.

• Random randomly assigns each item to a partition.

• Balance Big receives the items in a random order. It assigns the large items to the least loaded
partition, and the small items according to greedy. An item is considered large if it subscribes to
more than 100 topics, and small otherwise.

• Prefer Big receives the items in a random order. It keeps a buffer of up to 100 small items. When
it receives a large item it puts it on the least loaded partition. When the buffer is full, it places all the
small items according to greedy.

• Greedy is the algorithm we analyzed, which assigns the items to the partition they have the most
topics in common with. We considered two variants: items arrive in random order, and items arrive
in decreasing order of the number of topics. We allowed a slack (parameter c) of up to 100 topics
in all experiments.

• Proportional Allocation receives the items in decreasing order of the number of topics. The prob-
ability an item is assigned to a partition is proportional to the number of common topics with the
partition.

In addition to these online heuristics, we also comparead against offline methods, such as spectral
partitioning, label propagation, hMETIS [12], and PARSA [14].

Results. We found that greedy generally outperforms other online heuristics (see Figure 4). Also,
the performance of greedy is improved if items arrive in decreasing order of number of topics. This
observation seems intuitive: the items with larger number of topics would provide more information

13

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016
Value of q

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca

ll

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016
Value of q

0

2

4

6

8

10

12

R
e
la

ti
v
e
 M

a
x
im

u
m

 S
iz

e

(a) Testing the sufficient condition

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016
0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca

ll

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016
Value of q

0

2

4

6

8

10

12

R
e
la

ti
v
e
 M

a
x
im

u
m

 S
iz

e

(b) Experiments for non-uniform sources.

Figure 5: Experiments for hidden cluster bipartite graphs. The dotted line upper bounds the analytic
recovery threshold.

about the underlying structure of the bipartite graph than the items with smaller number of topics.
Interestingly, adding randomness to the greedy assignment made it perform far worse; most times
Proportional Assignment approached the worst case scenario. The naive random assignment out-
performed Proportional Assignment and regularly outperformed Prefer Big and Balance Big item
assignment strategies.

Comparison with Offline Techniques. We also tested the streaming algorithm for a wide range
of synthetic input bipartite graphs according to the model defined in this paper, and several offline
approaches for the problem including hMetis [12], label propagation, basic spectral methods, and
PARSA [14]. We found that label propagation and spectral methods are extremely time and memory
intensive on our inputs, due to the large number of topics and item-topic edges. (The algorithms took
more than a day to return, and often ran out of memory on a 16GB machine.) hMetis returns within
seconds, however the assignments were not competitive—we note however that hMetis provides
balanced hypergraph cuts, which are not necessarily a good solution to our problem. Compared to
PARSA on bipartite graph inputs, greedy provides assignments with up to 3x higher max partition
load. On social graphs, the performance difference can be as high as 5x. This discrepancy is natural
since PARSA has the advantage of performing multiple passes through the input.

Synthetic Co-Cluster Inputs. We also considered generated hidden co-cluster inputs. In particular,
we generated hidden co-cluster graphs for various values of parameters r, ℓ, p, q, and m = rℓ.
We focus on two measures. The first is recall, which is defined as follows: for each cluster, we
consider the partition that gets the highest fraction of topics from this cluster. We then average
these fractions for all clusters, to obtain the recall. The second measure is the maximum partition
size, i.e., the maximum number of topics on a partition after m logm items have been observed,
normalized by m/k, which is a lower bound on the optimum. We expect these two measures to
be correlated, however neither one in isolation would be sufficient to ensure that greedy provides
balanced recovery.

When generating the random inputs, we select a random home cluster, then subscribe to topics from
the home cluster with probability p. When subscribing to topics from outside the home cluster,
we pick every topic from outside the cluster independently with probability q (so the noise set Q
contains all topics).

Testing the Sufficient Conditions. Our first experiment, presented in Figure 5a, fixes the value of
p to 2 log r/r, and increases the value of q from p/(10ℓ) (below the analytic recovery threshold)
to 8p/ℓ (above the recovery threshold). The dotted line represents an upper bound on the recovery
threshold q = p/(4ℓ). The experiment shown is for r = 64, ℓ = 64, and k = 20. The results are
stable for variations of these parameters.

14

The experiments validate the analysis, as, below the chosen threshold, we obtain both recall over
90%, and partition size within two of optimal. We note that the threshold value we chose is actually
higher than the value q = log r/(rk) required for the analysis.

Non-Uniform Clusters. We repeated the experiment choosing home clusters with non-uniform
probability. In particular, we select a small set of clusters which have significantly more probability
weight than the others. The experimental results are practically identical to the ones in Figure 5a,
and therefore omitted. These empirical results suggest that non-uniform cluster probabilities do not
affect the algorithm’s behavior.

Non-Uniform Topics. Finally, in Figure 5b, we analyze the algorithm’s behavior if topics have non-
uniform probability weights. More precisely, we pick a small set of topics in each cluster which have
disproportionately high weight. (In the experiment shown, four sources out of 64 have .1 probability
of being chosen.) We observe that this affects the performance of the algorithm, as recall drops at a
higher rate with increasing q.

The intuitive reason for this behavior is that the initial miss-classifications, before the algorithm
converges, have a high impact on recall: topics with high probability weight will be duplicated on
all partitions, and therefore their are no longer useful when making assignment decisions.

5 Related Work

The related problem of min-max multi-way graph cut problem, originally introduced in [24], is de-
fined as follows: given an input graph, the objective is to partition the set of vertices such that the
maximum number of edges adjacent to a partition is minimized. A similar problem was recently
studied, e.g. [1], with respect to expansion, defined as the ratio of the sum of weights of edges
adjacent to a partition and the minimum between the sum of the weights of vertices within and out-
side the given partition. The balanced graph partition problem is a bi-criteria optimization problem
where the goal is to find a balanced partition of the set of vertices that minimizes the total num-
ber of edges cut. The best known approximation ratio for this problem is poly-logarithmic in the
number of vertices [13]. The balanced graph partition problem was also considered for the set of
edges of a graph [2]. The related problem of community detection in an input graph data has been
commonly studied for the planted partition model, also well known as stochastic block model. Tight
conditions for recovery of hidden clusters are known from the recent work in [17] and [15], as well
as various approximation algorithms, e.g. see [3]. Some variants of hypergraph partition problems
were studied by the machine learning research community, including balanced cuts studied by [10]
using relaxations based on the concept of total variation, and the maximum likelihood identification
of hidden clusters [18]. The difference is that we consider the min-max multi-way cut problem for
a hypergraph in the streaming computation model.

Streaming computation with limited memory was considered for various canonical problems such
as principal component analysis [16], community detection [23], balanced graph partition [21, 22],
and query placement [25]. For the class of (hyper)graph partition problems, most of the work is
restricted to studying various streaming heuristics using empirical evaluations with a few notable
exceptions. A first theoretical analysis of streaming algorithms for balanced graph partitioning was
presented in [20] using the framework similar to the one deployed in this paper. The paper gives
sufficient conditions for a greedy streaming strategy to recover clusters of vertices for the input graph
according to stochastic block model, which makes irrevocable assignments of vertices as they are
observed in the input stream and uses memory limited to grow linearly with the number of clusters.
As in our case, the argument uses a reduction to Polya urn processes. The two main differences with
our work is that we consider a different problem (min-max hypergraph partition) and this requires a
novel proof technique based on a two-step reduction to Polya urn processes. Streaming algorithms
for the recovery of clusters in a stochastic block model were also studied in [23], under a weaker
computation model, which does not require irrevocable assignments of vertices at instances they are
presented in the input stream and allows for memory polynomial in the number of vertices.

PARSA [14] considers the same problem in an offline model, where the entire input is initially
available to the algorithm, and provides an efficient distributed algorithm for optimizing multiple
criteria. A key component of PARSA is a procedure for optimizing the order of examining vertices,

15

and its efficient implementation. By contrast, we focus on performance under arbitrary arrival order,
and provide analytic guarantees under a stochastic input model.

6 Conclusion

We studied the min-max hypergraph partitioning problem in the streaming computation model with
the size of memory limited to be at most linear in the number of the parts of the partition. We
established first approximation guarantees for inputs according to a random bipartite graph with
hidden co-clusters. The problem is re-formulated as a statistical detection problem of hidden co-
clusters. We found a set of sufficient conditions for the recovery of hidden co-clusters by a simple
and natural streaming algorithm, and evaluated its performance on several real-world input graphs.

There are several interesting open questions for future work. It is of interest to study the tightness
of the sufficient recovery conditions, and, in general, better understand the trade-off between the
memory size and the accuracy of the recovery. It is also of interest to consider the recovery problem
for a wider set of random bipartite graph models. Another question of interest is to consider dynamic
graph inputs with addition and deletion of items and topics.

References
[1] N. Bansal, U. Feige, R. Krauthgamer, K. Makarychev, V. Nagarajan, J. SeffiNaor, and

R. Schwartz. Min-max graph partitioning and small set expansion. SIAM J. on Computing,
43(2):872–904, 2014.

[2] F. Bourse, M. Lelarge, and M. Vojnovic. Balanced graph edge partition. In Proc. of ACM
KDD, 2014.

[3] Y. Chen, S. Sanghavi, and H. Xu. Clustering sparse graphs. In Proc. of NIPS, 2012.
[4] Y. Cheng and G. M. Church. Biclustering of expression data. In Ismb, volume 8, pages 93–103,

2000.
[5] F. Chung, S. Handjani, and D. Jungreis. Generalizations of Polya’s urn problem. Annals of

Combinatorics, (7):141–153, 2003.
[6] I. S. Dhillon. Co-clustering documents and words using bipartite spectral graph partitioning.

In Proc. of ACM KDD, 2001.
[7] I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering. In Proc. of

ACM KDD, 2003.
[8] E. Drinea, A. M. Frieze, and M. Mitzenmacher. Balls and bins models with feedback. In Proc.

of ACM-SIAM SODA, 2002.
[9] S. Fortunato. Community detection in graphs. Physics Reports, 486(75), 2010.

[10] M. Hein, S. Setzer, L. Jost, and S. S. Rangapuram. The total variation on hypergraphs - learning
hypergraphs revisited. In Proc. of NIPS, 2013.

[11] T. Karagiannis, C. Gkantsidis, D. Narayanan, and A. Rowstron. Hermes: clustering users in
large-scale e-mail services. In Proc. of ACM SoCC, 2010.

[12] G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. VLSI Design, 11(3),
2000.

[13] R. Krauthgamer, J. S. Naor, and R. Schwartz. Partitioning graphs into balanced components.
2009.

[14] M. Li, D. G. Andersen, and A. J. Smola. Graph partitioning via parallel submodular approxi-
mation to accelerate distributed machine learning. arXiv preprint arXiv:1505.04636, 2015.

[15] L. Massoulié. Community detection thresholds and the weak Ramanujan property. In Proc. of
ACM STOC, 2014.

[16] I. Mitliagkas, C. Caramanis, and P. Jain. Memory limited, streaming PCA. In Proc. of NIPS,
2013.

[17] E. Mossel, J. Neeman, and A. Sly. Reconstruction and estimation in the planted partition
model. Probability Theory and Related Fields, pages 1–31, 2014.

16

[18] L. O’Connor and S. Feizi. Biclustering using message passing. In Proc. of NIPS, 2014.
[19] J. M. Pujol et al. The little engine(s) that could: Scaling online social networks. IEEE/ACM

Trans. Netw., 20(4):1162–1175, 2012.
[20] I. Stanton. Streaming balanced graph partitioning algorithms for random graphs. In Proc. of

ACM-SIAM SODA, 2014.
[21] I. Stanton and G. Kliot. Streaming graph partitioning for large distributed graphs. In Proc. of

ACM KDD, 2012.
[22] C. E. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic. FENNEL: streaming graph

partitioning for massive scale graphs. In Proc. of ACM WSDM, 2014.
[23] S.-Y. Yun, M. Lelarge, and A. Proutiere. Streaming, memory limited algorithms for community

detection. In Proc. of NIPS, 2014.
[24] Z. Z. Svitkina and E. Tardos. Min-max multiway cut. In K. Jansen, S. Khanna, J. Rolim, and

D. Ron, editors, Proc. of APPROX/RANDOM, pages 207–218. 2004.
[25] B. Zong, C. Gkantsidis, and M. Vojnovic. Herding small streaming queries. In Proc. of ACM

DEBS, 2015.

17

